Advanced Operating Systems
Assignment Week 10

Paul Lodige
Student ID: 37-229753

December 26, 2022

(1 Assignment| 1
2_Code 2
[2.1 Custom Python Code|. 2
2.1.1 Outputf{. 3

[2.2 Using kxisting Programs| 4
2.2.1 Output|. 4

1 Assignment

Create a user-space program (any language is acceptable) that differentiates
the performance of the Linux Kernel with the PREEMPT RT patches from
that without the PREEMPT RT patches. Compile and run the program.
Submit the source code and the screen shots of the standard output and the
kernel log message, respectively, when the program is being executed.

16

N o= e e
S © w

o=

NN N NN
0 N O U W N

NN

2 Code

2.1 Custom Python Code

The following code was written by me with the intend to measure the jitter
in a python code. It uses the schedtool program provided with the PRE-
EMPT _RT patches to schedule itself.

import subprocess
import time
import matplotlib.pyplot as plt

ITERATIONS = 300
ITERATION_DURATION = 1 #second(s)

def set_rt_priority():
subprocess.run(["schedtool", "-F", "-p", "99"], check=True)

def rt_task():
new_time = time.time ()

jitter_record = []

for i in range (ITERATIONS + 1):

old_time = new_time

new_time = time.time ()

PrAnt (M o m o s oo oo ")
print (f"system time:\t{new_timel} s")

print (f"time diff:\t{new_time - old_timel} s")

jitter

jitter = new_time - old_time - ITERATION_DURATION
jitter_record.append(jitter)
print (f"jitter:\t{jitter} s")

sleep for the rest of one second
time.sleep(new_time + ITERATION_DURATION - time.time())

#remove the first measurement
jitter_record.pop (0)

#plot and store the jitter record
plt.plot(jitter_record)

plt.title(f"Jitter at {ITERATION_DURATION} s interval")
plt.xlabel("Iteration")

plt.ylabel("Jitter (in s)")

plt.savefig("out.svg")

if __name__ == "__main__":
set_rt_priority ()
rt_task ()

2.1.1 Output

Unfortunately, as can be seen by the following output, the jitter isn’t really
affected by the activation or deactivation of the PREEMPT RT patches.

with PREEMPT RT

Jitter at 1 s interval

0.7 1

0.6

0.5 A

0.4

Jitter (in's)

0.3 A
0.2 A
0.1 wJ
0.0 A
0 50 100 150 200 250 300
Iteration

without PREEMPT RT

Jitter at 1 s interval

0.40 -

0.35 A

0.30 A

o
N
o

I
N
o

Jitter (in's)

0 50 100 150 200 250 300
Iteration

2.2 Using Existing Programs

The following code is just a shell script that makes use of two programs
provided by the rt-tests package (Arch Linux). It uses the hackbench
program to put stress on the system and then evaluates the maximum latency
with the cyclictest program. This provides a much more reliable method
of testing the real-time capabilites of the system than any self-developed code
I was able to come up with.

#!/bin/bash

echo "==" >> output.txt

uname -a >> output.txt

echo M- m o " >> output.txt

hackbench -1 40000 >> output.txt &

sleep 1

echo "--------mm e - " >> output.txt

sudo cyclictest -q --mlockall --smp --priority=80 --interval=200 --distance
=0 -D 1m >> output.txt

€Cho M- mm e oo " >> output.txt

The code is based on the following two sources:
https://wiki.archlinux.org/title/Realtime_kernel_patchset
https://shuhaowu.com/blog/2022/02-1inux-rt-appdev-part2.html

2.2.1 Output

The following output shows that while the PREEMPT RT patch doesn’t
really affect the average latency it drastically reduces the maximum latency.

with PREEMPT RT

nux advanc ting emsvm ¢ 2-Tt14-MANJARO #1 SMP PREEMPT_RT Sun Nov 6 15:25:56 CET 2023 64 GNU/Linux

@ file descriptors each (== 400 t

4 GNU/Linux

2
2
2
3

https://wiki.archlinux.org/title/Realtime_kernel_patchset
https://shuhaowu.com/blog/2022/02-linux-rt-appdev-part2.html

	Assignment
	Code
	Custom Python Code
	Output

	Using Existing Programs
	Output

