diff --git a/.gitignore b/.gitignore index b4508a3..c680b28 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,5 @@ +experimentation.py + # ---> TeX ## Core latex/pdflatex auxiliary files: *.aux @@ -23,7 +25,7 @@ # *.pdf ## Generated if empty string is given at "Please type another file name for output:" -*.pdf +LaTeX/Final_Project_Loedige.pdf ## Bibliography auxiliary files (bibtex/biblatex/biber): *.bbl diff --git a/Final_Project_Loedige.ipynb b/Final_Project_Loedige.ipynb index d3c8392..d8c55a2 100644 --- a/Final_Project_Loedige.ipynb +++ b/Final_Project_Loedige.ipynb @@ -79,13 +79,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-02-01 23:37:09.558933: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "2023-02-03 13:55:00.456857: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "2023-02-01 23:37:09.710778: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", - "2023-02-01 23:37:09.710807: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", - "2023-02-01 23:37:10.735053: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", - "2023-02-01 23:37:10.735109: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", - "2023-02-01 23:37:10.735116: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", + "2023-02-03 13:55:00.602905: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n", + "2023-02-03 13:55:00.602949: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n", + "2023-02-03 13:55:01.295401: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n", + "2023-02-03 13:55:01.295490: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n", + "2023-02-03 13:55:01.295499: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n", "/home/paul/.local/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] @@ -117,10 +117,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-02-01 23:37:12.516064: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", - "2023-02-01 23:37:12.516115: W tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:265] failed call to cuInit: UNKNOWN ERROR (303)\n", - "2023-02-01 23:37:12.516142: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (paul-laptop): /proc/driver/nvidia/version does not exist\n", - "2023-02-01 23:37:12.516432: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", + "2023-02-03 13:55:02.605437: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory\n", + "2023-02-03 13:55:02.605483: W tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:265] failed call to cuInit: UNKNOWN ERROR (303)\n", + "2023-02-03 13:55:02.605508: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (paul-laptop): /proc/driver/nvidia/version does not exist\n", + "2023-02-03 13:55:02.605775: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } @@ -234,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -243,15 +243,15 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "configs['regular Neural Network (3 hidden layers)'] = {\n", " 'model': models.Sequential([\n", " layers.Flatten(input_shape=(32, 32, 3)),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(128, activation='relu'),\n", " layers.Dense(64, activation='relu'),\n", " layers.Dense(10, activation='softmax')\n", " ]),\n", @@ -265,17 +265,17 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "configs['regular Neural Network (5 hidden layers)'] = {\n", " 'model': models.Sequential([\n", " layers.Flatten(input_shape=(32, 32, 3)),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", + " layers.Dense(1024, activation='relu'),\n", + " layers.Dense(512, activation='relu'),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(128, activation='relu'),\n", " layers.Dense(64, activation='relu'),\n", " layers.Dense(10, activation='softmax')\n", " ]),\n", @@ -289,21 +289,21 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "configs['regular Neural Network (10 hidden layers)'] = {\n", " 'model': models.Sequential([\n", " layers.Flatten(input_shape=(32, 32, 3)),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", - " layers.Dense(64, activation='relu'),\n", + " layers.Dense(1024, activation='relu'),\n", + " layers.Dense(1024, activation='relu'),\n", + " layers.Dense(512, activation='relu'),\n", + " layers.Dense(512, activation='relu'),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(128, activation='relu'),\n", " layers.Dense(64, activation='relu'),\n", " layers.Dense(64, activation='relu'),\n", " layers.Dense(10, activation='softmax')\n", @@ -311,7 +311,7 @@ " 'optimizer': 'adam',\n", " 'loss': 'sparse_categorical_crossentropy',\n", " 'metrics': ['accuracy'],\n", - " 'epochs': 10,\n", + " 'epochs': 30,\n", " 'batch_size': 64\n", " }" ] @@ -454,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -477,7 +477,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -487,51 +487,25 @@ "Already trained model \"regular Neural Network (3 hidden layers)\"\n", "Now training model \"regular Neural Network (5 hidden layers)\"\n", "Epoch 1/10\n", - "573/573 [==============================] - 4s 6ms/step - loss: 2.1808 - accuracy: 0.2090 - val_loss: 2.0740 - val_accuracy: 0.2603\n", + "573/573 [==============================] - 36s 63ms/step - loss: 2.2150 - accuracy: 0.1990 - val_loss: 2.0656 - val_accuracy: 0.2634\n", "Epoch 2/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.9479 - accuracy: 0.2899 - val_loss: 2.0117 - val_accuracy: 0.2704\n", + "573/573 [==============================] - 32s 57ms/step - loss: 1.5889 - accuracy: 0.4455 - val_loss: 1.4111 - val_accuracy: 0.5452\n", "Epoch 3/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.8272 - accuracy: 0.3483 - val_loss: 1.8153 - val_accuracy: 0.3685\n", + "573/573 [==============================] - 30s 52ms/step - loss: 1.2176 - accuracy: 0.6022 - val_loss: 1.1933 - val_accuracy: 0.6230\n", "Epoch 4/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.7119 - accuracy: 0.3952 - val_loss: 1.7315 - val_accuracy: 0.3903\n", + "573/573 [==============================] - 31s 54ms/step - loss: 1.0577 - accuracy: 0.6612 - val_loss: 1.1168 - val_accuracy: 0.6521\n", "Epoch 5/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.6912 - accuracy: 0.4016 - val_loss: 1.7336 - val_accuracy: 0.3889\n", + "573/573 [==============================] - 29s 50ms/step - loss: 0.9675 - accuracy: 0.6911 - val_loss: 1.0188 - val_accuracy: 0.6824\n", "Epoch 6/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.6804 - accuracy: 0.4035 - val_loss: 1.7354 - val_accuracy: 0.3859\n", + "573/573 [==============================] - 32s 56ms/step - loss: 0.8902 - accuracy: 0.7175 - val_loss: 0.9739 - val_accuracy: 0.7005\n", "Epoch 7/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.6715 - accuracy: 0.4048 - val_loss: 1.7318 - val_accuracy: 0.3877\n", + "573/573 [==============================] - 36s 63ms/step - loss: 0.8418 - accuracy: 0.7324 - val_loss: 0.9489 - val_accuracy: 0.7063\n", "Epoch 8/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.6631 - accuracy: 0.4073 - val_loss: 1.7218 - val_accuracy: 0.3911\n", + "573/573 [==============================] - 33s 58ms/step - loss: 0.7982 - accuracy: 0.7457 - val_loss: 0.9559 - val_accuracy: 0.7037\n", "Epoch 9/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.6524 - accuracy: 0.4098 - val_loss: 1.7372 - val_accuracy: 0.3871\n", + "573/573 [==============================] - 36s 63ms/step - loss: 0.7654 - accuracy: 0.7563 - val_loss: 0.9224 - val_accuracy: 0.7180\n", "Epoch 10/10\n", - "573/573 [==============================] - 3s 5ms/step - loss: 1.5946 - accuracy: 0.4377 - val_loss: 1.6471 - val_accuracy: 0.4303\n", - "Now training model \"regular Neural Network (10 hidden layers)\"\n", - "Epoch 1/10\n", - "573/573 [==============================] - 5s 6ms/step - loss: 2.1620 - accuracy: 0.2086 - val_loss: 2.0289 - val_accuracy: 0.2637\n", - "Epoch 2/10\n", - "573/573 [==============================] - 3s 6ms/step - loss: 1.8554 - accuracy: 0.3278 - val_loss: 1.8178 - val_accuracy: 0.3646\n", - "Epoch 3/10\n", - "573/573 [==============================] - 3s 6ms/step - loss: 1.6382 - accuracy: 0.4278 - val_loss: 1.6134 - val_accuracy: 0.4429\n", - "Epoch 4/10\n", - "573/573 [==============================] - 4s 6ms/step - loss: 1.4941 - accuracy: 0.4835 - val_loss: 1.5625 - val_accuracy: 0.4769\n", - "Epoch 5/10\n", - "573/573 [==============================] - 4s 7ms/step - loss: 1.4252 - accuracy: 0.5136 - val_loss: 1.5296 - val_accuracy: 0.4912\n", - "Epoch 6/10\n", - "573/573 [==============================] - 4s 7ms/step - loss: 1.3940 - accuracy: 0.5287 - val_loss: 1.4993 - val_accuracy: 0.5050\n", - "Epoch 7/10\n", - "573/573 [==============================] - 4s 7ms/step - loss: 1.3718 - accuracy: 0.5373 - val_loss: 1.4939 - val_accuracy: 0.5019\n", - "Epoch 8/10\n", - "573/573 [==============================] - 4s 6ms/step - loss: 1.3595 - accuracy: 0.5405 - val_loss: 1.4698 - val_accuracy: 0.5136\n", - "Epoch 9/10\n", - "573/573 [==============================] - 3s 6ms/step - loss: 1.3512 - accuracy: 0.5465 - val_loss: 1.4504 - val_accuracy: 0.5230\n", - "Epoch 10/10\n", - "573/573 [==============================] - 3s 6ms/step - loss: 1.3413 - accuracy: 0.5512 - val_loss: 1.4415 - val_accuracy: 0.5292\n", - "Already trained model \"convolutional neural network (1 convolution)\"\n", - "Already trained model \"convolutional neural network (3 convolutions)\"\n", - "Already trained model \"frozen VGG16 base model\"\n", - "Already trained model \"fully trainable VGG16 base model\"\n", - "Already trained model \"partly trainable VGG16 base model\"\n" + "573/573 [==============================] - 36s 62ms/step - loss: 0.7403 - accuracy: 0.7640 - val_loss: 0.8736 - val_accuracy: 0.7336\n" ] } ], @@ -558,12 +532,12 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHUCAYAAAANwniNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd2AUZf7H8fdszWbTEwgJJaF3RQQRFEFRQRFBT0X0QIqFnw3FiooIoniCir1TrGBDvRP1UAFRVE5URINUQw2EFFI322Z+f2zJbnZDEkjn+/JyszvzzOyzySbsZ5/vPKNomqYhhBBCCCGEEKJSuobugBBCCCGEEEI0dhKchBBCCCGEEKIKEpyEEEIIIYQQogoSnIQQQgghhBCiChKchBBCCCGEEKIKEpyEEEIIIYQQogoSnIQQQgghhBCiChKchBBCCCGEEKIKEpyEEEIIIYQQogoSnIQQQtS7Z555BkVR6NWrV0N3RQghhKgWCU5CCCHq3aJFiwD4888/+emnnxq4N0IIIUTVJDgJIYSoVz///DObNm1i5MiRALz++usN3KPwSktLG7oLQgghGhEJTkIIIeqVLyg99thjDBo0iGXLloWElP3793P99dfTtm1bTCYTqampXHbZZRw6dMjf5siRI9xxxx106NABs9lMy5YtufDCC/nrr78AWLNmDYqisGbNmqBjZ2ZmoigKS5Ys8a+bOHEiUVFRbN68mfPPP5/o6GiGDRsGwKpVqxg9ejRt2rQhIiKCTp06ccMNN5CTkxPy3P766y/GjRtHcnIyZrOZdu3aMWHCBOx2O5mZmRgMBubNmxey37fffouiKLz//vvH9D0VQghR9wwN3QEhhBAnDpvNxrvvvkv//v3p1asXkydP5tprr+X999/nmmuuATyhqX///jidTu677z5OOukkcnNz+fLLL8nPzyc5OZmioiLOPPNMMjMzueeeexgwYADFxcV8++23ZGVl0a1btxr3zeFwcPHFF3PDDTdw77334nK5ANi5cycDBw7k2muvJTY2lszMTJ588knOPPNMNm/ejNFoBGDTpk2ceeaZJCUlMWfOHDp37kxWVhaffvopDoeD9PR0Lr74Yl566SXuvvtu9Hq9/7Gfe+45UlNTueSSS2rhuyyEEKJOaEIIIUQ9eeONNzRAe+mllzRN07SioiItKipKGzx4sL/N5MmTNaPRqGVkZFR6nDlz5miAtmrVqkrbrF69WgO01atXB63/+++/NUBbvHixf90111yjAdqiRYuO2n9VVTWn06nt3r1bA7RPPvnEv+2cc87R4uLitOzs7Cr7tGLFCv+6/fv3awaDQZs9e/ZRH1sIIUTDklI9IYQQ9eb111/HYrFw5ZVXAhAVFcXll1/OunXr2L59OwCff/45Z599Nt27d6/0OJ9//jldunTh3HPPrdX+/eMf/whZl52dzdSpU2nbti0GgwGj0UhaWhoAW7ZsATznQ61du5YrrriCFi1aVHr8oUOHcvLJJ/P888/717300ksoisL1119fq89FCCFE7ZLgJIQQol7s2LGDb7/9lpEjR6JpGkeOHOHIkSNcdtllQPlMe4cPH6ZNmzZHPVZ12tRUZGQkMTExQetUVeX888/no48+4u677+brr79mw4YN/Pjjj4Cn9BAgPz8ft9tdrT7deuutfP3112zduhWn08mrr77KZZddRqtWrWr1+QghhKhdEpyEEELUi0WLFqFpGh988AHx8fH+L9/sekuXLsXtdtOiRQv27dt31GNVp01ERAQAdrs9aH24SR0AFEUJWffHH3+wadMm5s+fzy233MLQoUPp378/iYmJQe0SEhLQ6/VV9gngqquuIjExkeeff57333+fgwcPctNNN1W5nxBCiIYlwUkIIUSdc7vdLF26lI4dO7J69eqQrzvuuIOsrCw+//xzLrjgAlavXs3WrVsrPd4FF1zAtm3b+Oabbyptk56eDsDvv/8etP7TTz+tdr99YcpsNgetf/nll4PuWywWhgwZwvvvv19pMPOJiIjg+uuvZ+nSpTz55JP06dOHM844o9p9EkII0TBkVj0hhBB17vPPP+fAgQP861//YujQoSHbe/XqxXPPPcfrr7/Oc889x+eff85ZZ53FfffdR+/evTly5AhffPEF06dPp1u3btx2220sX76c0aNHc++993Laaadhs9lYu3YtF110EWeffTatWrXi3HPPZd68ecTHx5OWlsbXX3/NRx99VO1+d+vWjY4dO3LvvfeiaRoJCQn8+9//ZtWqVSFtfTPtDRgwgHvvvZdOnTpx6NAhPv30U15++WWio6P9bW+88UYef/xxNm7cyGuvvXZM31MhhBD1S0achBBC1LnXX38dk8nEpEmTwm5PSkrikksu4T//+Q8Gg4ENGzZw0UUX8dhjjzFixAhuueUWCgoKSEhIACA6OprvvvuOKVOm8MorrzBy5Eiuu+46tm7dSmpqqv+4b775JsOGDeOee+7h8ssvZ//+/bz77rvV7rfRaOTf//43Xbp04YYbbmDcuHFkZ2fz1VdfhbQ9+eST2bBhA6eeeiozZsxgxIgR3HPPPZjNZkwmU1Db1q1bc+aZZ5KQkMBVV11V7f4IIYRoOIqmaVpDd0IIIYQ4kWRnZ5OWlsYtt9zC448/3tDdEUIIUQ1SqieEEELUk3379rFr1y7mz5+PTqdj2rRpDd0lIYQQ1SSlekIIIUQ9ee211xg6dCh//vknb7/9Nq1bt27oLgkhhKgmKdUTQgghhBBCiCrIiJMQQgghhBBCVEGCkxBCCCGEEEJUQYKTEEIIIYQQQlThhJtVT1VVDhw4QHR0tP+K8EIIIYQQQogTj6ZpFBUVkZqaik539DGlEy44HThwgLZt2zZ0N4QQQgghhBCNxN69e2nTps1R25xwwSk6OhrwfHNiYmIauDdCCCGEEEKIhlJYWEjbtm39GeFoTrjg5CvPi4mJkeAkhBBCCCGEqNYpPDI5hBBCCCGEEEJUQYKTEEIIIYQQQlRBgpMQQgghhBBCVEGCkxBCCCGEEEJUQYKTEEIIIYQQQlRBgpMQQgghhBBCVEGCkxBCCCGEEEJUQYKTEEIIIYQQQlRBgpMQQgghhBBCVEGCkxBCCCGEEEJUQYKTEEIIIYQQQlRBgpMQQgghhBBCVEGCkxBCCCGEEEJUwdDQHRBCCNG4aS4V1e5Gs7tRy1xoDrfnfpl3nd3lXbqDl2We9YYWFhKv6t7QT0MIIYQ4LhKchBCimdE0DYLCjnfpcKOVucIHHEflbXFrx9mh2nleQgghREOS4CSEEI2ApmloTrU80AQEnODRHFd5wHGEtvUtUWs/rShGHYpZjy7C4Fma9SjeL89tg3+dzqxHidCjMxvQWY213hchhBCivklwEkKIY6RpGppDRbO7/KVrIQEnMPx4S9c8ozmhbetiZEYxeYNMhHdp0qNEVAg4AcEnqG1gGDLpUfRK7XdQCCGEaCIkOAkhhJemaqjFTtyFdtwFdtyFDs+ywIG7yOEPPv5A5KiDsKN4wo5/NCdsyDGEhp6I0PWKSY+ik7AjhBBC1AYJTkKIE4LmUj1ByBeKChxhw9ExlbgpBAeaSkZ3ykOOwbMtaHTHs69i1EnYEUII0axomoaqaqguDdWt4vYuLdEm9IamM8m3BCchRJOnlrmCA1CB3RuQHP6lWuKs3sEU0EWb0Mea0ceYMMSa0cWY0MeYys/tqXiOj1GHokjYEUIIUfc0TUN1e77cLtV7uzyMBK6vuCy/7Vsfuo//WC4Vt+pdurSjPk6lj+/27K9WMsnQZff2Izk9pp6/g8dOgpMQotHSVA211BkahgJHigodnvODqsOgoI8xo481eZeecKSP9a6LNaOPMsm5PEIIcYLTNA23U8XlVHE5VFxOt+e+97ZnvRuXQz1KmPDe9o2yeEOEOyho+G5XDDZHCynNY6pSnV5Bq4OJjOqSBCchRIPQ3CruIkd5ECpwhJ5bVOio9lTYSoQ+OAj5A1H5bV2kQUaGhBCiCdJUDZdLxe0LLkFLT4gpDzqeYOMOuB3Y3tOufF93heP49m1KdAYFvV6HTq+gM+jQ6xV0egW9QYfOu15vUAJue9vqdZ713vt6vc57rIBtle1TYX212xoUdDqlSf57LMFJCFHrVIc7/HlEheUjR2qxs3oTKyigizKGjhAFjhTFmNGZ9XX+vIQQQnioqlatsOJ2hgYXl1PF7WtTSegJPp5nRKahKDoFg0mHwajDYNRjMOnQV7it0wWEAr03uFQaRnyhopKAERCCQtsGhBRvQFKaaAhpiiQ4CSGqTdM01FJXhUkVQoORVlbN0jm9EhqEYgLK5mJN6KNNKPqmc+KoEELUJ/9IjC9kOMvLytxONWRb4NLt8gYZV8B6hxtnSOCpMCrjdKO6Gq7ESqdXMBh16E16b5jRYfDdNunQewONL+joK4QeX3t94H6B6wLW60069PJvkPCS4CSEAEBza7iLK5bNVSyfc0A1P/VTzPrw5xIFjBTpIo0yg5wQoslT3d5w4QoeIfEHFG+AcTnc5W0qhhh/yHEHr3MGH6tiKGrIAOOjMyieUOINLv7QUSGYhAQdkzfY+PYzloeVwOPpjTqMAaFGJ0FGNBAJTkKcIDRNw3XYhnN/Ma4CO2qhA1fAKJFa5Kj2NYk8pXNHGSnyzkAnhBD1RVM1nA530In8IeGlQhjxn+tSMbw4Atu4w4zUBB+rsZzgrtMp6H2BxegpCfPf9i/16A3lgcTgbeMfaQkYldFXGKEJF3R8ZWpCnAjknY0QzZjm1nDsLsCWkUfZllxcuWVH30EXrnQu+FwifYwJpQldc0EI0XioqobL7sbp+3K4Pfcdblx2FafDs94VtFQrtPPtqwatczWSk/l1BsUTRkz6kFDiDyyG8jCjN3rbmSoLO/qwASdw6TuejMQIUbckOAnRzKhlLsq25lO2JRfb1nw0m6t8o17B1DYaQ3xEcBjyjhTprFI6J8SJzu1SK4QXNUzIqSTQeIOOq0IA8gWj+jrBvzyUBAYWfUgo8QWZ0FCiDwklIdvCjeYY5ALWQjRnEpyEaAZceWXYtuRStiUP+64CCCgb0UUaiOiWQET3RCK6xKEzy6+9EE2Zpnmu5xJuhCYw6ASHltARGmdgMCpz+ber9VB2pihgMOsxmvSepfe20ewJOEaz3r/daPaUiHmW5W3L99eVtzN7Qo3MMCaEqAsN/g7qhRdeYP78+WRlZdGzZ08WLlzI4MGDK23//PPP89xzz5GZmUm7du24//77mTBhQj32WIiGp6kajn1FlG3Jw5aRi+tQadB2QwsLET0SsXRPwNQuRj4BFaKBqaqGs8yFo8yNw+byfJW5cZR5b9sCbpeV36+sVE2rh1NqdDrFG050QeEm5LZvuz/kBIed0MDjHZmRcCOEaGIaNDgtX76c2267jRdeeIEzzjiDl19+mQsuuICMjAzatWsX0v7FF19kxowZvPrqq/Tv358NGzZw3XXXER8fz6hRoxrgGQhRf1SHG/v2I56Rpb/yPNdB8tGBOT2WiO6ekSVjkqXhOipEM+KbcMBhc5eHmrIKQccWEIgqhiPvNqe9mlP015DOoFQeWIJGZSqM6lTYHm5URy/nMgohRBBF0+rjc6vwBgwYQN++fXnxxRf967p3786YMWOYN29eSPtBgwZxxhlnMH/+fP+62267jZ9//pnvvvuuWo9ZWFhIbGwsBQUFxMTEHP+TEKIOuQvt2LbkUbYlj7IdR4KmAlfMeiK6xmPpnkhE13h0kcaG66gQjYymabicavhgEzLCU9nIj+d2dWebrA6dQcFsMWCMMGCK0JfftugxRxgwWgLWm/UYzQZ/KVpQyPGO9MhkAEIIcXxqkg0abMTJ4XCwceNG7r333qD1559/PuvXrw+7j91uJyIiImidxWJhw4YNOJ1OjMbQN452ux273e6/X1hYWAu9F6JuaJqGM6uEsoxcbH/l4dxXHLRdH2/2BKUeCZjTY2V2O9EsuZzu0AATWMJWcWSnktBTm1NEKzoFk0WPKcKAyRtuPEvPfbNF7w1DAbctBm8w0nvXG9Ab5XdWCCGaqgYLTjk5ObjdbpKTk4PWJycnc/DgwbD7DB8+nNdee40xY8bQt29fNm7cyKJFi3A6neTk5JCSkhKyz7x585g9e3adPAchaoPmUrHvPOIfWXIXlAd9FDC1jSaiewKW7okYkiPlvADRqLldKvZSF2UlTuwlTuylLuz+UZ+jhKCAEZ7avKCnooCpQnjxjfD4g09ACDJbDBgtgW0922TCASGEEA0+OUTFf4g0Tav0H6eZM2dy8OBBTj/9dDRNIzk5mYkTJ/L444+j1+vD7jNjxgymT5/uv19YWEjbtm1r7wkIcQzcxQ7/lOFl246gOcrPf1CMOsyd47F0TyCiWwL6aFMD9lSciDRNw1nmpqzUib3E5V/aS52eQFTqwl7ipCzM0lWL5/L4wk7oCE/40BO83nPfaNZL4BFCCFErGiw4JSUlodfrQ0aXsrOzQ0ahfCwWC4sWLeLll1/m0KFDpKSk8MorrxAdHU1SUlLYfcxmM2azudb7L0RNaJqG67DNc22ljDwcewqDzpvQxZg8Qal7IhEdY1GM4T8IEKIm3G7VH3gCR4GCAo8vHPkCkff+cU1JrYDZYsBsNRIR6Q0+loAAVDEMBQYf3zazXmaDFEII0ag0WHAymUyceuqprFq1iksuucS/ftWqVYwePfqo+xqNRtq0aQPAsmXLuOiii9DppG5cNC6aW8OeWeCZ2GFLLq7csqDtxhSrf8pwY2qUvEkUYWmahtPuLg8+vtATEHTKSoKDkG+bs+z4Rn/0Bh1mq4EIqxFzpAFzpJEIa3kg8tw3YrYGbIs0YrYY5PUshBCi2WnQUr3p06czfvx4+vXrx8CBA3nllVfYs2cPU6dOBTxldvv37+eNN94AYNu2bWzYsIEBAwaQn5/Pk08+yR9//MHSpUsb8mkI4aeWuSjbmu+ZMnxrPprNVb5Rr2DuGOcdWUrAEBdR+YFEs6O6Vew2l390JyT4VFYWd7yjP+ANPRXCjS/8eENRhDVgm7edwSQjn0IIIYRPgwansWPHkpuby5w5c8jKyqJXr16sXLmStLQ0ALKystizZ4+/vdvt5oknnmDr1q0YjUbOPvts1q9fT3p6egM9AyHAlWvzTOzwVx72XQUQ8CZXF2kgolsClh6JmDvHoTM3+GmF4jhomobLoVY4zyewDK7y84Ecxzn6ozMoRESWh5zAUZ+gUSGrMaidKdKATkZ/hBBC1CFN08DtRnO50JxO/5LA+y4XmtOF5nR41rtcRPTujT4qqqG7X20Neh2nhiDXcRLHS1M1HPuKKMvIw7YlF9eh0qDthpYWIrp7SvBM7WKkZKmRU1WNsmInpYV2Sgsd2AodlBY6KS1yUFpo99+3FTkoK3Ue94xvpgh90ChP8ChQeQCK8I0KebcZTDKrmxBCNFeaP3S4wOUMEzacaC6nP3BoTqdnvcvTDn9YCdge2N4ReLyAbc4Kwcbl9BzLd5zA9kHHDt6O03lMzzv9veVYTjqplr+bNdMkruMkRFOiOtzYt+f7R5bU4oA/EDowp8f6w5IhydJwHRWAJwzZihzYihz+MFTiC0VFvnDk+SordlLTj490OiUg5HgDT2SYc338JXDebRaDXLBUCCEagKaqaA4Hmt3uWTocqHYHmtMRtF51ONDsDn8bzenZpvruB2xTHd5j+UZWHKGBwh84KgkbvvuoatVPoqlRFBSjEcVgAO/Sd99z23O/KZHgJEQl3AV2bH/lUZaRS9nOIxAw0qCY9UR0jcfSI5GILvHoIpvWL35TFBSGChzeEaHgEOQPSsXOoFkLq6SAJcqIJdpEZIznyxJjIjI6+HZElCcMyRTXQghRNX9YcZSHE08AcaI5AgOM77bTE2Cclaz3BhnPemdoEKrwWIHrcbmq7nAjoxiN5YGjQujAaEAxmsq3eYOIp32FfYwGMBg868MFF9+2gPaKwbuP73jG8uOVH6tCnwzePvnaVnKpoKZMgpMQXpqm4TxQ4pkyfEsezv3FQdv1CRH+iR3M6bEoBhk5OF6qW8VW7CwPQEUBIaiWwlBkjMkfiCwx5cEoMrr8viXKKCNBQohmR9M0z0iHzYZaVoZWVla+tJWh2SssHZWMulS23m5HdYaOxHjWH3v5Vp1TFBSTyfNlNqOYjOiMvtu+9Z6lzmRCMQWv1/lu+9Ybg0NEUEgxGoJCDBVCSFBACQwhevmArjGS4CROaJpLxb7ziKcEb0su7gJH+UYFTG2jPSV4PRIwtIyUP2LVEBKGfF9FoaNDxx2GYoMDkH+0KFrCkBCi8dKcTtSyMlSbzRMyjrYsK0Mts6OV2Spf2spQ7WVoQUs7ms1GjWuR61B5UAkMJaYK643ozGbPyEW49SaTZ5s38CgmU/l6f5gJs957TJ3JO4oj/56LYyDBSZxw3MUOyrbme0rwtuejOcrrihWjDnPneM/IUrcE9NGmBuxp4+EPQwWhAShwVKi00EFZSc3CkKJARJSRyBgzkTHGgBK5gPsShoQQdUxzuaoVUEJGabxLf2CpOLITZon7+GbZPCZ6PbqICBSLxRMoLBHozBHly4gIdObQ0ZUqR12CQk6F9QEBScKKaA4kOIlmT9M0XIdt2DJyKduSh2NPYdAbe12MyVuCl0hEx1gUY/OryQ3H7VYpK3L6R4NKC4IDUGAgOqYwFO0LQJ5QVB6IAu7HeM4bkumyhRDhaJrmKf3ylpqFjMQEBpcymze42NDK7BUCizf82GyekRjv/cC2DVJWpiieIBMRgRJhRhdh8S91EWaUoKU33AQtzegsFhSzZxm+jXfZxE7CF6IxkuAkmiXNrWLPLKTMW4Lnyi0L2m5MtfpnwTO2jmq2n4KpbpUj2TZy9xeTd6CEnH3FFObY/LPJ1YQ/DIU5R6jifQlDQjRvmqaFBpigEZqygDKzsuA2FUdnKpx/Ux6APOsaotSs0vBRcVlh1EZniUCpuAwbgswoFovnnJZm+u+PEM2RBCfRbKg2F2Xb8rxThuejlQXMoKNXMHeMw9IjgYhuiRjizA3X0TqgaRqlhQ5y9xWTu7+E3APF5O4vJj+rFLer8ilOFQVPCVwlASjwnCEJQ0I0fpqqegKI9/yWqgJM6GhNhVGaiusCQk69MxqDRmb8ZWeB66oTWCIigkZpwi0lzAghwpHgJJo0V67NP7GD/e9CUMs/mdRZDUR084wqmTvHoTM3j5e7o8xFXlYJeftLyN1f7P0q8ZTThWEw60lMtZKYaiWhdRTxrSKxxpo9I0NWo1ygV4h6pDkcqDYbammpd2lDLS3xBBKbDbXEu95WGhBkbOXhxldeFjhaExCSNLu93p+TYjQGBJiAkZiK5WXedUGjM76wEziSYwkIRWZz+VJKzYQQDax5vJMUJxRN0yhet5+SjYdwHSoN2mZoacHSPZGIHomY2kY36VCgqhoF2aWeESRfQDpQQmGOLez5RooCsS0jSWwdRWJrq38Zk2hp0t8HIeqb5nb7w40/0JSWekKOrRQtKPSUekNO4H1PO7W0FK3UFhSU6vNaMorJ5A80wQHGElpm5g8wFUZlInwByBwQcgJGdiLMnqmThRDiBCB/7UST49xfTMHKvz13dGBOj/Wfr2RIsjRs546Br8wuL6DELnd/CXlZJbid4cvsImNMJLb2jCAlpkaR1MYzkmQwnRgTWwihaZq37MwTWDRvUAkfaHyhJyD4BAUab8Dx7l8vozZGo2dkJTLSs/TeViIt6CyR3vUR5ZMC+EZrAkvSKpSmBYUis7lZXnxSCCEakgQn0eSU/p4DQETXeBLGdkUX2XTKN5wON3kHgkvs8g4UYyuqpMzOpCMhxUpiG09A8o0kWWSadNFEaE5nSKDRbKUhozj+0Z2jBBr/KJBv9KauJw1QFM+oizXSE2YCgk5wwLGgi/QGH0vA+kiLt613f+99ncWCYpLfYSGEaGokOIkmRdM0bJsPAxDZr1WjDU2qqlF42BZUYpe7r5iCSsrsUCCuZaT/PCRfQIpNkjI70XA0VUUtLkYtKsJdVORdFqMWFXqWxd71hUW4i4tQi4pxFxWiFnn3KS72XICzjilmc3CgibQGjOIEBBdf8Im0eAJOYKDx7R9wXyYJEEIIEUiCk2hSnPuLcefbUYw6IrrGN3R3ADyz2R0o9sxod6CEPO/U365Kyuws0Ubv+UflASk+xYpRyuxELdI0Da20NDjwFBfhLiwKG3iCwlFxMWphIWpJSe11yGAIKktTIgOCSxWBpnwUJzDg+AJShJSkCSGEqBcSnESTUrrZW6bXPQFdPQcNp8NNflaJv8TON5pUWZmd3qgrH0FKtfrDUmSMlOiIqql2O2phYfjAU3FkJzDw+O4XF4PbXSt9UUwmdNHR6KOjvcsodFHR6GKi0UdFo4uOQh8dE7RNH+Npq4uKQm+1SmmaEEKIJk+Ck2gyPGV6nuBk6Z1Ud4+jahTk2MjbX0LO/mLyvKV2Bdml4U+pUCA2yVJhNrsoYlpY5LpHJyjN6QwOMUXlgcdf5lbkHe2ppMxNc9bsAsWV0uv9gUcXHeUJOv7AExqGggJPjCcM6ST0CCGEEBKcRNPh3F+MO6/MW6aXUCvHtBVXvGisZ7IGlyN8mV1ElDE4IKVGkZBqxWiWUqHmRnO5cOXl4c7Lw5WTizsvt9plbrV2Xo+ioIuKqiTwRKGLjgkfeKKj/dsUi0XO0xFCCCFqgQQn0WT4RpsiutW8TM/ldJOfVUru/uLyUaT9JZQWOsK21xu9s9mlls9ol9DaSmSMSd6ENmGqw4E7NxdXTi6u3Bz/bXeeb10u7twcz7ojR4571jYlMhJ9VNRRA48uxjvqUyHw6KKj0VmtKDpd7Tx5IYQQQhwXCU6iSdA0zX9+09HK9DRVozC3LGS67yOHKimzA2KSIgIma/CMJsW2sKDTyxvWpkAtLcWVm4srJ8c/OuTKzcHtDUL+23l5qIWFNTu4Toc+Ph5DYiL6xAT0MbHloz8Vz+sJDDzeECQXBhVCCCGaD/lXXTQJzgMl5WV63TxlemXFTu9U3+Uz2uUeKMFlD39CvNlqIKl1VPlkDW2iSEixYoqQX4PGRNM01OJiTxAKMzrkyssNCEW5aKWlNXsAg8EfhAyJSRgSEzEkJaJPTMKQlOjdloQhMQF9fLzM2CaEEEIIQIKTaCJ8126K6JaAw6ny2cLfOLirIGxbnUHxlNm1Dr5obGSslNk1FE1VcRcU4M7J8QeeoFAUEITcublojvAllJVRzGZP4EkKCEIJiWFDkS42Vl4HQgghhKgxCU6i0atYpvftsm3+0BSTFEFCavBsdnEtpcyuPmguF+78fG+ZXPm5Qf7zhHLzPLdzcnDl54PLVaPj66xW9ImB4SfRM0Lkv53oD0s6q1XCkBBCCCHqlAQn0eg5D5TgzvWU6e0rdrL9f4dQdAqX3tmXVh1iG7p7zUrYyRNy80JD0TFOnqCLjQ0IPIkYEgJCkXe0yFcmp7NY6uZJCiGEEEIcAwlOotHzzaanbx/L2vd3ANB/ZLqEphpy5eVh37YNx+49oZMneEeHajx5gqKUT56QlOg/Z6j8dkJ5mVxCglwEVQghhBBNlgQn0ah5LnrrOb9pa1YpDpuL5PYxnDoirYF71nipdjv2HTuwb9uOfetW7Nu2UbZtG+6cnOodwGDAkJBQHn4Cb1ccHZLJE4QQQghxgpDgJBo1Z1YJrtwyNJ3Clr3FGMx6zp3UQ85hwjPhgvPAAezbtmHfupWybduwb92GY/ducIefWdDYti2mDu0xtGhRPjrkm13OG4r0sbFy7SAhhBBCiAokOIlGzVemd9Duxg2cfUVn4lpGNmynGoC7sNAzcrR1a/lI0vbtqCUlYdvrY2Mxd+mCuWtXzF06E9G1K+ZOndBZrfXccyGEEEKI5kGCk2i0NE2j9HdPmd5+h0r7k5PoPiilgXtVtzSnE/vff2Pfus1bYucJSq6srPA7GI2YO3TA3LULEf6g1AVDy5Yyy5wQQgghRC2S4CQaLWeWZzY9t6ZRaDFw+fhuzSYMaJqG69Ch0FGkv/8GpzPsPoaUFE84ChhJMrdvj2I01nPvhRBCCCFOPBKcRKN16Ju9KMAhp8aQKT2xRDXNGdnUkhLs27dT5h1Fsm/dStn27agFlVzA12r1hiNPSIro2hVz587oY2LquedCCCGEEMJHgpNolGxFDko352BVQN85jrSeiQ3dpSppbjeO3Xuwb/POZOcNSs69e8PvoNdjSk8nwhuQzF08ZXbG1qnNZmRNCCGEEKK5kOAkGh1N0/hxSQadFVCBXv/s3tBdCuHKyQkKR/atW7Hv3Ilmt4dtr2+RRIQ3GPnORzJ17IjObK7nngshhBBCiGMhwUk0On/9cBB15xGI0GNoH4s5uuFK9NSyMuw7dgZcD8lzPpI7Nzdse8ViwdypU/lkDV26Yu7aBUN8fD33XAghhBBC1CYJTqJRKThsY93ybQw2ea4jFDegVb08rqaqOPfvD7oekn2b95pIqhq6g6JgbNc2ZBTJ2LatXBBWCCGEEKIZkuAkGg3VrfLV4gwinG6iLUYwKER0T6j1x3EfOeIJR76Z7LZto2z7drTS0rDt9XFx/mm+/ecjdeqELvLEu56UEEIIIcSJSoKTaDR++XI3B3cV0DPK87KM6JKAznzsL1HN4fBeEyl4sgbXoUNh2ytGI6ZOnUKm/Da0aCGTNQghhBBCnOAkOIlG4dDfhWz4TyYAHeJMUOwksndStfbVNA3XwYPB10Pats1zTSSXK+w+xtTUkFEkU1qaXBNJCCGEEEKE1eDB6YUXXmD+/PlkZWXRs2dPFi5cyODBgytt//bbb/P444+zfft2YmNjGTFiBAsWLCAxsfFPVy3Cc9rdrFr8J5qq0bN3Irq9hVWW6RV/9z3F33ztL7lTCwvDttNFR3un+u7suR5Sly6eayJFR9fV0xFCCCGEEM1Qgwan5cuXc9ttt/HCCy9wxhln8PLLL3PBBReQkZFBu3btQtp/9913TJgwgaeeeopRo0axf/9+pk6dyrXXXsuKFSsa4BmI2vD9B9spyLYRFW+md3o0tr2FRHSORxcR/uVZvG4de6+7PnilwYC5fbr/Wki+yRoMKSlSZieEEEIIIY5bgwanJ598kilTpnDttdcCsHDhQr788ktefPFF5s2bF9L+xx9/JD09nVtvvRWA9u3bc8MNN/D444/Xa79F7cn8PYc/1x0A4JxruuNcuQsAy0ktwrZXS0o4OOshAKKGDiXmwgs8ZXYdOqAzNdy05UIIIYQQonnTNdQDOxwONm7cyPnnnx+0/vzzz2f9+vVh9xk0aBD79u1j5cqVaJrGoUOH+OCDDxg5cmSlj2O32yksLAz6Eo1DaaGDb97cAsDJ57alVbwZV7YN9AqWSsr0sp9+GueBAxhTU2n9xAJiL76YiG7dJDQJIYQQQog61WDBKScnB7fbTXJyctD65ORkDh48GHafQYMG8fbbbzN27FhMJhOtWrUiLi6OZ599ttLHmTdvHrGxsf6vtm3b1urzEMdG0zRWv7kFW5GTxNZWTh/dgdLfcwCI6BK+TM+2aRP5b74FQKvZs9FZrfXaZyGEEEIIceJqsODkU/H8E03TKj0nJSMjg1tvvZUHH3yQjRs38sUXX/D3338zderUSo8/Y8YMCgoK/F979+6t1f6LY/PnugNkbs5FZ1A4b3JPDEY9ts2HAbCEmU1PczjIemAmaBqxoy8mavCZ9d1lIYQQQghxAmuwc5ySkpLQ6/Uho0vZ2dkho1A+8+bN44wzzuCuu+4C4KSTTsJqtTJ48GDmzp1LSkpKyD5msxmz2Vz7T0Acs/yDJXz//nYABo7pSGLrKJyHSsrL9HqEzpCY8+qr2LdvRx8fT8t7763vLgshhBBCiBNcg404mUwmTj31VFatWhW0ftWqVQwaNCjsPqWlpeh0wV3W6/WAZ6RKNH5ut8pXizNwOVXadIvn5HM8pZP+Mr0ws+nZd+wg56WXAUi+/34M8fH122khhBBCCHHCa9BSvenTp/Paa6+xaNEitmzZwu23386ePXv8pXczZsxgwoQJ/vajRo3io48+4sUXX2TXrl18//333HrrrZx22mmkpqY21NMQNfDzZ5lk7y7CHGlg2DXdUXSeskzbZk9wqlimp6kqWTMfBKcT65CziBl5Yb33WQghhBBCiAadjnzs2LHk5uYyZ84csrKy6NWrFytXriQtLQ2ArKws9uzZ428/ceJEioqKeO6557jjjjuIi4vjnHPO4V//+ldDPQVRA1k7C9j4eSYAQ67qSlR8BIC3TK80bJle/rvvYvv1V3SRkaTMmiXXZBJCCCGEEA1C0U6wGrfCwkJiY2MpKCggJiamobtzwnCUuVg+dwOFOWV0HdCKcyf18G8r/Go3hV/tIaJbAkkTe/rXOw8cYNdFo1BLS0me+QAJV1/dEF0XQgghhBDNVE2yQYPPqidODOve205hThnRCREMvrJL0LbSMGV6mqaRNXs2amkpllNOIX7cuHrtrxBCCCGEEIEkOIk6t/OXbP5anwUKnDupB2ZLeYWoM7sU16HQMr3Cz1ZSsvZbFKORlIfnoOjkpSqEEEIIIRqOvBsVdarkiJ3Vb/8FQN/haaR2jgvabvvdc+2miE5x6LyBypWfz6FHHgEgceoNmDt1qr8OCyGEEEIIEYYEJ1FnNFXj66UZ2EtctGgXzWkXtQ9pU16m18K/Lvuxx3Dn52Pu3Imk666rt/4KIYQQQghRGQlOos78vmYfe7fkYzDqOG9yD/SG4JdbcJleAgDF69ZR8MmnoCikPPwwisnUEF0XQgghhBAiiAQnUSdyDxTzw4qdAAz6RyfiW1lD2viu3RTRKQ5dpBG1pISDsx4CIH78P7H06VNf3RVCCCGEEOKoJDiJWud2qny1OAO3U6Vdz0R6DWkdtp1ts+f8Jt9setlPP43zwAGMqam0nDat3vorhBBCCCFEVSQ4iVr30793kbO3mIgoI+dM6Bb2orXOw6U4D5aCzjObnm3TJvLffAuAVrNno7OGjlAJIYQQQgjRUCQ4iVq1f2s+v67aA8DZ/+yGNdYctp3td0+ZnrlTHIpBI+uBmaBpxI6+mKjBZ9Zbf4UQQgghhKgOCU6i1thLnXy1JAM06HFGCh36tKi0re/8psjeSeS89hr27dvRx8fT8t5766u7QgghhBBCVJsEJ1Fr1r67jeJ8OzEtLJxxeedK23nK9EpAp6CLLCL3xZcASL7/fgzx8fXVXSGEEEIIIapNgpOoFds2HGT7/w6h6BTOm9QDU4Sh0ra+0SZzp1gOzZ2F5nRiHXIWMSMvrK/uCiGEEEIIUSMSnMRxK8orY+272wDod2E6rTrEHrW9LzhpJTux/forushIUmbNCjuJhBBCCCGEEI2BBCdxXDRV4+slGThsLpLbx9DvgrSjtnfm2HBmlYAO8t98AoAWd0zHmJpaH90VQgghhBDimEhwEsflt6/2sn/bEQxmPedO7IFOf/SXlO/aTZr9AGphDpZTTiF+3Lj66KoQQgghhBDHTIKTOGY5+4r48ZOdAAy+vDNxyZFV7uObhtz+xyoUo5GUh+eg6ORlKIQQQgghGjd5xyqOicvhZtWiDFS3RvuTk+h+RkrV+3jL9DTNjfPAbyROvQFzp0710FshhBBCCCGOjwQncUx++HgneQdKsMSYOPuf3ao1sUOpd1IId/ZfmNNTSLruurruphBCCCGEELWi8jmjhajEnoxcfv9mHwDDJnTHEm2q1n4lP2QC4Dqwkdb/ehjFVL39hBBCCCGEaGgy4iRqpKzYyddLtwDQe0hr0nolVms/x9483IWgqW6sgztj6dOnDnsphBBCCCFE7ZLgJKpN0zTWvP0XpQUO4ltFMvAf1T8/Kee1zwBQizJJvv2muuqiEEIIIYQQdUKCk6i2rT8eZOevh9HpFM6d1AOjSV+t/WybNuE85DkHKurMjuis1rrsphBCCCGEELVOgpOoloLDNr5dtg2A0y5uT8u0mGrtpzkcZM1egD4uDTSVuDGn12U3hRBCCCGEqBMSnESVVLfK10sycNrdpHSK5ZTz06q9b85rr6E5PedBmdKj0VuNddVNIYQQQggh6owEJ1GlX77cQ9bOAowRes6d2AOdruqpxwHsO3eS++JLGFJPBSCyb9XXehJCCCGEEKIxkuAkjupQZiH/+8/fAAy5sgsxSZZq7aepKlkPzARjLPr4dNCBpWf1ZuATQgghhBCisZHgJCrltLv5anEGqqrR6dSWdBnQqtr75r/7LrZff8WU7jmnydwhDn2UXLdJCCGEEEI0TRKcRKW+/3AHRw6VYo0zM+SqrihK9Ur0nFlZHH7iSQAiTh4OgKV3Up31UwghhBBCiLomwUmElbk5hz+/3Q/AsIndiajmpA6apnHwodmopaVY+p+FajODImV6QgghhBCiaZPgJEKUFjr45o0tAJw8rC1tuyVUe9/ClSspXrsWxWgk9pL/A8DcIVbK9IQQQgghRJMmwUkE0TSN1W/9ha3ISUKqldPHdKj2vq78fA498igAiVNvwHFAA8DSu0Wd9FUIIYQQQoj6IsFJBMn47gCZv+egMyicN7knBqO+2vtmP/Yv3Hl5mDt3Iu6yCTj3FXvK9HpJmZ4QQgghhGjaJDgJvyOHSvnu/e0ADBzTkaQ2UdXet3jddxR88gkoCikPP0zZ1gIAzO2lTE8IIYQQQjR9EpwEAG63yqpFf+JyqLTuGs/J57St9r5qSQkHZ80CIH78P7H06UPp5hwALCfJbHpCCCGEEKLpk+AkAPj5s0yydxdhjjRw7sTuKLrqTT0OcPiZZ3AeOIAxNZWW06bhyi/DubfIO5ueBCchhBBCCNH0SXASHNxVwMbPMwEYclVXouIjqr2vbdMm8t54E4BWs2ejs1qxeUebzO1j0UdLmZ4QQgghhGj6JDid4BxlLlYt+hNNgy4DkuncL7na+2oOB1kPzARNI3b0xUQNPhPAH5zkordCCCGEEKK5aPDg9MILL9C+fXsiIiI49dRTWbduXaVtJ06ciKIoIV89e/asxx43L9+9t53CnDKiEsycdWXXGu2b89pr2LdvRx8fT8t77wXAdaQMh69Mr5cEJyGEEEII0Tw0aHBavnw5t912G/fffz+//vorgwcP5oILLmDPnj1h2z/99NNkZWX5v/bu3UtCQgKXX355Pfe8edj5azZb1meBAudN6oHZYqj2vvadO8l98SUAku+/H0N8PFA+2mRKlzI9IYQQQgjRfDRocHryySeZMmUK1157Ld27d2fhwoW0bduWF198MWz72NhYWrVq5f/6+eefyc/PZ9KkSfXc86av5Iid1W/9BUDf89NI7Rxf7X01VSVr5oNoTifWIWcRM/JC/zZfcIqU2fSEEEIIIUQz0mDByeFwsHHjRs4///yg9eeffz7r16+v1jFef/11zj33XNLS0iptY7fbKSwsDPo60WmqxtdvbMFe4iKpbRSnjWpfo/3zly3D9ssv6CIjSZk1C0XxzMDnOlKGY4+U6QkhhBBCiOanwYJTTk4Obreb5OTgyQiSk5M5ePBglftnZWXx+eefc+211x613bx584iNjfV/tW1b/esTNVeb1+5jb0YeeqOO8yb3RG+o/svAmZXF4QVPANBi+nSMqan+beVlejFSpieEEEIIIZqVBp8cwjda4aNpWsi6cJYsWUJcXBxjxow5arsZM2ZQUFDg/9q7d+/xdLfJyztQwvqPdgJwxj86kZBirfa+mqZx8KHZqKWlWPr0If6qcUHb/WV6vVvUXoeFEEIIIYRoBKo/G0AtS0pKQq/Xh4wuZWdnh4xCVaRpGosWLWL8+PGYTEcf2TCbzZjN5uPub3PgdqmsWvwnbqdKu54J9BrSukb7F65cSfHatShGIylzH0bRledu1xG7lOkJIYQQQohmq8FGnEwmE6eeeiqrVq0KWr9q1SoGDRp01H3Xrl3Ljh07mDJlSl12sdnZ8O9d5OwtJsJq5JwJ3as1sufjys/n0COPApA49QbMnToFbfeX6aXFoI+RMj0hhBBCCNG8NNiIE8D06dMZP348/fr1Y+DAgbzyyivs2bOHqVOnAp4yu/379/PGG28E7ff6668zYMAAevXq1RDdbpL2b8vnl/96pnk/+5/dsMbWbBQu+7F/4c7Lw9y5E0nXXRey3bb5MACRctFbIYQQQgjRDDVocBo7diy5ubnMmTOHrKwsevXqxcqVK/2z5GVlZYVc06mgoIAPP/yQp59+uiG63CTZS518tSQDNOh+RgodTqnZOUjF676j4JNPQFFIefhhlArlkUFlehKchBBCCCFEM6RomqY1dCfqU2FhIbGxsRQUFBATE9PQ3akXqxb9ybYNh4hpYWHs/f0xRVQ/L6slJewadTHOAweInzCeVvfdF9Km6Lv9FPxnF6b0GFpOPbk2uy6EEEIIIUSdqUk2aPBZ9UTd2va/g2zbcAhFp3DepB41Ck0Ah595BueBAxhTU2k5bVrYNr7zm2S0SQghhBBCNFcSnJqxorwy1r6zDYB+F6TRqkNsjfa3bdpE3htvAtBq9kPorKFTl7sK7Dh2ey4qHCmz6QkhhBBCiGZKglMzpakaXy/NwGFz0TI9hlMvTK/Z/g4HWQ/MBE0j5uJRRA0eHLZd0Gx6NZxwQgghhBBCiKZCglMz9dvXe9m/9QgGk47zJvVAr6/Zjzrntdewb9+OPj6e5BkzKm0nZXpCCCGEEOJEIMGpGcrZV8SPn+wE4MzLOxOXHFmj/e07d5L74ksAJN9/P4b4+LDt3AFlehKchBBCCCFEcybBqZlxOd2sWpSB6tJIPymJHmem1mh/TVXJmvkgmtOJdchZxIy8sNK2pX+Ul+kZpExPCCGEEEI0YxKcmpkfV+wi70AJlhgT54zvhqIoNdo/f9kybL/8gi4ykpRZs466v5TpCSGEEEKIE4UEp2Zkb0Yem77ZC8A547thiTZVsUcwZ1YWhxc8AUCL6dMxplY+WuUulDI9IYQQQghx4pDg1EyUlTj5emkGAL2GtCa9hmFG0zQOzp6DWlqKpU8f4q8ad9T2ts05oIGpXbSU6QkhhBBCiGZPglMzoGkaa97+i5ICB3HJkQz6R6caH6Nw5UqK16xBMRpJmfswiu7oL41Sf5lei2PqsxBCCCGEEE2JBKdmYOtPB9n5y2F0OoXzJvfAaNLXaH9Xfj6HHnkUgMSpN2DudPTg5S50SJmeEEIIIYQ4oUhwauIKc2x8u2wbAP1HtadlWkyNj5H92L9w5+Vh7tyJpOuuq7K97Y+AMr04KdMTQgghhBDNnwSnJkxVNb5anIGzzE1Kx1j6Dk+r8TGKv/uegk8+AUUh5eGHUUxVTyhRuvkwIKNNQgghhBDixCHBqQn75cvdZO0swBih59xJPdDpajb1uFpSwsFZswCIH/9PLH36VLmPu9CBI1PK9IQQQgghxIlFglMTlb27kP/9+28AzrqyCzFJlhof4/Azz+Dcvx9jaiotp02r1j62P71lem2jMcRF1PgxhRBCCCGEaIokODVBTrubVYsyUFWNjn1b0nVAqxofw7ZpE3lvvAlAq9kPobNaq7Vf6e9y0VshhBBCCHHikeDUBK3/cAdHDpVijTUx9OquKErNSvQ0h4OsB2aCphFz8SiiBg+u1n7uIgeOzAJAgpMQQgghhDixGBq6A6JmMjfn8Me3+wEYNrEHEVZjjY+R+/rr2LdvRx8fT/KMGdXezz+bXttoDPFSpieEEEIIcaLTNA23quFSNVTvbf9XwH1VBZeqetuAW9Von2TFUsPL6DQkCU5NSGmhg2/e2ALAyee0pW33hBofw75zJzkvvAhA8n33YYiPr/a+ts1SpieEEEKI5kfTNFTN82be/+Zf01B9b/o1gkKB73ZgCKgYFHzbXWr5cVwV9nW5yx+n0uBRoU1Q+5DHBLeq4tbwtlFxq4T0o8q+evsW1J9K2mvasX/fP77pDPq0jau1n2Ndk+DURGiaxuq3/sJW5CQh1crpl3So+TFUlayZD6I5nViHnEXMRSOrva+7yIH9bynTE0IIIRort/eNssvteUPrcqu4VQ2n6nnz7VS9933r3d43827V84Y8XCAICA/+296QoVbYp7xt+X6qFrw+XChxa54336Fhxbc9+LEqWx+4f8UQFBx6CHjc8nWibhh0Cjqdgl5Rym/7vmp4uklDk+DURGR8d4DM33PQGRTOm9wDg7Hmw5r5y5Zh++UXdJGRpMyaVaNzo3yz6RmlTE8IIUQTdLyhImjfwPVuDbeq+ts7VdV7PM/68jYVj636H9sV0C74ccpvh9s/qN1xfvIvquZ7o6/T4V0qAeu8oUDxrAsMC76Q4GvjO4ZBp/O2oTxIeI8RFDb05cfVVzhmSPujPmb4ful1oNfpgvql1xH8mBWP6+3XUY/r3dacSHBqAo4cKuW797cDcProjiS1ia7xMZxZWRx+4kkAWkyfjjE1tUb727yz6UXKaJMQQogquFUNh0vF7nJ7l56viuscLhWHO3RduPZV7RO4n4SKcjrF80bYoPe8mTXqdZ6lTkGvVzDqdP43ur43woqiBIeEgEDgDwze+4pCyHqd7814SNvQ9RXDhy9E6HyPGXC8yvrgaRscZnRhnkPQ41a2XldhP3/b5hUAxLGR4NTIud0qqxZn4HKotO4aR59hbWt8DE3TODh7DmpJCZY+fYi/alzN+lAcUKbXS4KTEEI0RpqmeUKEW60QQkKDh93lDgopwaHEjd3pDSfOwOOF28cd5vE8oyJNgaLgDw4GvedTc4Ne510qnsChqxA4KgQQX5uj7h8QUDz76/zH8bevsE/gcYIDTyX98O3r64f3OPKGX4jaI8Gpkft5ZSbZmYWYIw0Mu6YHyjH8ASxcuZLiNWtQjEZS5j6MoqvZLPS2P3I9ZXptojAkSJmeEELUlKpqlDhclNjdFNtdlHi/iu0uShwuiu3u4HV2Fzanit3pDhtgwo20ONxqQz/NsBQFzAYdJr0Os1HvWRp0mAyepdmgxxRwP3Bp0usxGz37lrevbB/POqPeEyb84SEg0AQFDm+ZlBBCVJcEp0bs4K4CNn6+G4AhV3Ul+hhCiys/n0OPPApA4tQbMHfqVONj2DYfBiCyd4sa7yuEEE2Rb/TGE2bcAQHHRXFZYMBx+9cHBx93UAgqcbjr/TlUDCimCgGjPJyUB5rgcHIs+4QGGoO3REsIIZq6Ggen9PR0Jk+ezMSJE2nXrl1d9EkAjjIXqxZnoKkaXU5LpnO/5GM6TvZj/8Kdl4e5cyeSrruuxvu7ix3Yd8lsekKIxs+tamEDTHl4CQw47vIQFGZ9id2Fqw7KzfQ6BatJT5TZgNX75bmtD7jtWVqMFUdb9FUHGt9tvU7CihBC1LIaB6c77riDJUuWMGfOHM4++2ymTJnCJZdcgtlsrov+nbC+e387hYdtRCWYOevKLsd0jOLvvqfgk09AUUh5+GEUk6nGx7D9KWV6Qoi6oWkaZU7VH1QCl+FHbcpL2oIDkttb2lY3ozoWoy/UlIeb4OATHHr860zlISgqwrM0GyTQCCFEU6Vo2rHNM7Np0yYWLVrEu+++i8vl4qqrrmLy5Mn07du3tvtYqwoLC4mNjaWgoICYmJiG7k5Yu349zOcvbwYFxtx+Cq27VP8itT5qSQm7Lh6Nc/9+4ieMp9V99x1TXw6/thn7jiPEXpBO9JCaT0whhGj+NE2jwOYkp9hOdpGdw0V2cood3qWdQpuz0vN46mIOAaNe8QQYU+WjOVazniiz0R96greXr7OaDOjlPBghhGi2apINjjk4+TidTl544QXuuecenE4nvXr1Ytq0aUyaNKlRfqrW2INTSYGdZXM2UFbipO/wdgy8pObnJAEcmvcYeUuXYkxNpcO/P0Vntdb4GO5iB1mP/AQatLq7v4w4CXEC0TRP2dvhoCBUFhSIDhfb/bed7uNLQFaTN9x4R2bKR2sqGc0JCDvBI0B6zIaaX+dOCCHEiakm2eCYJ4dwOp2sWLGCxYsXs2rVKk4//XSmTJnCgQMHuP/++/nqq6945513jvXwJyRN0/hm6RbKSpwktY3itFEdjuk4tt9/J+/NNwFoNfuhYwpNEFCm11rK9IRoLkodLnKKHBwuLvOEosAgVGQPum131WyWtliLkaQoEy2izSRFmf3LWIsxKNhEVRjhiTTqZXYzIYQQjV6Ng9Mvv/zC4sWLeffdd9Hr9YwfP56nnnqKbt26+ducf/75nHXWWbXa0RPB5jX72ZORh96o47xJPdEbajZtOIDmcJD1wExQVWIuHkXU4MHH3B/bZs9Fb2VSCCEatzKn2x92cioEIX8gKraTU2Sv8exuUWaDNwAFBKKAUNQi2kySd7uM9AghhGjOahyc+vfvz3nnnceLL77ImDFjMBqNIW169OjBlVdeWSsdPFHkZZWw/qMdAAy6tBMJqcc2SpT7+uvYt21DHx9P8owZx9wfd4kT+64jAERKcBKi3jlcKrkldv/okGdZHoICQ1FRmatGx44w6mgR7QlAvvBTcZSopXdpMUkYEkIIIeAYgtOuXbtIS0s7ahur1crixYuPuVMnGrdLZdWiP3E7Vdr1SKD30NbHdBz7zp3kvPAiAMn33YchvuaTSvjY/swB1Vuml2g55uMIIcq5VY3ckvAjQxVHifJLnTU6tkmvCx0ZChOIWkSbsZr0jfIcVCGEEKIxq3Fwys7O5uDBgwwYMCBo/U8//YRer6dfv3611rkTxYZ//03O3mIirEbOmdD9mN7QaKpK1swH0ZxOrEPOIuaikcfVJynTE6J6VFUjv9Rx1BI53/28EkeNZpEz6BQSj1YiFxCOYiIMEoaEEEKIOlTj4HTTTTdx9913hwSn/fv3869//Yuffvqp1jp3IjiwPZ9f/rsbgKH/7Io17tiuh5W/bBm2X35BFxlJyqxZx/UGyl3ixL7zCCBleuLEpmka2UV2th4sYufh4oCptsuXOcUO3DVIQ4oCidbykSFfyVy4UaI4i1EmTRBCCCEaiRoHp4yMjLDXajrllFPIyMiolU6dKOw2F6sWZ4AG3Qel0PGUlsd0HGdWFoefeBKAFtOnY0xNPa5+lf2Z6ynTS7VKmZ44YeSXONh2qIhth4rYeqiIbQeL2XqoiAJb9Urm4iONwaVxUZ5JEwKXLaLNJFhNcl0gIYQQogmqcXAym80cOnSIDh2Cp8rOysrCYDjm2c1PSD99vJPiPDsxSRGceUXnYzqGpmkcnD0HtaQES58+xF817rj7Vbr5MACW3i2O+1hCNDYldhfbs4vZdtAbkA4VsfVgEdlF9rDt9TqF9klWOrWIolVsRNAIkS8kJUaZMOprPgumEEIIIZqOGied8847jxkzZvDJJ58QGxsLwJEjR7jvvvs477zzatyBF154gfnz55OVlUXPnj1ZuHAhg48yhbbdbmfOnDm89dZbHDx4kDZt2nD//fczefLkGj92Q+s3sj0lBQ5OOb8dpohjC51Fn39O8Zo1KEYjKXMfRtEd35s3KdMTzYXd5WbX4RJ/MPKNJO3Ns1W6T9sEC12To+mSHE3XVp5lhxZWmWZbCCGEEDUPTk888QRnnXUWaWlpnHLKKQD89ttvJCcn86b3oqvVtXz5cm677TZeeOEFzjjjDF5++WUuuOACMjIyaNeuXdh9rrjiCg4dOsTrr79Op06dyM7OxuWq2VS8jUVkjIkLpvY+5v1d+fkcnPsIAIlTb8DcqdNx96ksw1uml2LFkCRleqLxc6sau3N9AanYH5D+zimp9NyjFtHmgIAURZfkaDonRxNlllFzIYQQQoSnaJpWgzmePEpKSnj77bfZtGkTFouFk046iXHjxoW9ptPRDBgwgL59+/Liiy/613Xv3p0xY8Ywb968kPZffPEFV155Jbt27SIhIaGm3QagsLCQ2NhYCgoKiImJOaZjNBYH7p1BwccfY+7cifYffohiMh33MQ8v+gP7tnxihqcRc3b48CpEQ9A0jQMFZeUldt7ljuxi7C417D4xEQb/yJFv2SU5mgTr8f+uCCGEEKLpq0k2OKaPV61WK9dff/0xdc7H4XCwceNG7r333qD1559/PuvXrw+7z6effkq/fv14/PHHefPNN7FarVx88cU8/PDDWCzhR0fsdjt2e/m5C4WFhcfV78ai+LvvKfj4Y1AUUh5+uFZCk1rqxL7jCCDnN4mGlVNsDzkHaduhYort4UeXI4w6fyjqmhxNl1aeZXKMWaboFkIIIUStOOa6lIyMDPbs2YPD4Qhaf/HFF1dr/5ycHNxuN8nJyUHrk5OTOXjwYNh9du3axXfffUdERAQrVqwgJyeHG2+8kby8PBYtWhR2n3nz5jF79uxq9ampUEtKODhrFgDx4/+JpU+fWjmu7c9cUDWMKVaMUqYn6kFhmZPtgSV23nORckscYdsbdAodW0R5g1GUfySpbXykTNsthBBCiDpV4+C0a9cuLrnkEjZv3oyiKPgq/Xyf6rrd7hodr+KnwZqmVfoJsaqqKIrC22+/7Z+Y4sknn+Syyy7j+eefDzvqNGPGDKZPn+6/X1hYSNu2bWvUx8bm8DPP4ty/H2NqKi2nTau145bKRW9FHSlzutmRXRw0ScO2g0UcKCgL215RIC0hMqjErmuraNITrZgMMnudEEIIIepfjYPTtGnTaN++PV999RUdOnRgw4YN5Obmcscdd7BgwYJqHycpKQm9Xh8yupSdnR0yCuWTkpJC69at/aEJPOdEaZrGvn376Nw5dEpvs9mM2XxsF5VtjGy//06edxKOVrMfQme11spxg8v0JDiJY+N0q2TmlASdg7TtUDG7c0uo7BqxKbERwQEpOZpOLaOwmGQmOyGEEEI0HjUOTj/88APffPMNLVq0QKfTodPpOPPMM5k3bx633norv/76a7WOYzKZOPXUU1m1ahWXXHKJf/2qVasYPXp02H3OOOMM3n//fYqLi4mKigJg27Zt6HQ62rRpU9On0uRoDgdZD8wEVSXm4lFEHWXa9pryl+m1smJsEVlrxxXNk6pq7Mu3VTgHqYidh4txusMnpPhII11bBZ+D1Dk5mlhLzSaVEUIIIYRoCDUOTm632x9akpKSOHDgAF27diUtLY2tW7fW6FjTp09n/Pjx9OvXj4EDB/LKK6+wZ88epk6dCnjK7Pbv388bb7wBwFVXXcXDDz/MpEmTmD17Njk5Odx1111Mnjy50skhmpPc11/Hvm0b+vh4kmfMqNVjS5meCEfTNLKL7OUldt7ltkPF2Jzhy3KtJj2dAyZp6OYdSUqKMslEDUIIIYRosmocnHr16sXvv/9Ohw4dGDBgAI8//jgmk4lXXnmFDh061OhYY8eOJTc3lzlz5pCVlUWvXr1YuXIlaWlpAGRlZbFnzx5/+6ioKFatWsUtt9xCv379SExM5IorrmDu3Lk1fRpNjn3XLnJe8EzbnnzffRji42vt2EFleidJcDpRHSl1VDgHqZith4oosDnDtjfpdXRsGeWZpME3kpQcTes4i0zUIIQQQohmp8bXcfryyy8pKSnh0ksvZdeuXVx00UX89ddfJCYmsnz5cs4555y66mutaIrXcdJUld3jJ2DbuBHrkLNo+9JLtfrJfcnPB8n/YDvGVpEk33ZqrR1XNE4ldhfbs4tDpvvOLrKHba9TID3JGnDBWM8yPTESg14mahBCCCFE01Wn13EaPny4/3aHDh3IyMggLy+P+Ph4KcOpI0eWL8e2cSO6yEhSZs2q9e+zzV+mJ9duaq6cbpUv/jjIGz9k8r/M/ErbtY6zBMxi55nuu2OLKCKMMlGDEEIIIU5sNQpOLpeLiIgIfvvtN3r16uVfn5CQUOsdEx7OgwfJXvAEAC2mT8eYmlqrx1dLnZTJbHrNVnZRGe/+tJe3f9odNKKUFGX2ByPfuUidW0YRHSETNQghhBBChFOj4GQwGEhLS6vxtZrEsdE0jYMPzUYtKcHSpw/xV42r9cewZeSBW8OQHImxpcym1xxomsYve47wxg+ZrNyc5Z/lrkW0matOa8fY/m1JjWv+k6kIIYQQQtSmGpfqPfDAA8yYMYO33npLRprqWNHnn1O8Zg2K0UjK3IdRdLV/Polt82EAImW0qckrc7r596YDvPHDbjbvL/Cv79sujmsGpXNBrxS5eKwQQgghxDGqcXB65pln2LFjB6mpqaSlpWGtcAHWX375pdY6dyJz5edzcO4jACROvQFzp061/hiqzVVepneSnN/UVO0/YuOtH3ezbMMe8ks9M+CZDDouPjmVawam07tNbBVHEEIIIYQQValxcBozZkwddENUlP2vx3Hn5WHu3Imk666rk8ewZeRKmV4TpWkaP+zKZen6TFZlHEL1zo2ZGhvBPwemcWX/diRYTQ3bSSGEEEKIZqTGwWnWrFl10Q8RoPi77yn4+GNQFFIefhjFVDdvgH2z6UmZXtNRYnex4tf9vPFDJtsOFfvXD+qYyISB6ZzbvaVMES6EEEIIUQdqHJxE3VJLSznoDafx//wnlj596uZxbC7KtnumpZbZ9Bq/v3NKePOH3by/cS9FZS4AIk16Lu3bmgkD0+mSHN3APRRCCCGEaN5qHJx0Ot1RryMkM+4dn8NPP4Nz/36Mqam0vG1anT2Ov0yvZSTGZGvVO4h6p6oaa7cdZukPmazZeti/Pj0xkgkD0/nHqW2Itcj04UIIIYQQ9aHGwWnFihVB951OJ7/++itLly5l9uzZtdaxE5Ht99/Je/NNAFrNfgidte4CTflFb2W0qbEpsDl5/+e9vPnjbnbnlgKgKDC0SwuuGZTOWZ1boNPJxaaFEEIIIepTjYPT6NGjQ9Zddtll9OzZk+XLlzNlypRa6diJRnM4yHpgJqgqMRePImrw4Dp7LLWsvEwv8iQJTo3F1oNFLP0hkxW/7Mfm9IzcRkcYuKJfW8afnkZ6kowMCiGEEEI0lFo7x2nAgAFcV0ezv50Ichctwr5tG/r4eJJnzKjTxyov07NImV4Dc7lVvtpyiCXrM/lxV55/fdfkaCYMSuOSU1oTaZJTEYUQQgghGlqtvCOz2Ww8++yztGnTpjYOd8Kx79pFzvMvAJB8330Y4uPr9PHKy/Tk2k0NJbfYzrL/7eXtH3dzoKAMAL1O4fweyUwYmM7pHRKOei6hEA1J0zSc9jLspSU4Skuxl5Zg9y5D7ttKiU5M4swrJzR0t4UQQojjUuPgFB8fH/SGTtM0ioqKiIyM5K233qrVzp0INFUla+aDaE4n1iFnEXPRyDp9PLXMRdk2b5menN9U7zbvK2DJ+kz+/fsBHC4VgASriXGnteXqAWmkxlkauIeiudNUFUeZDXtpKQ5fwLGVBN8vDbwfcNtm8y5L0VS16scC0OlJbJsmwUkIIUSTV+Pg9NRTTwUFJ51OR4sWLRgwYADxdTxS0hwdWb4c28aN6CIjSZk1q85HGWxb8jxlei0sGJLlorf1weFS+fyPLJasz+TXPUf8609qE8s1A9MZeVIKEUZ9w3VQNBmq6sZRavOGGe/ojs03yuMNPLbKApB3BKjMBpoW9vi+oKPpdGg6PXiXgbcxW9EsMZ7bej06owmMRhS9AU2vR1N0qCioaP4LM5tiY+rteySEEKLx0TQNl+rC7rbjUB043J6vZGsyZr25obtXbTUOThMnTqyDbpyYnAcPkr3gCQBaTJ+OMTW1zh/T9rtnWmtL7yQpBatjhwrLePunPbzz0x5yiu0AGPUKI3uncM2gdPq0jZOfwQlEdbsrlLSFCTe20vJSN1to6ZuzzBZ0TE/QqTzkaDqdNwjp0fRmiI1Ei/eu1xtQDAbQG9B0OlRFQaMWXo+a///8jBEykiqEEA3BpbpwuB04VacntHgDiy+82N12nG5nSKCpeNvXzrfP0dr6bvv38e4fzrsj36VXUq96/q4cuxoHp8WLFxMVFcXll18etP7999+ntLSUa665ptY619zlvvIKakkJlj59iL9qXJ0/XvBsenJ+U13QNI2fd+ezdH0mX/xxEJf3I/fkGDNXD0hj3GntaBHddD5ZER6q6qasuLhCkDlKeVtg6PHedtntnjih6ND0ev8yKNxUdjsyHqKSykeC9Hr/yFBdUBQFs9mMyWQKWYZbV9U2g0EmOBFCnDhUTQ0NKuFChRoQRI4SQnxtfe2qE3R8t91a47y+qkFnwKw3N9r+VabG/5o99thjvPTSSyHrW7ZsyfXXXy/BqQZa3nMPuugYYkddhFJHb4AClW3JA5eU6dWFMqebT37bz9L1u8nIKvSvPy09gQmD0hjesxVGfd3/jEX1aJqGvbSE0oICbIUFlBYeobQgcOldX3CEksICbCUl/jDjCy7l5WxHKW0zRUNELFpi+TrqYJRRUZRaCzkmkwmDwSCjoUKIZsNXIlbmKvMvy9xl/qXdZa/0vt1tx+ayYXfbg25XbBs4suJSXQ39lMPSKTrMejMmvQmTzuRZhrlt1psx6o2Y9N7bOmOV+/m2B7Wt2D7geDqlab4nqnFw2r17N+3btw9Zn5aWxp49e2qlUycKndlMy9tvq7fHKw246K28Kaode/NKeevH3Sz/eS9HSp0ARBh1jOnTmvED0+iZGtvAPTxxOO1lAUHIE3oCl54gVEBJ4RFKiopxKwqa3oBmMKDpjd6l98tg9Cwj4tCikqAO/sAfb7gJbGM0GuV3uh653W6cTmdDd0OIJs2pOnG4PKMjZe4y/227y+5f2lV70IiM3e1dF9DWP1oTsG+Zu8w/MlPmLsOt1u2oht77X4QSEfadtVFvxKQzYdAZ/OHCqDdiVLxLnbF8nfe2SWfCqDdi0Bs8twPamBTPNt8xTPoKxw44lklvwqAYPMfSNfDovwqaquHAUe8PbTKZ0NXCIEWNv4MtW7bk999/Jz09PWj9pk2bSExMPO4OibrhmU3Pc50gmYb8+Giaxvc7clmyPpOv/zrkP8++TbyFCQPTuKJfW+IiTQ3byWbA7XKVh6DCAmwVgpBnnTcIFRfjcLs9ASgwDPlve+8bo9BaxkFyzUOG0WjEbDbXSgmbBJ2mSdM0Dh48yJEjRxq6K0LUCU3T0NDKl4G3A5YAKqr/dlXtK27z/C/8JDWBjN7/rFS45qTO+3UMOUBBQVGUsEvP/8Jv8y8rWVdx38DHqhNu71cYLu9/NmzhG5yAdDod7du3x2Q6vvdnNX7JXXnlldx6661ER0dz1llnAbB27VqmTZvGlVdeeVydEXWn7C9vmV6SBWMrKdM7FsV2Fx/9so+l6zPZebjEv35w5yQmDEznnG4t0evkzXBlNFXFVlwUMCJUXhpnCyiRKyksoKS4mDK7PXj0J0wYUvUWSIiCxJp/381mM1arFavVSmRkZJVLo9FYB98V0ZT4QlPLli2JjIyU8CsAQgJFUEDwbg9qF9DW3z5MwAh3fN9/vswRsIc/jFS8XTGsVOxn4HEq8oeCOqZDFxRGdIrnvn+973ZAWPG1CWynwzOioFN0nu2+9r5j1mWQEY2WqqocOHCArKws2rVrd1yvgRoHp7lz57J7926GDRvmP+FXVVUmTJjAo48+eswdEXWr9Hcp0ztWOw8X8+YPu/lg4z6K7Z66ZatJz2WntmH8wHQ6tYxq4B42DE3TcNhslBYe8ZfBVTxXyFZYQLE3CNlsNlSdPkwYMqD6S+WMENsKjqHC0WKxVDsERUZGyoQFokbcbrc/NEl1RcPxhQC35kbV1KCvwHUVg0ulISLMSMrRRlxCtlcytX+DUyq5XWnz0IAUGF78t73hwx9MAkNLwLaj7RduH3lfIupaixYtOHDgAC6X67g+CK3xOweTycTy5cuZO3cuv/32GxaLhd69e5OWlnbMnRB1S7UHlunJRW+rw61qrP4rm6U/ZLJue45/fYcWVq4ZmM6lfVsTHdH8RiBcDoc3CBWGnCNUWuAJQyVFBRQXlVBqK8GNUiH4hI4MYU3yfNWAoij+IBQYeioLQhaLBb1eroUl6o7vnKbISBmxr6nqhp2jblfL7zcVIWVgYdZVZ7u/BKzCPhB+fVUlZ0GPU2GfwEAjRHPiK9Fzu931G5x8OnfuTOfOnY/5gUX98c+ml2TBmGKteocT2JFSB+/9vJc3f9zN3jxPbbCiwLBuLblmUDpndExC1wTL8dwuJ0cOHSTvwD6KDmf7g1BJQQHFRQWUFBVTaivF4VLDT5IQEIgwx3m+akCn0xFpsWCNsmK1RlU5KhQREVErJ3EKUdtOlE/GNU0LCTFVBh1U3KobleCgo2pqnfTRN+qhU3ToFX3Q/aOde1Kd4HG07VBJ8ICQ/YUQjUNt/U7WODhddtll9OvXj3vvvTdo/fz589mwYQPvv/9+rXRM1B6ZTa9qW7IKWbo+k49/20+Z0/OPfKzFyNj+bRl/ehptExr/p8yaplFacIT8A/vJy9pHzv59HN6/j9ycHAqLi1ENRlSjGc1oCgpD6KMgLgriqv9Yer3eE4SsVqxRUUcNQVarFbPZLK89IepYuLBTMdzUZNSnLlQWdioGn3DrwoUjIYSoTzUOTmvXrmXWrFkh60eMGMGCBQtqpVOi9qh2N2VbPRe9lTK9YE63yn//PMTS9ZlsyMzzr+/WKpqJg9IZ3ac1FlPjK/9yORwcOXiAnAP7OLh7N4cO7Cc/N5fC4mIcKGhGkz8goSgQneT5OgqDwUCkJQJrVBRRUdFVniNkMpnkTYsQtUzVPCM2LtWFS3PhVt01Lm+rC8cTdPbs3kO3zt34eePP9D2l7wn5d+Ohhx7i448/5rfffmvortSpNWvWcPbZZ5Ofn09cXFy198vNzaV79+5s2LAhZMbmmlAUhRUrVjBmzJhj7t+SJUu47bbbjjpzZn39PKt6Po1F//79mTFjBpdeemlDd6Ve1Dg4FRcXh53Kz2g0UlhYGGYP0ZDK/soFlyplegEOF9lZtmEPb/+0h4OFZQDodQojerXimoHp9E+Pb/B/3DVNoyg3h327dnJgz25yDmaRl59PcUkJdrfqDUbG8usLGSwQZwk5jqIoRFsjiYtPIDEpifj4eGJiYkLOF5IZ44SoG5qm+UOQS3X5Q5H/dsC62rzWTFCQ0enQoUOv03tO2PfeDxuGArbVxsiO2WAGQK/T1/rf1SVLljBp0iSGDx/OF1984V9/5MgR4uPjWb16NUOHDq3Vx6wLmZmZtG/fnhYtWrBz506io6P92/r06cOYMWN46KGHqnWs6rzxb2zmzZvHqFGj/KEpNzeXq6++mt9//53c3FxatmzJ6NGjefTRR4mJiTnmxxk0aBBZWVnExsr1FWvTzJkzufPOOxkzZswJUWJf4+DUq1cvli9fzoMPPhi0ftmyZfTo0aPWOiZqh01m0/P7dU8+b/ywm89+z8Lh9nwymxRl4qrT2nHVgDRaxUbUa39UVSU/L5d9O3eStXcPOdnZHCk4QonN5glHhoBgBIACEcEz+CmAxWQkOjqahMREWrZKITEpibi4OOLi4oiKijoh/pAJUZ80zTPRQbgg5FbdIcGoJhQU9Do9Bp0Bg85w1FGdykZ9qjrHxuFwHPe1TOrT0fprMBj4+uuvWb16NWeffXaj6dexKCoqYsGCBcyePbvWjllfjvWC0Dabjddff52VK1f61+l0OkaPHs3cuXNp0aIFO3bs4KabbiIvL4933nnnmPtoMplo1arVMe9/IqrOa3zkyJFcd911fPnll1xwwQX11LOGU+N3VDNnzuThhx/mmmuuYenSpSxdupQJEyYwd+5cZs6cWRd9FMdItbuxneBlenaXmw837mP0c99xyQvrWfHrfhxulT5t41g4tg/f33sO08/vWiehSVVVCgsL2bN7Nz99/x2fvLeMxS88x8LHHuXRh2YxZ/Zsnn3ueVZ8/gU//pHBjuwccuwubDrPuUgoOtA0TArERZhJS25B3549uHD4+UyaNInbb7+dmQ8+yN333c//3XIrY6+6mrPPOYeTTjqJdu3aERMTI6FJiGrSNI1iRzGZBZlsPLSRLzO/5O0tb/PML88wa/0s5vwwh8O2w/x95G+25G1ha95Wdh7Zye7C3ewv2s+hkkPk2nI5Yj9CsaOYMldZUGjS6/SYDWaiTFHEmmNJtCSSbE2mdXRr0mLS6BjXka4JXeme2J2uCV3pGNeRtJg02ka3pXVUa1KsKSRHJpNkSSIhIoE4cxzRpmisRisWgwWz3oxRZww7QjR06FBuvvlmpk+fTlJSEueddx4AGRkZXHjhhURFRZGcnMz48ePJySmfRbSoqIirr74aq9VKSkoKTz31FEOHDuW2227zt1EUhY8//jjo8eLi4liyZEnY77Pb7WbKlCm0b98ei8VC165defrpp4PaTJw4kTFjxjBv3jxSU1Pp0qVLpT83q9XKpEmTQs67rmj//v2MHTuW+Ph4EhMTGT16NJmZmUHfo8DnBTBmzBgmTpzov5+ens7cuXOZOHEisbGxXHfddQDcc889dOnShcjISDp06MDMmTOPKUjccsstPPnkk2RnZ1faxuFwcPfdd9O6dWusVisDBgxgzZo1gKcUbdKkSRQUFPivXfTQQw/x7LPP0rt3b/8xPv74YxRF4fnnn/evGz58ODNmzPDff/HFF+nYsSMmk4muXbvy5ptvBvVDURReeuklRo8ejdVqZe7cuSF9tdlsjBw5ktNPP528vLyQ7QCff/45BoOBgQMH+tfFx8fzf//3f/Tr14+0tDSGDRvGjTfeyLp1647+DQRycnK45JJLiIyMpHPnznz66af+bWvWrEFRlKDRuCVLltCuXTsiIyO55JJLyM3NDTnmY489RnJyMtHR0UyZMoWysrKQNosXL6Z79+5ERETQrVs3XnjhBf+2zMxMFEXho48+4uyzzyYyMpKTTz6ZH374ocrnE+hor7PMzEx0Oh0///xz0D7PPvssaWlp/mnzq/qdr+xvxUMPPUS7du0wm82kpqZy6623+vfR6/VceOGFvPvuuzV6Pk1VjUecLr74Yj7++GMeffRRPvjgAywWCyeffDLffPPNcQ2hitrnueitiiEx4oQr08sqsPHWj7tZtmEvuSUOAEx6HRednMI1A9M5uW3ccT+GqqqUlJRw5MgRjhw5Qu7hw2RnHSA3N5ei4mJsDudRrovumekJTUPndmLW64iyRBIbF0uL5GRS2rSjTYeOxMXHS/gR4jjYXDZybbnk2HLILcstv+1d5pR5bufacilzh74h8kkxpTAsahguzYVO815kEx0ut290SO8ZKVIMngCjK19vUAxVjvirKjhUgKrL9SzGmpe9LV26lP/7v//j+++/R9M0srKyGDJkCNdddx1PPvkkNpuNe+65hyuuuIJvvvkGgOnTp/P999/z6aefkpyczIMPPsgvv/xCnz59avTYgVRVpU2bNrz33nskJSWxfv16rr/+elJSUrjiiiv87b7++mtiYmJYtWpVlddKeuihh+jUqRMffPABl112Wcj20tJSzj77bAYPHsy3336LwWBg7ty5jBgxgt9//71Go0bz589n5syZPPDAA/510dHRLFmyhNTUVDZv3sx1111HdHQ0d999d7WPCzBu3DhWrVrFnDlzeO6558K2mTRpEpmZmSxbtozU1FRWrFjBiBEj2Lx5M4MGDWLhwoU8+OCDbN26FYCoqCj+/vtvpk2bRk5ODklJSaxdu9a/vOmmm3C5XKxfv57bb78dgBUrVjBt2jQWLlzIueeey3/+8x8mTZpEmzZtgkb1Zs2axbx583jqqafQ6/X8/fff/m0FBQVcdNFFRERE8PXXX2O1hn8P8u2339KvX7+jfl8OHDjARx99xJAhQ6r8Hs6ePZvHH3+c+fPn8+yzz3L11Veze/duEhISQtr+9NNPTJ48mUcffZRLL72UL774IuQc/vfee49Zs2bx/PPPM3jwYN58802eeeYZOnTo4G/z6quvMmvWLJ577jlOOeUUfv31V6677jqsVivXXHONv93999/PggUL6Ny5M/fffz/jxo1jx44d1b6m4NFeZ+np6Zx77rksXrw46Pu5ePFiJk6ciKIo1fqdh9C/FR988AFPPfUUy5Yto2fPnhw8eJBNmzYF9e20007j8ccfr9bzaOqOaTrykSNHMnLkSMBTS/z2229z2223sWnTJtzupnONhebOtvkwAJbeLU6IMj1N0/jp7zyWrs/kvxmHcKuef2xTYiP45+lpXNm/LYlR5hodr7i42B+MPF/55GQfJj8vj+LSUtSqLn6oaShOBzqXgwiDnmirlfiEBFq0akVqu3TadOxEVFz88TxtIU44TrczOASVeUNQQCDyrStxltTo2FajlcSIRJIsSSRavMuIRFJMKSS4Emgb1RZrpBW9Tk+ZU6XHg1/W0bOsXMac4USaavbPd6dOnYLe2Dz44IP07ds36ML1ixYtom3btmzbto2UlBSWLl3KO++8w7BhwwDPm7DU1NTj6rvRaAwqRWvfvj3r16/nvffeCwpOVquV1157rVqhJjU1lWnTpnH//feHPZF+2bJl6HQ6XnvtNf+/hYsXLyYuLo41a9Zw/vnnV7v/55xzDnfeeWfQusAQlZ6ezh133MHy5ctrHJwUReGxxx5j1KhR3H777XTs2DFo+86dO3n33XfZt2+f/+dw55138sUXX7B48WIeffRRYmNjURQlqCStV69eJCYmsnbtWv7xj3+wZs0a7rjjDp566ikA/ve//1FWVsaZZ54JwIIFC5g4cSI33ngj4AnQP/74IwsWLAgKTldddRWTJ0/23/cFp0OHDjF27Fg6duzIu+++e9SfYWZmZqWvqXHjxvHJJ59gs9kYNWoUr732WpXfw4kTJzJu3DgAHn30UZ599lk2bNjAiBEjQto+/fTTDB8+3D9a2aVLF9avXx90vtzChQuZPHky1157LQBz587lq6++Chp1evjhh3niiSf8kyO0b9+ejIwMXn755aDgdOedd/rfO8+ePZuePXuyY8cOunXrVuXzgqpfZ9deey1Tp07lySefxGw2s2nTJn777Tc++ugjwDOKeLTfed/IbsW/FStXrqRVq1ace+65GI1G2rVrx2mnnRbUt9atW7Nnzx5UVW32H/Ye83WcvvnmGxYtWsRHH31EWloa//jHP3j99ddrs2/iOKiOE2c2vVKHi49/PcAbP2Ty18Ei//rTOyRwzcB0zuuRjEEf+ousaVrQiFHgV35eHkcKCqr+IEDTUFwOdA4HitOOWa8jOiqKxMREWqa2JjUtjcTW7YhtmYy+mp8qCXEicqtu8u355SNBFQJRni3PP0JUYC+o0bHNerM/APnCkO++LyAlWhJJjEgk0hj+0gNlZWX8/fffRBgjMOp9k6nUzSx2daHip/obN25k9erVREVFhbTduXMnNpsNp9MZ9AYpNjaWrl27HndfXnrpJV577TV2796NzWbD4XCEjGL17t27RiNB99xzDy+//DKLFi0KCmDgea47duwImnQBPD/TnTt31qjv4UZHPvjgAxYuXMiOHTsoLi7G5XIdcwXO8OHDOfPMM5k5c2bI+Ty//PILmqaFlC7a7XYSExMrPaaiKJx11lmsWbOGYcOG8eeffzJ16lQWLFjAli1bWLNmDX379vW/FrZs2cL1118fdIwzzjgjpKSyspGic889l/79+/Pee+9VeWFym81GRET4UvmnnnqKWbNmsXXrVu677z6mT58eVAIXzkknneS/bbVaiY6OrrT0ccuWLVxyySVB6wYOHBgUnLZs2cLUqVND2qxevRqAw4cPs3fvXqZMmeIv3QRwuVwhk1AE9i0lJQWA7Ozsagenql5nY8aM4eabb2bFihVceeWVLFq0iLPPPts/6UZVv/O+11XFn+vll1/OwoUL6dChAyNGjODCCy9k1KhRQSNlFosFVVWx2+1YLKETVTUnNXont2/fPpYsWcKiRYsoKSnhiiuuwOl08uGHH8rEEI1M2V95aE4VfWIExtTmWaa3O7eEN3/YzXs/76WwzHMugcWo55K+rZkwMI2uydGUlpZy6GCWJwzl54cEJJerihO3fcHI6UBx2NE5HehVFzHR0SS1aEnL1q1Jat2W+JTWJKS2ISLMHyQhTmRFjiKyS7P9Aaiykrl8e36NptM2KAYSLAlBASgwBCVFlN+PMkbVyai7xagnY87wWj9udR63piqWSqmqyqhRo/jXv/4V0jYlJYXt27cDoReNrFg2pyhKyLqjnd/z3nvvcfvtt/PEE08wcOBAoqOjmT9/Pj/99NNR+1uVuLg4ZsyYwezZs7nooouCtqmqyqmnnsrbb78dsl+LFi0Az4QE1XkeFfv1448/cuWVVzJ79myGDx9ObGwsy5Yt44knnqhR/wM99thjDBw4kLvuuivkeej1ejZu3BgSSMK9GQ40dOhQXnnlFdatW8fJJ59MXFwcZ511FmvXrmXNmjUhsw+G+7lXXFfZz2jkyJF8+OGHZGRkBJ1bFU5SUhL5+flht7Vq1YpWrVrRrVs3EhMTGTx4MDNnzvSHjnAqzhCrKAqqGv7vSlUloNXhO/arr77KgAEDgrZV/BkF9s33vaysbxVV53VmMpkYP348ixcv5tJLL+Wdd95h4cKFQX092u+8T8Wfa9u2bdm6dSurVq3iq6++4sYbb2T+/PmsXbvW/5zy8vKIjIxs9qEJahCcLrzwQr777jsuuuginn32WUaMGIFer+ell16qy/6JY2TzXvQ2shnOpmd3ubnz/d/5z+/7MWkuohQH/WLhjLYW0qNVSot/5+sPv+XDI0eqPkFX01BcTnROu6ekzmlH5/DctkZaaNEimYR0TyhKSG1DfGobYlq0QKdrfNd3EqIhqZrK3qK9bM3bytb8rWzL28bW/K1klWRV+xgKCvER8WFHhPxLbyCKMcegUxq2JERRlBqXzDUWffv25cMPPyQ9PT3sORYdO3bEaDSyYcMG2rZtC0BhYSHbt28POtekRYsWZGWV/4y3b99OaWlppY+7bt06Bg0a5C8DA2o86lOZW265hWeeeSZkZKRv374sX76cli1bVjoSVPF5uN1u/vjjjypn6vv+++9JS0vj/vvv96/bvXv3cTwLz/kil156aciEF6eccgput5vs7GwGDx4cdl+TyRS2UmLo0KFMmzaNDz74wB+ShgwZwldffcX69euZNm2av2337t357rvvmDBhgn/d+vXr6d69e7X6/9hjjxEVFcWwYcNYs2bNUT9YP+WUU3jrrbeqPKYv5Njt9mr1oTp69OjBjz/+GLSu4v3u3bvz448/Bn0vAtskJyfTunVrdu3axdVXX11rfauouq+za6+9ll69evHCCy/gdDqDrq1U1e/80VgsFi6++GIuvvhibrrpJrp168bmzZvp27cvAH/88Yf/dnNX7e/cf//7X2699Vb+7//+j86dO9dln8RxUh1uz8QQeM5vak40TWPBe2tx/vUrV5lKMCreT2vsULADNoXuEBKMFKcDnXf0yAgkpKQQ37otCamtSUhpTXxqG+JTWmOODF+yI8SJrtRZyrb8bWzL38bWvK38lf8X2/O3Y3PZwraPNccGl8VVGCHy3Y4zx2HQNc0g0tTcdNNNvPrqq4wbN4677rqLpKQkduzYwbJly3j11VeJjo7mmmuu4a677iIhIYGWLVsya9YsdLrgWfvOOeccnnvuOU4//XRUVeWee+456nXhOnXqxBtvvMGXX35J+/btefPNN/nf//5H+/btj/s5RUREMHv2bG666aag9VdffTXz589n9OjRzJkzhzZt2rBnzx4++ugj7rrrLtq0acM555zD9OnT+eyzz+jYsSNPPfVUta6F1KlTJ/bs2cOyZcvo378/n332GStWrDju5/LII4/Qs2fPoDe4Xbp04eqrr2bChAk88cQTnHLKKeTk5PDNN9/Qu3dvLrzwQtLT0ykuLubrr7/m5JNPJjIyksjISP95Tm+//TaffPIJ4AlTd9xxB4D//CaAu+66iyuuuIK+ffsybNgw/v3vf/PRRx/x1VdfVbv/CxYswO12c84557BmzZpKy9F8s/nl5+cTH+8533flypUcOnSI/v37ExUVRUZGBnfffTdnnHHGcV0gt6Jbb72VQYMG8fjjjzNmzBj++9//BpXpAUybNo1rrrmGfv36ceaZZ/L222/z559/Bk0O8dBDD3HrrbcSExPDBRdcgN1u5+effyY/P5/p06fXSl+r+zrr3r07p59+Ovfccw+TJ08OGgGq6ne+srLKJUuW4Ha7GTBgAJGRkbz55ptYLBbS0tL8bdatW1ejcwWbsmr/C7Vu3ToWLVpEv3796NatG+PHj2fs2LF12TdxjPxlegnNq0xv165dfPr5KpyHs2gV8EGzXnWD3eYvpVOcnqXOYUdxOVA0jejEFsSntiYhtTXxKW08ISm1DdGJSSjN/ERGIY6VpmkcLDnIX3l/eUaRvEFpb9FetDBzRpr1ZjrFdaJrQle6xHeha3xXuiR0IcYkM642NqmpqXz//ffcc889DB8+HLvdTlpaGiNGjPCf3P3kk08ydepULrroImJiYrj77rvZu3dv0DkpTzzxBJMmTeKss84iNTWVp59+mo0bN1b6uFOnTuW3335j7NixKIrCuHHjuPHGG/n8889r5Xldc801PPHEE2RkZPjXRUZG8u2333LPPfdw6aWXUlRUROvWrRk2bJh/BGry5Mls2rSJCRMmYDAYuP3226t1XajRo0dz++23c/PNN2O32xk5ciQzZ86s9gVrK9OlSxcmT57MK6+8ErR+8eLFzJ07lzvuuIP9+/eTmJjIwIEDufDCCwHPRV6nTp3K2LFjyc3NZdasWTz00EMoisKQIUP4+OOP/aNVJ510ErGxsXTo0CHkXJmnn36a+fPnc+utt9K+fXsWL15c44sJP/XUU0HhKdy08r1796Zfv36899573HDDDYBndOPVV1/l9ttvx26307Zt27AjcMfr9NNP57XXXvN/j84991weeOABHn74YX+bsWPHsnPnTu655x7Kysr4xz/+wf/93//x5Zflk8Jce+21REZGMn/+fO6++26sViu9e/cOmd7+eNTkdTZlyhTWr18fNHEHVO93Ppy4uDgee+wxpk+fjtvtpnfv3vz73//2n1e3f/9+1q9fX62Rw+ZA0WpY5FlaWsqyZctYtGgRGzZswO128+STTzJ58uSQEy8bo8LCQmJjYykoKGi206fnvr0F2+Ycooe0IfaC4/8Ur6Ht3r2b1atX+6+5oakqpvxsjEdyPCNI3pew0RzhDUdtvOcceUaPElJaY6zk5FMhhIfdbWfHkR3+EjtfyV2Royhs+xaWFnRJ8ISjrvFd6ZrQlbSYtGY7YuSbHKJ9+/aVnsze3JWUlNC6dWueeOIJpkyZ0tDdEc3EypUrufPOO/njjz+a/Yxs9eGRRx5h2bJlbN68uV4e76677qKgoCAk5Dc2R/sbXpNsUON/4SIjI5k8eTKTJ09m69atvP766zz22GPce++9nHfeeUEXG6uOF154gfnz55OVlUXPnj1ZuHBhpbW7a9asCfsJ0JYtW6o9K0lzF1ym17Rn09u3bx+rV68ur3/XNIz52ZhyD2I2GOgxdBhJbdO8Aak1UfGJze58LiHqQo4txx+MtuZ5RpL+LvgbtxZ6boRBMdA+rn1QQOqa0JWEiNDroojm5ddff+Wvv/7itNNOo6CggDlz5gCeT7+FqC0XXngh27dvZ//+/f7z6UTNFRcXs2XLFp599tmgUbO61rJly5Ap+puz4/posGvXrjz++OPMmzePf//73yxatKhG+y9fvpzbbruNF154gTPOOIOXX36ZCy64gIyMDNq1a1fpflu3bg1KhL5ZcQSUbQ0o02vdNGd4O3DgAKtXry6f1QkwFORiyt6P4nLQZsBQRk2eglWufyTEUTlVJ5kFmeUjSN6wlFeWF7Z9rDm2PBx5lx1iO2DSV39aaNG8LFiwgK1bt2IymTj11FNZt24dSUlN+0M50fgETk4hjs3NN9/Mu+++y5gxY0LK9OpSxdkfm7sal+rVpgEDBtC3b19efPFF/7ru3bszZswY5s2bF9LeN+KUn59PXFxctR7DbrcHzcJSWFhI27Ztm22pXu47W7D9nkPUkDbENbEyvUOHDrF69Wr++usvABQFIkqK0B34G53Twb6IVDqOuoqbLxvasB0VohEqsBewLX+b53wk7yjSjiM7cKqhM0sqKKTFpAUFpC7xXUiOTJZR20pIqZ4QQjRdDVaqV1scDgcbN24MOdnv/PPPZ/369Ufd95RTTqGsrIwePXrwwAMPHPUEznnz5gVdpbw5Ux1uyrZ4PkmObEJleocPH2bNmjX8+eef/nVRbgfa31vROe3YIuL4Jv5sknqeyoJLBzZgT4VoeKqmsqdwT1CZ3db8rRwsORi2vdVopUt8F89kDd6g1CmuU6UXehVCCCFEeA0WnHJycnC73SQnJwetT05O5uDB8G8AUlJSeOWVVzj11FOx2+28+eab/usEnHXWWWH3mTFjRtB0kL4Rp+aobGu+p0wv3twkyvRyc3NZu3Ytmzdv9l+jId6ox/7XJhRHGWaLBecpF7EoOxWrxcybV56CXiefhosTR4mzhO3528vPR8rfetRpv1tHtaZLfBe6JXTzz2jXOqp1g1/vSAghhGgOGnz6o+pcndqna9eudO3a1X9/4MCB7N27lwULFlQanMxmM2azufY63IjZNh8GPNduaszlNvn5+Xz77bf89ttv/sDUIiqSsoxfcZUUoVcUeg8bTvSgi7j67QxUBR65pDet45r/FanFiUnTNLJKsoImbNia75n2Oxyz3kznuM7l0357l9Gmxj+zqRBCCNFUNVhwSkpKQq/Xh4wuZWdnh4xCHc3pp59+wswdfzRNoUyvoKCAb7/9ll9//RVV9Vy4tlVCPM6tv1O25RAAbXv0Zug112Fp1ZYLnl6HqsGlp7Tm4pNTG7LrQtSaMlcZO4/sDApI2/K3VTrtd0tLy/Jpv72ldu1i2jXbab+FEEKIxqrB/uX1zdCzatUqLrnkEv/6VatW1Wiq019//ZWUlJS66GKTElSm16ZxlekVFRWxbt06Nm7ciNvtme64dXJL2LODwu9/BiAuOYWzxk+mU7/TURSF6e/9xr58G23iLcwe3bMhuy/EMdE0zTPtd2BAyttGZmFmpdN+d4jrEDRZg0z7LYQQQjQeDfqR5fTp0xk/fjz9+vVj4MCBvPLKK+zZs4epU6cCnvOT9u/fzxtvvAHAwoULSU9Pp2fPnjgcDt566y0+/PBDPvzww4Z8Go1CeZleUqMp0ysuLub777/nf//7Hy6XC4A2qalEFuSQtWYlACZLJKf/40pOGTEKg9EIwL83HeCjX/ajU2Dh2D5ERxgb7DkIUR1O1cnfBX+XT9ZQxbTfcea4oGsidY33TPtt1MtrXQghhGisGjQ4jR07ltzcXObMmUNWVha9evVi5cqVpKWlAZCVlcWePXv87R0OB3feeSf79+/HYrHQs2dPPvvsMy688MKGegqNguYsv+htZO+Gv6ZVaWkp69ev56effsLp9EyF3Do1lWS9xs7Vn1PgdKIoOnqfcz5njP0nkbFx/n33H7Fx/wrP1a5vPrsT/dLl03bRuBTYC9iat9Uz7be3zG7nkZ1hp/3WKTrPtN+Bo0jxXWkZ2bLRfMAhRF3KzMykffv2/Prrr/Tp06ehu9MgHnroIT7++GN+++23hu5KnTqWS8aAZ6Ko7t27s2HDBtLT04/58RVFYcWKFYwZM+aY+7dkyRJuu+02jhw5Uunj1NfPs6rn01j079+fGTNmcOmllzZ0V+pFgxfJ33jjjdx4441hty1ZsiTo/t13383dd99dD71qWsq25qM5VPRxDVumZ7PZ+PHHH/nhhx9wOBwApKam0iExju3//Tfbj+QD0LbnSQydcC0t0zsE7e9WNaYv/43CMhd92sZxy7DO9f4chKgoryyPr3Z/xbf7vuWvvL84VHoobLsoY1TotN/xnbAYZFITIerCkiVLmDRpEsOHD+eLL77wrz9y5Ajx8fGsXr2aoUOHNlwHq8kXLlu0aMHOnTuJji6f5KVPnz6MGTOGhx56qFrHqs4b/8Zm3rx5jBo1Kig0hftg6cUXX/RXJB2LQYMGkZWVRWxs7DEfQ4SaOXMmd955J2PGjEGna/4zuDZ4cBLHr3RzDtBwZXp2u90fmMrKygDPtPInderIzq8/Y9PXOwHPeUxDxk+hY78BYfv5yre7+OnvPCJNehaO7YNR3/x/AUXjVGAv4Js93/BF5hf8lPVTyDlJraNah5TatY5qLaNIoklwOByYTKaG7ka1Ha2/BoOBr7/+mtWrVx/1mo713a9jUVRUxIIFC5rktSd91SU1ZbPZeP3111m5cmXItsWLFzNixAj//eMNPCaTiVatWh3XMU401XmNjxw5kuuuu44vv/ySCy64oJ561nDknWkTpzndlG3JBTzBqT45HA6+++47Fi5cyOrVqykrK6NFixaMHH4erUvz+fG1Zzj8905MlkjO+udkrnniBTr1Pz3sm8vN+wp44r9bAXjo4p6kJ1nr9bkIUeIs4T+7/sPNX9/M0PeG8uD6B1l/YD1uzU2PxB7c1vc2lo5Yyg/jfuCLf3zB0+c8zY19bmRYu2G0iW4joUk0WkOHDuXmm29m+vTpJCUlcd555wGQkZHBhRdeSFRUFMnJyYwfP56cnBz/fkVFRVx99dVYrVZSUlJ46qmnGDp0KLfddpu/jaIofPzxx0GPFxcXF1Ix4uN2u5kyZQrt27fHYrHQtWtXnn766aA2EydOZMyYMcybN4/U1FS6dOlS6XOzWq1MmjSJe++996jfg/379zN27Fji4+NJTExk9OjRZGZmBn2PAp8XwJgxY5g4caL/fnp6OnPnzmXixInExsZy3XXXAXDPPffQpUsXIiMj6dChAzNnzjymIHHLLbfw5JNPkp2dXWkbh8PB3XffTevWrbFarQwYMIA1a9YAnlK0SZMmUVBQgKIoKIrCQw89xLPPPkvv3r39x/j4449RFIXnn3/ev2748OHMmDHDf//FF1+kY8eOmEwmunbtyptvvhnUD0VReOmllxg9ejRWq5W5c+eG9NVmszFy5EhOP/108vLCn+/5+eefYzAYGDgw9OL2cXFxtGrVyv9lsVQ9ep+Tk8Mll1xCZGQknTt35tNPP/VvW7NmDYqiBI3GLVmyhHbt2hEZGckll1xCbm5uyDEfe+wxkpOTiY6OZsqUKf4PiAMtXryY7t27ExERQbdu3XjhhRf82zIzM1EUhY8++oizzz6byMhITj75ZH744Ycqn0+go73OMjMz0el0/Pzzz0H7PPvss6Slpfkv/VLV73xlfyseeugh2rVrh9lsJjU1lVtvvdW/j16v58ILL+Tdd9+t0fNpqiQ4NXGBZXqmtvVzDRen08kPP/zA008/zVdffYXNZvP8QzTqInrHRfL98wvYvmE9iqLjpHNHMOXpV+g/6lL/5A8VlTpcTFv+Ky5V44Jerbj81Db18jyEsLlsfJn5JdPXTGfI8iHMWDeDtfvW4lJddI7vzC2n3MJnl3zG8ouWM6X3FPom9yXK1LhmrRQNSNPAUVL/X943QTWxdOlSDAYD33//PS+//DJZWVkMGTKEPn368PPPP/PFF19w6NAhrrjiCv8+06dP5/vvv+fTTz9l1apVrFu3jl9++eW4vmWqqtKmTRvee+89MjIyePDBB7nvvvt47733gtp9/fXXbNmyhVWrVvGf//znqMd86KGH2Lx5Mx988EHY7aWlpZx99tlERUXx7bff8t133xEVFcWIESP8ZeXVNX/+fHr16sXGjRuZOXMmANHR0SxZsoSMjAyefvppXn31VZ566qkaHRdg3LhxdOrUiTlz5lTaZtKkSXz//fcsW7aM33//ncsvv5wRI0awfft2Bg0axMKFC4mJiSErK4usrCzuvPNOhg4dyp9//ul/g7x27VqSkpJYu3YtAC6Xi/Xr1zNkyBAAVqxYwbRp07jjjjv4448/uOGGG5g0aRKrV68O6susWbMYPXo0mzdvZvLkyUHbCgoKOP/883E4HHz99dckJIQ/X/nbb7+lX79+YbfdfPPNJCUl0b9/f1566SX/ZUyOZvbs2VxxxRX8/vvvXHjhhVx99dWVhraffvqJyZMnc+ONN/Lbb79x9tlnhwTA9957j1mzZvHII4/w888/k5KSEhSKAF599VXuv/9+HnnkEbZs2cKjjz7KzJkzWbp0aVC7+++/nzvvvJPffvuNLl26MG7cOP/EWdVxtNdZeno65557LosXLw7aZ/HixUycOBFFUar1Ow+hfys++OADnnrqKV5++WW2b9/Oxx9/HBTEAU477TTWrVtX7efSlEmpXhPnL9PrVfdlei6Xi19++YV169ZRVOS55kx8fDxnnTUYXf5h1r+8kNKCIwC063USQydcR4u09lUed+5nW9h1uIRWMRHMu7S3fHIv6pTD7eC7/d/xReYXrNm7BpvL5t+WHpPOiPYjGJE+go5xHRuuk6JpcJbCow1wjbn7DoCpZqPynTp14vHHH/fff/DBB+nbty+PPvqof92iRYto27Yt27ZtIyUlhaVLl/LOO+8wbNgwwPMmLDX1+J6v0WgMKkVr374969ev57333gt6A2e1WnnttdeqVQqXmprKtGnTuP/++8OeSL9s2TJ0Oh2vvfaa/9+XxYsXExcXx5o1azj//POr3f9zzjmHO++8M2jdAw884L+dnp7OHXfcwfLly2t8TraiKDz22GOMGjWK22+/nY4dg/8G7dy5k3fffZd9+/b5fw533nknX3zxBYsXL+bRRx8lNjYWRVGCStJ69epFYmIia9eu5R//+Adr1qzhjjvu8L/p/t///kdZWRlnnnkmAAsWLGDixIn+88+nT5/Ojz/+yIIFC4LKIa+66qqgwPT3338DcOjQIcaOHUvHjh159913j/ozzMzMDPuaevjhhxk2bBgWi4Wvv/6aO+64g5ycnKDvdTgTJ05k3LhxADz66KM8++yzbNiwIajkz+fpp59m+PDh/tHKLl26sH79+qDz5RYuXMjkyZO59tprAZg7dy5fffVV0KjTww8/zBNPPOGfHKF9+/ZkZGTw8ssvc8011/jb3XnnnYwcORLwBLyePXuyY8cOunXrdtTn5FPV6+zaa69l6tSpPPnkk5jNZjZt2sRvv/3GRx99BHhGEY/2O+8b2a34t2LlypW0atWKc889F6PRSLt27TjttNOC+ta6dWv27NmDqqrN/jwnCU5NmKdMz/NJiuWkuivTc7vd/Pbbb3z77bcUFBQAEBMTw5AhQ2hhNrL2zdfJzvSex9QqhSHjr6XjqadVKwCtyjjEOz95Zk584oqTiYtsOnX3oulwqk5+yvqJz//+nNV7VlPkLL/YbOuo1gxPH84F7S+ga3xXCe6iWar4qf7GjRtZvXo1UVGhI6g7d+7EZrPhdDqD3iDFxsbStWvX4+7LSy+9xGuvvcbu3bux2Ww4HI6QGfd69+5do/OH7rnnHl5++WUWLVoU8gn6xo0b2bFjR9CkCwBlZWXs3LmzRn0PNzrywQcfsHDhQnbs2EFxcTEul4uYmJgaHddn+PDhnHnmmcycOZN33nknaNsvv/yCpmkhpYt2u53ExMRKj6koCmeddRZr1qxh2LBh/Pnnn0ydOpUFCxawZcsW1qxZQ9++ff2vhS1btnD99dcHHeOMM84IKamsbKTo3HPPpX///rz33nvo9fqjPl+bzUZERETI+sCQ4HttzJkzp8rgdNJJJ/lvW61WoqOjKy193LJlS9B1RAEGDhwYFJy2bNkSMiHFwIED/aNvhw8fZu/evUyZMsVfugmeD5ornpMV2Dff9Uezs7OrHZyqep2NGTOGm2++mRUrVnDllVeyaNEizj77bP+kG1X9zvteVxV/rpdffjkLFy6kQ4cOjBgxggsvvJBRo0ZhMJRHCIvFgqqq2O32apVUNmUSnJqwsm35aA43+ti6KdNzu91s3ryZtWvXkp/vmREvOjqawYMH06FNa9YvW8qan9YDnusxDfzHlZxywSj0hupdiya7qIx7PvwdgOvP6sAZner3HC3RvLlVNz8f+pnP//6cr/d8zRH7Ef+2lpEtPWEp/QJ6JfWSsCSOjTHSM/rTEI9bQ1Zr8AiVqqqMGjWKf/3rXyFtU1JS2L59OxA6u5lWoUxQUZSQdUc7v+e9997j9ttv54knnmDgwIFER0czf/58fvrpp6P2typxcXHMmDGD2bNnc9FFFwVtU1WVU089lbfffjtkvxYtPJfw0Ol01XoeFfv1448/cuWVVzJ79myGDx9ObGwsy5Yt44knnqhR/wM99thjDBw4kLvuuivkeej1ejZu3BgSSMK9GQ40dOhQXnnlFdatW8fJJ59MXFwcZ511FmvXrmXNmjUhsw+G+7lXXFfZz2jkyJF8+OGHZGRkhJR0VZSUlOR/f3E0p59+OoWFhRw6dIjk5ORK2xkrnBKgKEqlJX4Vf97HwnfsV199lQEDBgRtq/gzCuyb73tZnfJDqN7rzGQyMX78eBYvXsyll17KO++8w8KFC4P6erTfeZ+KP9e2bduydetWVq1axVdffcWNN97I/PnzWbt2rf855eXlERkZ2exDE0hwatLqajY9VVX5448/WLt2rf9ESavVyplnnknvHj349bMVvPX0o7hdLu95TMMZdMU/iYyp/ow3qqpx5/u/k1fioEdKDHecX/nJv0JUl6qp/Jb9G19kfsF/M/9Lbln5ib4JEQmcn3Y+I9qP4JSWp6BTmnc5gagHilLjkrnGom/fvnz44Yekp6cHfXLs07FjR4xGIxs2bKBt27YAFBYWsn37dv+5MOAJHllZWf7727dvp7S0tNLHXbduHYMGDQq6DElNR30qc8stt/DMM8+EjIz07duX5cuX07Jly0pHgio+D7fbzR9//FHlTH3ff/89aWlp3H///f51u3fvPo5n4Tlf5NJLLw2Z8OKUU07B7XaTnZ3N4MGDw+5rMplwu90h64cOHcq0adP44IMP/CFpyJAhfPXVV6xfv55p06b523bv3p3vvvuOCRMm+NetX7+e7t27V6v/jz32GFFRUQwbNow1a9bQo0ePStuecsopvPXWW1Ue89dffyUiIqJG14eqSo8ePfjxxx+D1lW83717d3788ceg70Vgm+TkZFq3bs2uXbu4+uqra61vFVX3dXbttdfSq1cvXnjhBZxOZ9C1lar6nT8ai8XCxRdfzMUXX8xNN91Et27d2Lx5M3379gXgjz/+8N9u7iQ4NVGaUy0v06ul2fRUVfUP2x8+fNhzbIuFM888k1NP7cv29et4866bAs5jOpmh11xHi3bpNX6spT9k8u22w5gNOp6+sg9mw9GH84WojKZp/JHzB19kfsGXmV8GXWcp1hzLue3OZUT7EfRL7odBJ3/yhAC46aabePXVVxk3bhx33XUXSUlJ7Nixg2XLlvHqq68SHR3NNddcw1133UVCQgItW7Zk1qxZ6HS6oA/qzjnnHJ577jlOP/10VFXlnnvuCfnUP1CnTp144403+PLLL2nfvj1vvvkm//vf/2jfvurzYasSERHB7Nmzuemmm4LWX3311cyfP5/Ro0czZ84c2rRpw549e/joo4+46667aNOmDeeccw7Tp0/ns88+o2PHjjz11FPVuhZSp06d2LNnD8uWLaN///589tlnrFix4rifyyOPPELPnj2D3uB26dKFq6+++v/ZO++wqI4uDr9L76CiiA1QiV2KFQvYa6xJxBbFmthiFzUq2HtP9FOjYOzdGGssYO9C7AUEsXdBkL7z/bFhZaUIiq5l3ufhgTv1zL17l/u7c+YMnTp1YubMmbi4uPDkyRMOHDhAuXLlaNKkCfb29kRHR7N//36cnJwwMTHBxMREvc5p1apV/PXXX4BKTA0ePBhAvb4JYOjQobRp0wZXV1fq1q3L33//zebNm9m3b1+W7Z8xYwbJycnUqVOHwMDADN3RUqL5PX/+nFy5cgHw999/8+DBA9zc3DA2NiYgIIBff/2Vnj17YmhomO1zmRG//PIL1apVY9q0abRs2ZJ//vlHw00PoH///nTu3JmKFStSo0YNVq1axaVLlyha9PU+lL6+vvzyyy9YWFjQuHFj4uPjOXPmDM+fP2fQoEE5YmtWP2elSpWiatWqeHt707VrV40ZoLfd8xm5Vfr7+5OcnEyVKlUwMTFhxYoVGBsbY2dnpy5z+PDhbK0V/JyRr1w/U+KuP0fEJ6NrafDebnpCCK5evcqiRYvYsGEDjx8/xsjIiDp16jBgwACK5LJgvY83/yyax6vIF+SyLUDLYaP5ftSEdxJN1x68ZPKuqwD82rQUjjYfJxqg5MtBCMG1Z9eYc3YOjTc3pv3O9vx5+U8evnqImb4ZzYs1Z0HdBQS0CcC3mi9VbatK0SSRpKJAgQIcPXqU5ORkGjZsSNmyZenfvz+Wlpbqxd2zZs3Czc2Nb7/9lnr16lG9enV1yOUUZs6cSeHChXF3d6d9+/YMGTIEE5OMXQl//vlnWrdujaenJ1WqVOHp06cas0/vS+fOnTUeagFMTEw4dOgQRYoUoXXr1pQqVYquXbsSGxurnoHq2rUrnTt3plOnTnh4eODg4JClfaFatGjBwIED6du3L87Ozhw7dkwdbe99+Oabb+jatWua0Nd+fn506tSJwYMHU6JECZo3b87JkyfVs4LVqlXj559/xtPTk7x586oX+SsUCvVMYcpsVfny5bG0tMTFxSXNWpm5c+cyffp0ypQpw6JFi/Dz88v2ZsKzZ8+mTZs21KlTh+vXr6dbply5clSsWFEjqqK+vj4LFizAzc2N8uXLM3fuXMaNG/de7o/pUbVqVf744w/mz5+Ps7Mz//zzT5o1VJ6enowZMwZvb28qVKjArVu36NWrl0aZ7t2788cff+Dv70+5cuXw8PDA398/R14GpJCdz1m3bt1ISEhIE+kwK/d8elhZWbFkyRKqV69O+fLl2b9/P3///bd6Xd3du3c5duwYXbp0ybHxfsooRE44eX5GREVFYWlpSWRk5Dsv3vwUeLb2Kq+CH2NWvQBWzd4t+pcQgpCQEAICArh3T+Wnb2BggJubG1WrViU+KpJDK5dx45RqHZOhiSlu37fDuWHTLK9jepO4xGRa/n6Uqw9eUrtEXpZ5VZLrSyRZ5uaLm+wO382usF2ER4Wr0431jKlVqBYNHRpSo2ANDHVz7q2kRAKqQAJhYWE4ODiku5j9ayAmJoaCBQsyc+ZMunXrpm1zJF8IO3fuZMiQIVy8ePGLj8j2MZg4cSJr167lwoULH6W/oUOHEhkZyeLFiz9Kf+9KZt/h2dEG8hXsZ4hIVBKrjqaXN/v1hSAsLIwDBw5w584dQPWGp0qVKlSrVg1d4OSWdZzbsTXVOqZGVGvTIVvrmNJj+p5rXH3wkjymBkz73kmKJslbuR11WyWWwndx4/kNdbqBjgHuhdxp6NAQ94LumLzDgnmJRJIxQUFBXL16lcqVKxMZGaneX6hFixZatkzyJdGkSRNu3LjB3bt31TNnkuwTHR3NlStXmD9/PuPHj/9o/ebLly9NiP4vGSmcPkPibvznpmeRfTe98PBwAgIC1IsK9fT0qFSpEtWrV8fExJiLAfs4um7F63VM5Zyp3ak71u/gkvcmh64/ZukR1T4P038oT15zOSsgSZ/70ffZE76H3eG7ufT0kjpdT0ePagWq0ci+EbUL15ab0UokH5gZM2Zw7do1DAwMqFChAocPH8baWkZAleQsqYNTSN6Nvn37smbNGlq2bJnGTe9D8mb0xy8dKZw+Q2JTR9PTydqMze3btwkICODmzZuAKkxmhQoVqFmzJubm5ty+dJ7Ny5fw+JZK2OSyLYDHj90p6pozrnTPYhIYsuFfAH6sakedkhmHE5V8nTx+9Zh/bv3D7rDdBD8OVqfrKnSpnL8yjR0aU6dIHSwN32/WUyKRZA0XFxfOnj2rbTMkEkkW8Pf3x9/fX9tmfPFI4fSZIZKUxF5WhVjOSjS9e/fuERAQoN6TQ0dHBxcXF9zd3bG0tOTFg/v8tWgeIaePA2Boaorbd+1xbtjkndcxpbFZCIZvOs+jl/EUz2fGyCZZC2kq+fJ5Hvecvbf2sjt8N2cenEGgWnKpQEEFmwo0sm9EPbt65DHOeHNHiUQikUgkko+BFE6fGepoehYGGBTJeAHbgwcPCAgI4Nq1a4Aqoo6zszPu7u7kypWL+FevOLTKj3M7/3q9jql+Y6r90P691zG9ybrTt/nn8kP0dRXMbeuMsYEMPf41E5UQxf5b+9kTvocT90+QLF7vOeKU14lG9o1oYN+AfCb5tGilRCKRSCQSiSZSOH1mqN30yqbvpvfo0SMCAwO5fPmyOq18+fJ4eHiQJ08elMpkzu/fzdF1K9XrmOzKu1Drx245so7pTW4+jmbs3ypbhjYsQZkC0s3qayQmMYaA2wHsCdvDkXtHSFImqfNK5S5FY4fGNLRvSAGzAlq0UiKRSCQSiSRjpHD6jNBw0yuv6ab35MkTDh48qBF+skyZMtSqVYu8eVWR9yIunidw+WIeR4QDkMu2ILU6dcfBpeIHiW6XmKxkwLpgYhOTqVYsD91rFH17JckXQ2xSLIfvHGZ3+G4O3TlEfHK8Oq+4VXG1WLKzsMukFYlEIpFIJJJPAymcPiNSounppHLTe/78OQcPHuTff/8lZUuukiVLUrt2bWxsVAEYXjy4z8GVyzTWMVX7vj1ODXJuHVN6zNl3nfN3IrE01mdmGyd0shjIQvL5kpCcwNG7R9kVvovA24HEJsWq8+wt7Glo35BG9o0onqu49oyUSCQSiUQieQekcPqMSHHTMylrTdTLKA4dOkRQUBBKpRIAR0dHateuTYECKnen+FcxnNi8jnM7t6FMTkKho4NT/cZU+6EDxuYfdvPfkzefsiAwFIDJrctha2n8QfuTaI9EZSIn759kd9huDkQc4GXiS3VeQbOCarFUMndJuW+XRCKRSCSSzxYpnD4TUtz0YojnXMx5/p13keRk1aL6YsWKUatWLfXGcUplMhcP7OXIuhXERkUC/61j6tQd68If3i0qMjaRQev/RQj4oUIhmpSz/eB9Sj4uycpkzjw8w+7w3ey7tY8X8S/UefmM89HQQSWWylmXk2JJIvmKCQ8Px8HBgaCgIJydnbVtjlbw9fVl69atBAcHa9uUD0pgYCC1a9fm+fPnWFlZZbne06dPKVWqFKdOncLe3v6D2ZeVz6K/vz8DBgzgxYsXGbaTlevp5eXFixcv2Lp163vZnBmfy70VHx+Po6MjW7ZsoUKFCto2573R0bYBkqzx9OI9jiddYb3RMc5d+5fk5GTs7e3p0qULP/74o1o0RVz8l5Xe/dm75DdioyLJVaAQrYb78N3IcR9FNAGM+esid1/EYpfHBJ/mZT5Kn5IPj1IoOffwHJNOTqLexnp0/6c7G69v5EX8C3Ib5cazhCf+jfzZ+8NehlUaRvm85aVokkgkHwx/f38UCgWNGjXSSH/x4gUKhYLAwEDtGJZNwsPDUSgU5MuXj5cvX2rkOTs74+vrm+W2/P39syVaPgUmT55Ms2bNNERT//79qVChAoaGhhmKggsXLuDh4YGxsTEFCxZk3Lhx6iUL74qnpyfXr19/rzYkmhgaGjJkyBC8vb21bUqOIGecPnFevXrF0aNHOXnsBEl6qhmmwoULU7t2bYoWfR1s4fn9uxxc6UfomRNA6nVMTdHV+3iXeWvQXf4KvoeujoLZns6YGcqP2OeMEIJLTy+xK2wXe8L38PDVQ3WepaEl9YrUo5FDIyraVERPR15rieRzICEhAQMDA22bkWUys1dPT4/9+/cTEBBA7dq1Pxm73oWXL18yY8YMxo4dm2NtfiwSExPfqV5sbCxLly5l586dGulCCLp27crJkyc5f/58mnpRUVHUr1+f2rVrc/r0aa5fv46XlxempqYMHjz4nWwBMDY2xthYLi3IDlm5Dzp06MDQoUO5cvE8pRwdIDEWkuIgMQ5yO4Duh1tvn9PIGadPlNjYWA4cOMCcOXM4evQoSSKZvEoLPOu2omvXrmrRFP8qhoMrl+E/uA+hZ06g0NHBueG3dJu7BNcmLT6qaLr97BWjt14E4Jc6jrgWyfXR+pbkHEIIrj27xtxzc2myuQntdrTjz8t/8vDVQ0z1TWlerDm/1/2dgB8C8K3mS1XbqlI0SSSfMLVq1aJv374MGjQIa2tr6tevD8Dly5dp0qQJZmZm2NjY8OOPP/LkyRN1vZcvX9KhQwdMTU2xtbVl9uzZ1KpViwEDBqjLKBSKNO5IVlZW+Pv7p2tLcnIy3bp1w8HBAWNjY0qUKMHcuXM1ynh5edGyZUsmT55MgQIF+OabbzIcm6mpKV26dGH48OGZnoO7d+/i6elJrly5yJMnDy1atCA8PFzjHKUeF0DLli3x8vJSH9vb2zNhwgS8vLywtLSkR48eAHh7e/PNN99gYmJC0aJFGT169DsJiX79+jFr1iwePXqUYZmEhASGDRtGwYIFMTU1pUqVKuqZtcDAQLp06UJkZCQKhQKFQoGvry/z58+nXLly6ja2bt2KQqHg999/V6c1bNiQESNGqI8XLlxIsWLFMDAwoESJEqxYsULDDoVCwf/+9z9atGiBqakpEyZMSGNrbGwsTZs2pWrVqjx79izd8ezatQs9PT3c3Nw00ufNm0efPn00XhCnZtWqVcTFxeHv70/ZsmVp3bo1I0eOZNasWW+ddbp58ya1a9fGxMQEJycnjh8/rs5Lb8ZuypQp2NjYYG5uTrdu3YiLi9PIT05OZtCgQVhZWZEnTx6GDRuWxgYhBNOmTaNo0aIYGxvj5OTExo0b1fmBgYEoFAr2799PxYoVMTExoVq1auq9OLPC2+6tQ4cOoa+vz4MHDzTqDR48GHd3d/XxsWPHcHd3x9jYmMKFC/PLL78QExOjzk/vPkhISKBv377Y2tpiZGSEvb09k8f7QsxjeHGbPOIZ1So6sWbpb/A0BKLuwqunkBijElCfEVI4fWLExcVx8OBB5syZw6FDh0hISCCflTX1E8rT0sCNktVV7k9KZTL/7t3F0v49OfP3ZpTJSdg7udJ5+m/U7frzBw/+8CbJSsGg9cG8jE+igl0u+tQu9lH7l7w/N1/cZEHwAlr81YLv//6ePy78wZ3oOxjrGdPYvjFzas/hoOdBJtaYiHshd/Q/ozdEEsmHQAjBq8RXH/3nXdyRli9fjp6eHkePHmXRokXcv38fDw8PnJ2dOXPmDLt37+bhw4e0adNGXWfQoEEcPXqUbdu2sXfvXg4fPsy5c+fe65wplUoKFSrE+vXruXz5MmPGjGHkyJGsX79eo9z+/fu5cuUKe/fuZfv27Zm26evry4ULFzQeRFPz6tUrateujZmZGYcOHeLIkSOYmZnRqFEjEhISsmX/9OnTKVu2LGfPnmX06NEAmJub4+/vz+XLl5k7dy5Llixh9uzZ2WoXoF27dhQvXpxx48ZlWKZLly4cPXqUtWvXcv78eX744QcaNWrEjRs3qFatGnPmzMHCwoL79+9z//59hgwZQq1atbh06ZJaFB88eBBra2sOHjwIQFJSEseOHcPDwwOALVu20L9/fwYPHszFixf56aef6NKlCwEBARq2+Pj40KJFCy5cuEDXrl018iIjI2nQoAEJCQns37+f3LlzpzueQ4cOUbFixWyfq+PHj+Ph4YGhoaE6rWHDhty7d09DEKfHr7/+ypAhQwgODuabb76hXbt2JCUlpVt2/fr1+Pj4MHHiRM6cOYOtrS0LFizQKDNz5kyWLVvG0qVLOXLkCM+ePWPLli0aZUaNGoWfnx8LFy7k0qVLDBw4kI4dO6qvQWrbZs6cyZkzZ9DT00tzXjPjbfeWu7s7RYsW1RDBSUlJrFy5ki5dugAq98eGDRvSunVrzp8/z7p16zhy5Ah9+/bV6Et9H5w+xWjvwcybMZltf21h/ZJZXDu8jZVzxmCfxxAi78CrJ5AQTWXn0hw+GQS6hmBkCWY2kMse9IyyPMZPAfma+BMhISGBU6dOcfToUWJjVSGc8+bNqworflGX2AePMCmXF4WOglsXggn88w+e/LcfU+4ChdT7MWmLhYEhnA5/jpmhHnM8ndHTlZr8c+B21G12h+9md/hurj9/7ddtoGNAzUI1aeTQCPeC7pjom2jRSonk0yQ2KZYqq6t89H5Ptj+Z7XuyePHiTJs2TX08ZswYXF1dmTRpkjpt2bJlFC5cmOvXr2Nra8vy5ctZvXo1devWBcDPz08dtfVd0dfX13BFc3Bw4NixY6xfv15DtJmamvLHH39kyRWuQIEC9O/fn19//ZWWLVumyV+7di06Ojr88ccf6nWXfn5+WFlZERgYSIMGDbJsf506dRgyZIhG2qhRo9R/29vbM3jwYNatW8ewYcOy3C6oZnGmTJlCs2bNGDhwIMWKab6ADA0NZc2aNdy5c0d9HYYMGcLu3bvx8/Nj0qRJWFpaolAoyJ8/v7pe2bJlyZMnDwcPHuS7774jMDCQwYMHq8Xd6dOniYuLo0aNGgDMmDEDLy8vevfuDagE9IkTJ5gxY4aGO2T79u01HuzDwsIAePjwIZ6enhQrVow1a9Zkeg3Dw8Pf6TP14MGDNIEkUrZgefDgAQ4ODhnWHTJkCE2bNgVg7NixlClThpCQEEqWLJmm7Jw5c+jatSvdu3cHYMKECezbt09j1mnOnDmMGDGC7777DoD//e9/7NmzR50fExPDrFmzOHDggHpmrWjRohw5coRFixapBSvAxIkT1cfDhw+nadOmxMXFYWT0dnGRlXurW7du+Pn5MXToUAB27NjBq1ev1PnTp0+nffv26tlXR0dH5s2bh4eHBwvnzcJIV4BIpk6NKgz5sTEkvwIgIvQqjnYFqeFSAoVCgV3BvKCjD/rGKmGkb0TBYmUJ33kQbEq/dSyfMlI4aZnExETOnDnDkSNH1FOhefLkoVatWpQpUwaFEu6tPwlAcgHYOn08oWdUx0amZrj90AGn+o0/qkvemwTffsHsfTcAGNeiDIVzy4fsT5kHMQ/YE76HXWG7uPT0kjpdT0ePagWq0ci+EbUL18bMwEyLVkokkpzkzbf6Z8+eJSAgADOztPd5aGgosbGxJCYmUrlyZXW6paUlJUqUeG9b/ve///HHH39w69YtYmNjSUhISBMAoFy5ctlaP+Tt7c2iRYtYtmyZhgAD1VhDQkIwNzfXSI+LiyM0NDRbtqc3O7Jx40bmzJlDSEgI0dHRJCUlYWHxbl4fDRs2pEaNGowePZrVq1dr5J07dw4hRBrXxfj4ePLkyZNhmwqFAnd3dwIDA6lbty6XLl3i559/ZsaMGVy5coXAwEBcXV3Vn4UrV67Qs2dPjTaqV6+exqUyo5mievXqUalSJdavX4+urm6m442Njc2SKMhoXKlJmYl9W1Ci8uXLq/+2tVVF/X306FG6wunKlSv8/PPPGmlubm7q2bfIyEju37+v4Wqop6dHxYoV1fZcvnyZuLg4tYtsCgkJCbi4uGTJtiJFimQ6phTedm95eXkxatQoTpw4QdWqVdX3i6mpKfD6Xlm1ahWgsl8oBUqlkrBzByjlWBSUyVQs6wjJ/83W6ujh1d6T+j90oUStH2jUoAHfNmtOg0aNNWwzNrfk1atXWRrHp4wUTlrk/Pnz/PPPP0RHRwOQK1cuPDw8KFeunPrLJvbGM0RcEkl6SayYPRRlcuJ/65ia4vZ9e4zNzDPr4oMTE5/EgLVBJCsF35a3pZVLQa3aI8mYu9F3mXpqKgG3X7tb6Ch0qJK/Co0cGlG3SF0sDS21aKFE8nlhrGfMyfYntdJvdkl5MEpBqVTSrFkzpk6dmqasra0tN26oXoZl9HCagkKhSJOW2fqe9evXM3DgQGbOnImbmxvm5uZMnz6dkyc1z+Ob9r4NKysrRowYwdixY/n222818pRKJRUqVPjvYVCTvHnzAqCjo5Olcbxp14kTJ2jbti1jx46lYcOGWFpasnbtWmbOnJkt+1MzZcoU3Nzc1LMCqcehq6vL2bNn0wiS9ARwamrVqsXixYs5fPgwTk5OWFlZ4e7uzsGDBwkMDKRWrVoa5dO77m+mZXSNmjZtyqZNm7h8+bLG2qr0sLa25vnz55mWSY/8+fOnWauTsjYsZeYpI/T1X7uZp4wpZT/MD0FK2zt27KBgQc1npNSuhu9rW1burXz58tGsWTP8li2jaJGC7Ny5k8Cdm+F5OCTGoUyI5aeOrfmla9s07RcpVAj0TUGhi2luW8hTXDWbpKuPa/5yhIXXYdeuXezbt482bdtRr149DffZZ8+eqe+3zxkpnLRIcnIy0dHRWFpa4u7ujrOzs8aXoTI5mbu7gzFCn7Bn51EmJ+LgXAGPH7uTp1BhLVr+mnF/Xyb86SsKWBoxsaXcs+dTJDE5Ef9L/iw+v5i45DgUKHC1caWxfWPq2dUjj3HGbyolEknGKBSKz9aN1dXVlU2bNmFvb49eOh4LxYoVQ19fn1OnTqm3u4iKiuLGjRsarkV58+bl/v376uMbN25k+lb58OHDVKtWTe0GBmR71icj+vXrx7x589LMjLi6urJu3Try5cuX4UzQm+NITk7m4sWLb43Ud/ToUezs7Pj111/Vabdu3XqPUUDlypVp3bp1moAXLi4uJCcn8+jRI2rWrJluXQMDA/Uej6mpVasW/fv3Z+PGjWqR5OHhwb59+zh27Bj9+/dXly1VqhRHjhyhU6dO6rRjx45RqlSpLNk/ZcoUzMzMqFu3LoGBgZQunbFrlouLCytXrsxSu6lxc3Nj5MiRGhHd/vnnHwoUKJCje0GVKlWKEydOaJyLEydOqP+2tLTE1taWEydOqAMsJCUlcfbsWVxdXQEoXbo0hoaGREREaNw7OU3G95aAuChVEIakOLr/0Ii2PQdRyFKPYnaFqF6mEMSqxKtruZJcunaT4t+UVLvYoWes+q2jDwoF6OiCoRkYar64t7CwwNPTE09PT77//nsaNWrEs2fP1OvbLl68mGaG7XNECictkjIlW65cuTT/uG6dD+bgn39QXdEcdPWJNHpK6+G+Wl3H9Ca7L95n3ZnbKBQwy9MZSxMZLOBT49T9U0w4OYGwSJXveeX8lfm1yq8UtUo/UpFEIvk66NOnD0uWLKFdu3YMHToUa2trQkJCWLt2LUuWLMHc3JzOnTszdOhQcufOTb58+fDx8UFHR0fjBVmdOnX47bffqFq1KkqlEm9vb4235m9SvHhx/vzzT/bs2YODgwMrVqzg9OnTma5JySpGRkaMHTuWPn36aKR36NCB6dOn06JFC8aNG0ehQoWIiIhg8+bNDB06lEKFClGnTh0GDRrEjh07KFasGLNnz850E9TU44mIiGDt2rVUqlSJHTt2pAkM8C5MnDiRMmXKaDwbfPPNN3To0IFOnToxc+ZMXFxcePLkCQcOHKBcuXI0adIEe3t7oqOj2b9/P05OTpiYmGBiYqJe57Rq1Sr++usvQCWmUkJ3p6xvAhg6dCht2rTB1dWVunXr8vfff7N582b27duXZftnzJhBcnIyderUITAwMF03OHgdze/58+fkyvU6Em+K2+ODBw+IjY1VbzZbunRpDAwMaN++PWPHjsXLy4uRI0dy48YNJk2axJgxY3L0BW7//v3p3LkzFStWpEaNGqxatYpLly5pRPvr378/U6ZMwdHRkVKlSjFr1iyNz465uTlDhgxh4MCBKJVKatSoQVRUFMeOHcPMzIzOnTvniK3Fizqo7q2/1uFQMD8r1qzn9KmTOBQuAM9ev5xoWMMVS3MzJsz7g3HD+oFRLrVA8h41jqo13OnjO48ePXpgamrKlSsn2bt3L/Pnz8+w79mzZ2Nra4uzszM6Ojps2LCB/Pnza0QoPHz4MOPHj8+RsWoTuYJfi+jq6uLi4qLxxfj8/l22TBvHxomj0H2iwFDXGKW+km+njP6kRNODyDiGb74AwM8exahaVM5afEo8iX3CiMMj6PZPN8Iiw8htlJvJNSfzR4M/pGiSSCQUKFCAo0ePkpycTMOGDSlbtiz9+/fH0tISHR3Vo8GsWbNwc3Pj22+/pV69elSvXp1SpUpprEmZOXMmhQsXxt3dnfbt2zNkyBBMTDKehfv5559p3bo1np6eVKlShadPn2q8IX9fOnfunCaEtYmJCYcOHaJIkSK0bt2aUqVK0bVrV2JjY9UzUF27dqVz58506tQJDw8PHBwcsrQvVIsWLRg4cCB9+/bF2dmZY8eOqaPtvQ/ffPMNXbt2TRP62s/Pj06dOjF48GBKlChB8+bNOXnypHpWsFq1avz88894enqSN29edUAQhUKhnu1Ima0qX748lpaWuLi4aMzEtWzZkrlz5zJ9+nTKlCnDokWL8PPzS+PO9zZmz55NmzZtqFOnToabypYrV46KFSumiarYvXt3XFxcWLRoEdevX8fFxQUXFxfu3bsHqGZ69u7dy507d6hYsSK9e/dm0KBBDBo0KFs2vg1PT0/GjBmDt7c3FSpU4NatW/Tq1UujzODBg+nUqRNeXl5qF7lWrVpplBk/fjxjxoxh8uTJlCpVioYNG/L333+/2wsDZTIkxMCr/1wcn0fAg4v83LI6rRt54NmpO1XqNePpk8f07vyDqow6kl1+dPIUxcvLi+RkJZ16D4Hc9mCeH4wtKe9akYMHD3Ljxg1q1qyJi4sLo0ePVq+3yggzMzOmTp1KxYoVqVSpEuHh4ezcuVP9XXL8+HEiIyP5/vvvsz/eTwyFeN9tlj8zoqKisLS0JDIy8p0Xb34I4mKiObFpLUG7t6NMTkKho0PD8t2xjMyFaVVbcrUsrm0T1SiVgk7LTnEk5AllC1qwuVd1DPSkBv8USFYms+H6Buadm8fLxJcoUNCmRBt+cf0FC4NP5/MukXxuxMXFERYWhoODwzsvZv/ciYmJoWDBgsycOZNu3bpp2xzJF8LOnTsZMmQIFy9eVD9oSwClEpL/2yQ2Ke71prHJmYTQ1zXQdLHTM1L9vHFee/TowcOHD9m2bdsHHoSKH374ARcXF0aOHPlR+kuPzL7Ds6MNpKuellEmJ3N+/x6OrV9J7MsoABxcKuLerisJy++iJAnjctZatlKTZUfDOBLyBCN9Hea2dZGi6RPh0tNLTDg+gYtPVZsQl85TmtFVR1PWuqyWLZNIJJ8jQUFBXL16lcqVKxMZGaneX6hFixZatkzyJdGkSRNu3LjB3bt31TNnXxVCQFI8JMX+J5L+E0hJ8RnX0dF7vfZIz+h12G+dzKMYRkZGcvr0aQ2XzQ9NfHw8Tk5ODBw48KP096GRwkmLRFz8lwN+i3h6JwKA3AULq/Zjcq5A3PXnPHmVhI6ZPoYOn06ks8v3opi2W7WT9ehvS1MsrwxZrW1eJrxkftB81l1bh1IoMdM3o59LPzxLeKL7li9RiUQiyYwZM2Zw7do1DAwMqFChAocPH8ba+tN6mSf5/EkdnOKLRQjVbFHq2aOU2SQycP5S6GoGaND772/dd3t8b9GiBadOneKnn35KEx79Q2FoaKix19nnjhROWuRhWChP70RgZGZOtTYdKF+3kXo/plfnHwNgXNYahc6nEakuLjGZ/muDSEhWUq+UDe0rZ21fAcmHQQjBrrBdTD8znSexqh3hmzg0YWiloVgbywcbiUTyfri4uHD27FltmyGRfF4IAcrE16JIPZMUByKD0OIKnbQudqkj2eUQgYGBOdbW14oUTlrEpVEzEuPicG3cHKNUezCIZCVxl58CfFJuepN3XuHGo2jymhsy9TsZelybhEWGMfHkRE7eV+3PYG9hz69Vf6WqbVUtWyaRSCQSySeOEID4b6In5W+hmZcmn1Tl3iibnPDazS4xDkTakPAqFKkEUioXO12DHBVIkg+HFE5aRE9fn2o/tE+THh8aifITc9MLuPqI5cdVe1NM/748ecwM31JD8iGIS4pjyYUl+F30I1GZiKGuIT3K9aBL2S4Y6Bpo2zyJRCKRfKqoY4G9RSSkJwxS/52mnfTS3swni/2kk5+puMmsbibtfAx0Dd9wszMGPUMpkD5zpHD6BIm9oHK7Mi6T55Nw03sSHc/Qjf8C4FXNnlol8mnZoq+Tw3cOM+nkJO5E3wGgRsEajKwyksLmX+FiWolEIskO7/Mw/9a6WczPqkjJ6dmQ1PZJsoAilbhJ+fu/45S/Ff/lpfyto/969kjfCHTTRrKTfBloXTgtWLCA6dOnc//+fcqUKcOcOXMy3BE7NUePHsXDw4OyZcuqN0b7EhDJSmIv/SecyuXVsjUghMB743meRCdQwsac4Y3T38RO8uF4EPOAaaensffWXgDymeRjeOXh1CtST7pLSiTaIMO36//9TnP8Rt6bD7JpHnZT573RpkaZt6WlVzd1Wnp2p07LxOb0+szJ/rKclo5tGV0fSSa8IQxS/52eiNAQDm/mp24nnbQ3RUdG5VLnp2fX2/Iz7SeDfPk/VfIWtCqc1q1bx4ABA1iwYAHVq1dn0aJFNG7cmMuXL1OkSMaBByIjI+nUqRN169bl4cOHH9HiD0/8zf/c9Ew/DTe9lScj2H/1EQa6Osxp64yRvozS9rFIUiax6soqFgQv4FXSK3QVunQs1ZFezr0w1TfVtnmSrx0hXkeHSnyVwe///k5OBKFUbdwokt/4nU66UKr2MElTNjmD9DfbUGZSNgttaLT3X1ljW3CbAo9iQU8+XH15ZPTwnUXRkNnD/Fsf2jNpI11x8DbB8DabM6orkUjehlaF06xZs+jWrRvdu3cHYM6cOezZs4eFCxcyefLkDOv99NNPtG/fHl1dXbZu3ZppH/Hx8cTHv46FHxUVlSO2fyjUbnpl86DQ1e4XWcijl0zccRkA78YlKWUrN1D9WAQ/Cmb8ifFcf67abd05rzOjqo6iRO4SWrZM8lmgTH67mEl4lTYts/Iaf/93/DW9xTdMIHvjTf3wmuo4vbfz6ea90YZGfuoy6fX1lrR0235bWnp2vS3tbbalHlM2y715LtIbQ7ZmMCQSieTtaE04JSQkcPbsWYYPH66R3qBBA44dO5ZhPT8/P0JDQ1m5ciUTJkx4az+TJ09m7Nix723vx0Aki1RuetqNppeQpKT/2mDiEpXUdLSmSzV7rdrztfAi7gWzz81m843NAFgaWjKowiBaFm+JjkL6S3/2pOzjkSI8NMRLZoIlo7QM6ma2s/yHQNdA5d+vb/LG7//+1tFTbcyo0H3jt87r49R/6+ikUzaddHUdnbe3r9FGFttP3UaiEh7HQB57MDIifUEkH8QlEonkS0ZrwunJkyckJydjY2OjkW5jY8ODBw/SrXPjxg2GDx/O4cOH0dPLmukjRoxg0KBB6uOoqKhPdmfq+JsvUMYkoWOqh6GDlVZtmbn3GpfuRZHLRJ8ZPzih8wkEqfiSUQolf4X8xayzs3gR/wKAVsVbMbDCQHIZ5dKucRKIfgR3TkN8dAZiJRuiJ6N9PD4UacSMSVphk5no0TcGA9OMy7/HZoyfFXFx8DQMdPVVP5IcJTw8HAcHB4KCgnB2dn6vthQKBVu2bKFly5Y5YltWCAwMpHbt2jx//hwrK6uP1m9O4uXlxYsXL97qyfM5866fDXd3d37++Wfat08bCflL4lO/DytVqsSIESNo3bp1jrWZXbT+3+7Nxe1CiHQXvCcnJ9O+fXvGjh3LN998k+X2DQ0NMTT8PEJnv46mZ61VN71joU9YfOgmAFO+K4+NhZHWbPkauP78OhNOTCDoURAAjrkcGV11NC75XLRs2VeMMhnunoMb/6h+7gfnfB86eqCfniB5i4jRNwGDLIofPSM5+yH5YvH19WXr1q1pAkTdv3+fXLnkC6dPkZx8MP9YbN++nQcPHtC2bVt12uLFi1m9ejXnzp3j5cuXn7Vgfl8+5n04evRohgwZQsuWLdHRUtRCrQkna2trdHV108wuPXr0KM0sFMDLly85c+YMQUFB9O3bFwClUokQAj09Pf755x/q1KnzUWz/EHwqbnovXiUwaN2/CAHtKhemYZn8WrPlS+dV4isWBC9g5ZWVJItkjPWM6ePch/al2qOvI99of3RinkDIfgjZq/od+0wzP18ZMMuX/RmZjASOnLWQSD4I+fPL/1upSUxMRF//6/6+SUhIwMDg3fY6nDdvHl26dNF4UH/16hWNGjWiUaNGjBgxIqfM/KL4EPdh06ZN6dGjB3v27KFx48Y53n5W0NqiCQMDAypUqMDevXs10vfu3Uu1atXSlLewsODChQsEBwerf37++WdKlChBcHAwVapU+VimfxA03PSKWmnFBiEEv265yIOoOBysTRn9bWmt2PGlI4Rg3619NN/anOWXl5MskqlXpB7bWm6jc5nOUjR9LJRKuHMWAqfAkjowvThs6QkXNqhEk6EllG4JLRbA4OvQ+xh02grtVsP3S6HFb9BkGtQfCx7DoFo/qNQdnNtDmVbwTUNwcIdCFcGmDOQuCub5wchSiqYvBCEEylevPvqPENkLyqFUKpk6dSrFixfH0NCQIkWKMHHiRHX+hQsXqFOnDsbGxuTJk4eePXsSHR2tzvfy8qJly5bMmDEDW1tb8uTJQ58+fUhMTARULvFVq1ZN02/58uXx8fFR2zBu3DgKFSqEoaEhzs7O7N69O0Ob/f3907zB37p1q9ojxd/fn7Fjx/Lvv/+iUChQKBT4+/sDKk+W1O5m7zs+gJUrV1KxYkXMzc3Jnz8/7du359GjR28585ooFAr++OMPWrVqhYmJCY6Ojmzbtk2jzOXLl2nSpAlmZmbY2Njw448/8uTJE3W+vb09c+bM0ajj7OyMr6+vRj//+9//aNGiBaampkyYMIHk5GS6deuGg4MDxsbGlChRgrlz52bL/pRrsmfPHkqVKoWZmRmNGjXi/v37GuX8/PwoVaoURkZGlCxZkgULFqjzHBwcAHBxcUGhUFCrVi0uXLiAjo6OepzPnz9HR0eHH374QV1v8uTJuLm5qY8PHjxI5cqVMTQ0xNbWluHDh5OUlKTOr1WrFn379mXQoEFYW1tTv379dMc0btw4bGxsMtzW5smTJ+zbt4/mzZtrpA8YMIDhw4en+7nPCHkfvv99qKurS5MmTVizZs1bzvaHQ6uueoMGDeLHH3+kYsWKuLm5sXjxYiIiIvj5558B1Yfg7t27/Pnnn+jo6FC2bFmN+vny5cPIyChN+ufIp+Cmt+ncXXZcuI+ejoI5ns6YGGjdk/OL4/bL20w+OZnDdw8DUNCsICOrjMS9kLuWLftKePUMQg/Ajb0Qsg9ePdHMtykHjvVVP4Uqfx1rdyTvjIiN5ZprhY/eb4lzZ1GYmGS5/IgRI1iyZAmzZ8+mRo0a3L9/n6tXrwKv35xXrVqV06dP8+jRI7p3707fvn3VD0AAAQEB2NraEhAQQEhICJ6enjg7O9OjRw86dOjAlClTCA0NpVixYgBcunSJCxcusHHjRgDmzp3LzJkzWbRoES4uLixbtozmzZtz6dIlHB0ds30OPD09uXjxIrt372bfvn0AWFqm3cIjJ8YHqhmL8ePHU6JECR49esTAgQPx8vJi586d2bJ77NixTJs2jenTpzN//nw6dOjArVu3yJ07N/fv38fDw4MePXowa9YsYmNj8fb2pk2bNhw4cCBb/fj4+DB58mRmz56Nrq4uSqWSQoUKsX79eqytrTl27Bg9e/bE1taWNm3aZLndV69eMWPGDFasWIGOjg4dO3ZkyJAhrFq1CoAlS5bg4+PDb7/9houLC0FBQfTo0QNTU1M6d+7MqVOnqFy5Mvv27aNMmTIYGBiQK1cu8uTJw8GDB/nuu+84dOgQefLk4dChQ+p+AwMD8fDwAODu3bs0adIELy8v/vzzT65evUqPHj0wMjLSEJDLly+nV69eHD16NM3LBiEEAwYMYOvWrRw5ciTDz+CRI0cwMTGhVKlSWT5HGSHvw/e/DwEqV67MtGnTsm1rjiG0zO+//y7s7OyEgYGBcHV1FQcPHlTnde7cWXh4eGRY18fHRzg5OWWrv8jISAGIyMjId7Q451EmKcXdccfEbe9DIvb6M63YEP4kWpQevUvYeW8Xvx24oRUbvmTik+LFon8XiQorKoiy/mWF85/OYt65eSI2MVbbpn3ZJCcLcfecEIHThFhSTwhfKyF8LF7/TCwoxNoOQpxdLkTkXW1bK/mEiY2NFZcvXxaxsa/v2eSYGHG5RMmP/pMcE5Nlu6OiooShoaFYsmRJuvmLFy8WuXLlEtHR0eq0HTt2CB0dHfHgwQMhhOp/sZ2dnUhKSlKX+eGHH4Snp6f6uHz58mLcuHHq4xEjRohKlSqpjwsUKCAmTpyo0XelSpVE7969hRBChIWFCUAEBQUJIYTw8/MTlpaWGuW3bNkiUj+2ZPQMAIgtW7bk6Pje5NSpUwIQL1++FEIIERAQIADx/PnzDOsAYtSoUerj6OhooVAoxK5du4QQQowePVo0aNBAo87t27cFIK5duyaEEMLOzk7Mnj1bo4yTk5Pw8fHR6GfAgAEZ2pFC7969xXfffac+7ty5s2jRokWG5f38/AQgQkJC1Gm///67sLGxUR8XLlxYrF69WqPe+PHjhZubmxAi7XVOoXXr1qJv375CCCEGDBggBg8eLKytrcWlS5dEYmKiMDMzU5+nkSNHihIlSgilUqlhh5mZmUhOThZCCOHh4SGcnZ3TjAEQGzZsEB07dhQlS5YUt2/fzuwUidmzZ4uiRYtmmJ+V6y6EvA9z8j7866+/hI6OjvpaZ5X0vsNTyI420Prr1N69e9O7d+9081Kr0PTw9fXVeLvwuRIf9p+bnol23PSSkpUMWBdMTEIyle1z87NHsY9uw5fMyfsnmXBiAuFR4QBUyV+FX6v+ioOlg3YN+1KJfQ6hAa9nlWLecKfJV1o1o1S8PhSuAnrv5vcukSiMjSlx7qxW+s0qV65cIT4+nrp162aY7+TkhKnp6021q1evjlKp5Nq1a+o1x2XKlEFX9/UG6La2tly4cEF93KFDB5YtW8bo0aMRQrBmzRoGDBgAqKLZ3rt3j+rVq2v0Xb16df79998sj+VdyKnxBQUF4evrS3BwMM+ePUOpVEXHjIiIoHTprLu1ly9fXv23qakp5ubmape/s2fPEhAQgJmZWZp6oaGh2QqMVbFixTRp//vf//jjjz+4desWsbGxJCQkZDtAg4mJiXo2A1TnKcX+x48fc/v2bbp166YxQ5CUlJTuLERqatWqxeLFiwGVG9748eMJCwvj4MGDREZGEhsbq/78XLlyBTc3N41AYtWrVyc6Opo7d+5QpEiRDM8BwMCBAzE0NOTEiRNYW2e+pjw2NhYjo/cPkCXvw5wZH4CxsTFKpZL4+HiMs/FdmFNoXThJtO+mN/9ACEERLzA30mOWpxO6MvR4jvAk9gnTT09nZ5jKlSOPUR6GVhpKE4cm6UaOlLwjQsCDC6qgDjf2wu1TIJJf5+ubQtFar13wLAtpzVTJl4VCociWy5w2eNuDhcggki1oRr19M7iAQqFQiweA9u3bM3z4cM6dO0dsbCy3b9/WiEL2Zntv61tHRyeNe1XqtQ5ZJSfGFxMTQ4MGDWjQoAErV64kb968RERE0LBhQxISsrdnWmb9KJVKmjVrxtSpU9PUs7W1BbJ+XlI/oAKsX7+egQMHMnPmTNzc3DA3N2f69OmcPHnyve1PsSdlHEuWLEmz7jz1w3B61KpVi/79+xMSEsLFixepWbMmoaGhHDx4kBcvXlChQgXMzc2B9K9pig2p0988BynUr1+fNWvWsGfPHjp06JCpXdbW1jx//jzTMllB3oc5Mz6AZ8+eYWJiohXRBFI4aR2RLIi9+BTQTjS9s7eeMf/ADQAmtCxLoVyf9kPA50CyMpn119cz/9x8Xia+RIGCtiXb0telLxYGFto278sgLhJuBqpChYfsh5eai5OxLvFaKBVxA73PY0sCiSSncXR0xNjYmP3799O9e/c0+aVLl2b58uXExMSoHzSPHj2Kjo5OtmY4ChUqhLu7O6tWrSI2NpZ69eqp3yJbWFhQoEABjhw5grv76/Wcx44do3Llyum2lzdvXl6+fKlh15sL+A0MDEhOTk6nds6O7+rVqzx58oQpU6ao94E8c+ZMlupmB1dXVzZt2oS9vX2Ge1XmzZtXIxhDVFQUYWFhb2378OHDVKtWTcPDJzQ09P2NToWNjQ0FCxbk5s2bGQqSlMh2b163smXLkidPHiZMmICTkxMWFhZ4eHgwefJknj9/rl7fBKprumnTJo2H8WPHjmFubk7BggXfamfz5s1p1qwZ7du3R1dXN42wSI2LiwsPHjzg+fPn7xVaW96HOTM+gIsXL+Lq6pqtOjmJ1qLqSVTEh0WijElUuekVy3wqO6d5GZfIgHXBKAW0dC5AC+e3f+FIMufSk0u039meSScn8TLxJWXylGHNt2sYWWWkFE3vgxDw8BIcmQ1+TWFaUVjfCYJWqkSTvgl80xiazoT+56HvKWg4UTXTJEWT5CvGyMgIb29vhg0bxp9//kloaCgnTpxg6dKlgMq1x8jIiM6dO3Px4kUCAgLo168fP/74Y7pbg2RGhw4dWLt2LRs2bKBjx44aeUOHDmXq1KmsW7eOa9euMXz4cIKDg+nfv3+6bVWpUgUTExNGjhxJSEgIq1evTuO+b29vT1hYGMHBwTx58oT4+Ph0bXrf8RUpUgQDAwPmz5/PzZs32bZtG+PHj8/aSckGffr04dmzZ7Rr145Tp05x8+ZN/vnnH7p27ap+MK1Tpw4rVqzg8OHDXLx4kc6dO791NgegePHinDlzhj179nD9+nVGjx7N6dOnc3wMvr6+TJ48mblz53L9+nUuXLiAn58fs2bNAlRBvYyNjdm9ezcPHz4kMjISUM0suLu7s3LlSmrVqgWo3BoTEhLYv3+/Og1USzxu375Nv379uHr1Kn/99Rc+Pj4MGjQoy3v7tGrVihUrVtClSxd14IT0cHFxIW/evBw9elQj/cGDBwQHBxMSEgKgjvr87Nmz9JqR92EOju/w4cM0aNAgW3VylGytrPoC+NSCQzzbfF3c9j4knm649tH7HrQuWNh5bxfVJu8XkbEJH73/L4nI+Egx4fgEUc6/nCjrX1a4rXITa66sEUnJSW+vLEmfuCghLv8txF/9hJhZSjOog4+FEPMqCLFruBAh+4VIkEE2JB+WzBYWf+okJyeLCRMmCDs7O6Gvry+KFCkiJk2apM4/f/68qF27tjAyMhK5c+cWPXr0UAc9ECL9oAH9+/dPE7zp+fPnwtDQUJiYmGjUT7Fh7NixomDBgkJfX184OTmpF/sLkX7QgC1btojixYsLIyMj8e2334rFixdrLEqPi4sT3333nbCyshKA8PPzE0JoLkrPqfGtXr1a2NvbC0NDQ+Hm5ia2bdumYW9Wg0OktksIISwtLdV2CyHE9evXRatWrYSVlZUwNjYWJUuWFAMGDFAHQoiMjBRt2rQRFhYWonDhwsLf3z/d4BBv9hMXFye8vLyEpaWlsLKyEr169RLDhw/XWNSfleAQbwsUIIQQq1atEs7OzsLAwEDkypVLuLu7i82bN6vzlyxZIgoXLix0dHQ0zvH8+fMFILZv365Oa9GihdDV1U3zzBYYGCgqVaokDAwMRP78+YW3t7dITExU53t4eIj+/funGcOb52bdunXCyMhIbNq0KcNxDx8+XLRt21YjzcfHRwBpflJfyzeR9+H7j+/OnTtCX1//rUE90iOngkMohMjmhhCfOVFRUVhaWhIZGYmFhXZnAIRScH/SSZTRiVh3LYvRNx9vp/Pt5+/Rd3UQOgpY95Mblexzf7S+vySEEOwI28GM0zN4GqdyuWxatClDKg7B2lh7Gxl/lggBj6/95363F24dB2UqX2o9I9W+SI4NoHg9yC2Da0g+HnFxcYSFheHg4JAji8UlEsnnwcOHDylTpgxnz57Fzs5O2+Z81QwdOpTIyEh1IJHskNl3eHa0gVzjpEXiwyJRRn98N717L2IZuVkVpaRP7eJSNL0jNyNvMunEJE4+UC2utbewZ1TVUVSx/bw3Y/6oJMRA2CGVWLqxFyJva+bnclAJJccGYF8d9LWzGFQikUgkXyc2NjYsXbqUiIgIKZy0TL58+RgyZIhWbZDCSYvEX1dFajEqnQeF7sdZbpasFAxaH0xUXBJOha34pW72Nzz72olNimXJ+SX4XfIjSZmEoa4hP5X/ic5lOmOgK0NbZ4oQ8DTktVC6dRSSU0Wl0jUE+xr/iaX6kEeGxpdIJBKJdmnRooW2TZCgmnHSNlI4aRGLRvYYlcmDjuHbF3bmFEsO3+TEzWeYGOgyx9MZ/Y8k2L4UDt05xKSTk7gbfRcA90LujKg8gkLmMsR1hiS8gvDDKqF04x94cUsz36pIqlmlmmAgIztKJBKJRCL59JDCSYsoFAoMi3y8dVYX70Yy859rAPg0K42Ddfp7HEjS8iDmAVNOTWF/xH4AbExsGFF5BHWK1JF7MqXH09DXQin8CCSnirKjawB21f5bq1QfrB1BnkOJRCKRSCSfOFI4fSXEJiTzy9ogEpMFjcrkp03Fwto26bMgUZnIqsurWPDvAmKTYtFV6PJj6R/p5dQLE305M6ImMRbCj74O7PDspma+ZWGV613x+qoAD4Zm2rFTIpFIJBKJ5B2RwukrYcKOy9x8HIONhSGTW5eTsyRZIOhREOOOjyPkhWqfBpd8LoyqOopvcmVvs7YvlmdhELJPJZbCDkNS7Os8HT3VxrMpa5XylpSzShKJRCKRSD5rpHD6Cth3+SGrTkYAMPMHZ3KZygAGmfE87jmzzs5ia8hWAKwMrRhUYRAtirdAR/EVrwlLilcFc7ixV/Xz9IZmvnkBlUhyrA8OHmAkN/yVSCQSiUTy5SCF0xfOo5dxDNt0HoAeNR2o4Sj3FsoIpVCy5cYWZp+bTWS8ajfz7xy/Y4DrAKyMrLRrnLZ4EfFaKIUdhMRXr/MUuv/NKtVTzSzlKy1nlSQSiUQikXyxfMWvz798hBAM3XCeZzEJlLK1YEjDEto26ZPl2rNrdNrVCd/jvkTGR/JNrm9Y0XgFvtV8vy7RlJQANw/Cnl/h9yowpxzsGATXd6lEk1l+cOkIbf4E7zDosgNqDASbMlI0SSSSdyY8PByFQkFwcPB7t6VQKNi6det7t5MdAgMDUSgUvHjx4qP2m5N4eXnRsmVLbZvxQXnXz4a7uzurV6/OeYM+MT7n+/D7779n1qxZH7wfOeP0BbP8WDgHrz/GUE+HuW2dMdT7eGHPPxdiEmP4Pfh3Vl9ZTbJIxkTPhD7OfWhfqj16Ol/J7RF5RzWjFLIPbgZCQvTrPIUOFK4Cxf+bVcpfTgokiUTySeDr68vWrVvTPOTdv3+fXLlyaccoSaaEh4fj4OBAUFAQzs7O2jYnS2zfvp0HDx7Qtm1bddpPP/3Evn37uHfvHmZmZlSrVo2pU6dSsmRJLVqqHT6V+3DMmDHUrl2b7t27Y2Hx4ZYKfCVPhl8f1x++ZNKuqwCMbFKKb2zMtWzRp4UQgr239jL19FQevXoEQH27+gyrNIz8pvm1bN0HJjkRbp/8bxPaffDokma+ab7/hFJ9KFYbjOUDiEQi+XzIn/8L/w7PJomJiejr62vbDK2SkJCAgcG7re+eN28eXbp0QUfntZNWhQoV6NChA0WKFOHZs2f4+vrSoEEDwsLC0NWVL6nh49+H5cuXx97enlWrVtGrV68P1o901fsCiU9K5pc1QSQkKaldIi+d3Oy0bdInxe2o2/Ta34vBBwfz6NUjCpkVYkHdBcyqNevLFU3JiXD9H9jUHaYVBf+mcHTuf6JJAYUqQ+1R0DMQBl+DVguhbGspmiSSLwClUsnUqVMpXrw4hoaGFClShIkTJ6rzL1y4QJ06dTA2NiZPnjz07NmT6OjXM88pLlwzZszA1taWPHny0KdPHxITEwEYMWIEVatWTdNv+fLl8fHxUdswbtw4ChUqhKGhIc7OzuzevTtDm/39/bGystJI27p1qzoirL+/P2PHjuXff/9FoVCgUCjw9/cH0roIve/4AFauXEnFihUxNzcnf/78tG/fnkePHr3lzGuiUCj4448/aNWqFSYmJjg6OrJt2zaNMpcvX6ZJkyaYmZlhY2PDjz/+yJMnT9T59vb2zJkzR6OOs7Mzvr6+Gv3873//o0WLFpiamjJhwgSSk5Pp1q0bDg4OGBsbU6JECebOnZst+1OuyZ49eyhVqhRmZmY0atSI+/fva5Tz8/OjVKlSGBkZUbJkSRYsWKDOc3BwAMDFxQWFQkGtWrW4cOECOjo66nE+f/4cHR0dfvjhB3W9yZMn4+bmpj4+ePAglStXxtDQEFtbW4YPH05SUpI6v1atWvTt25dBgwZhbW1N/fr10x3TuHHjsLGxydA17cmTJ+zbt4/mzZtrpPfs2RN3d3fs7e1xdXVlwoQJ3L59m/Dw8AzPn7wP3/8+XLBgAY6OjhgZGWFjY8P333+vYVvz5s1Zs2ZNhuPJEcRXRmRkpABEZGSktk35YIz/+5Kw894uXMf9Ix5FxWnbnE+G+KR4sTB4oaiwooIo619WuPzpIuafmy9iE2O1bdqHQakU4vZpIXYMEWJqUSF8LF7/THUQYlMPIc5vECLmqbYtlUg+eWJjY8Xly5dFbOzr7wulUikS4pI++o9SqcyW7cOGDRO5cuUS/v7+IiQkRBw+fFgsWbJECCFETEyMKFCggGjdurW4cOGC2L9/v3BwcBCdO3dW1+/cubOwsLAQP//8s7hy5Yr4+++/hYmJiVi8eLEQQogLFy4IQISEhKjrXLx4UQDi2rVrQgghZs2aJSwsLMSaNWvE1atXxbBhw4S+vr64fv26EEKIsLAwAYigoCAhhBB+fn7C0tJSYxxbtmwRKY8tr169EoMHDxZlypQR9+/fF/fv3xevXr0SQggBiC1btuTY+IQQYunSpWLnzp0iNDRUHD9+XFStWlU0btxYnR8QECAA8fz58wyvAyAKFSokVq9eLW7cuCF++eUXYWZmJp4+VX0H37t3T1hbW4sRI0aIK1euiHPnzon69euL2rVrq9uws7MTs2fP1mjXyclJ+Pj4aPSTL18+sXTpUhEaGirCw8NFQkKCGDNmjDh16pS4efOmWLlypTAxMRHr1q3TOA8tWrTI0H4/Pz+hr68v6tWrJ06fPi3Onj0rSpUqJdq3b68us3jxYmFrays2bdokbt68KTZt2iRy584t/P39hRBCnDp1SgBi37594v79++Lp06dCqVQKa2trsXHjRiGEEFu3bhXW1tYiX7586nYbNGggvL29hRBC3LlzR5iYmIjevXuLK1euiC1btghra2uNc+Dh4SHMzMzE0KFDxdWrV8WVK1fU52bLli1CqVSKX375RRQpUkT9GUyPLVu2CFNTU5GcnJxhmejoaDFgwADh4OAg4uPjMywn78P3G9/p06eFrq6uWL16tQgPDxfnzp0Tc+fO1bBt586dwtDQUMTFpX32Te87PIXsaAMpnL4wDl1/JOy8tws77+1i3+UH2jbnk+HY3WOi6eamoqx/WVHWv6zotqebCHsRpm2zPgxPQoQ4MEmIuc5viKWiQuwYKkTESSEy+ScgkUjSkt4/3YS4JPHbT/s/+k9CXFKW7Y6KihKGhobqB7Q3Wbx4sciVK5eIjo5Wp+3YsUPo6OiIBw9U/0M6d+4s7OzsRFLS635/+OEH4enpqT4uX768GDdunPp4xIgRolKlSurjAgUKiIkTJ2r0XalSJdG7d28hRPYf2IQQwsfHRzg5OaUZU+oHtpwa35ukCICXL18KIbIunEaNGqU+jo6OFgqFQuzatUsIIcTo0aNFgwYNNOrcvn1b48E3q8JpwIABGdqRQu/evcV3332nPs6KcHrzwfz3338XNjY26uPChQuL1atXa9QbP368cHNzE0Kkvc4ptG7dWvTt21cIIcSAAQPE4MGDhbW1tbh06ZJITEwUZmZm6vM0cuRIUaJECY0XCL///rswMzNTCxwPDw/h7OycZgyA2LBhg+jYsaMoWbKkuH37dmanSMyePVsULVo03bzff/9dmJqaCkCULFlS47y8ibwP3398mzZtEhYWFiIqKipNXyn8+++/AhDh4eFp8nJKOElXvS+I5zEJDF7/LwAdqxahbikbLVukfR6/esywg8Poubcnt6JuYW1szTT3aSypvwR7S3ttm5dzRD+Gk4tgSR2Y7woHp8Czm6BvAuXaQIeNMPgqNJkGhSuDjrz1JZKvgStXrhAfH0/dunUzzHdycsLU1FSdVr16dZRKJdeuXVOnlSlTRmPthq2trYarWocOHVi1ahWgWkO6Zs0aOnToAEBUVBT37t2jevXqGn1Xr16dK1euvP8gMyGnxhcUFESLFi2ws7PD3NycWrVqARAREZEte8qXL6/+29TUFHNzc3U/Z8+eJSAgADMzM/VPSrCB0NDQbPVTsWLFNGn/+9//qFixInnz5sXMzIwlS5Zk234TExOKFSumPk59nh4/fszt27fp1q2bxhgmTJjwVvtr1apFYGAgoHLDq127Nu7u7hw8eJDTp08TGxur/vxcuXIFNzc3tbsYqK5pdHQ0d+7cyfQcAAwcOJDjx49z+PBhChUqlKldsbGxGBkZpZvXoUMHgoKCOHjwII6OjrRp04a4uLh0y8r78P3HV79+fezs7ChatCg//vgjq1at4tWrVFukAMbGxgBp0nMSGRziC0EIwfDN53n0Mp5ieU35tUlpbZukVZKVyay9tpbfgn4jOjEaHYUObUu0pa9LX8wNvpBAGQkxcHUHnF8PoQdAJKvSFTpQrA6U94QSTcDQTLt2SiRfKHoGOvSc66GVfrNKyoNERgghNB5AU5M6/c3gAgqFAqVSqT5u3749w4cP59y5c8TGxnL79m2NKGRvtve2vnV0dFC9tH5N6rUOWSUnxhcTE0ODBg1o0KABK1euJG/evERERNCwYUMSEhKyZU9m/SiVSpo1a8bUqVPT1LO1tQWyfl5SP6ACrF+/noEDBzJz5kzc3NwwNzdn+vTpnDx58r3tT7EnZRxLliyhSpUqGuXeFjChVq1a9O/fn5CQEC5evEjNmjUJDQ3l4MGDvHjxggoVKmBurvrfnd41TbEhdfqb5yCF+vXrs2bNGvbs2aMWFRlhbW3N8+fP082ztLTE0tISR0dHqlatSq5cudiyZQvt2rVLU1beh+8/PnNzc86dO0dgYCD//PMPY8aMwdfXl9OnT6vXYT179gyAvHnzZtvGrCKF0xfC+jO32XPpIfq6Cua2dcHY4OuN6nLh8QXGnxjPlWeqNyhl85RllNsoyuQpo2XLcoDkJFXI8Avr4cp2SIx5nVfAVSWWyrYGs3xaM1Ei+VpQKBToG37a37WOjo4YGxuzf/9+unfvnia/dOnSLF++nJiYGPWD5tGjR9HR0eGbb77Jcj+FChXC3d2dVatWERsbS7169bCxUXk9WFhYUKBAAY4cOYK7u7u6zrFjx6hcuXK67eXNm5eXL19q2PXmAn4DAwOSk5MztSsnxnf16lWePHnClClTKFy4MABnzpzJUt3s4OrqyqZNm7C3t0dPL/3Hs7x582oEY4iKiiIsLOytbR8+fJhq1arRu3dvdVp2Z7Heho2NDQULFuTmzZsZCpKUyHZvXreyZcuSJ08eJkyYgJOTExYWFnh4eDB58mSeP3+Oh8frFxSlS5dm06ZNGg/jx44dw9zcnIIFC77VzubNm9OsWTPat2+Prq5uGmGRGhcXFx48eMDz58/fGlpbCEF8fHy6efI+zJnx6enpUa9ePerVq4ePjw9WVlYcOHCA1q1bA3Dx4kUKFSqEtbV1ltvMLtJf5wsg7EkMvtsuAzCkQQnKFrTUskXaITI+kvHHx9NhZweuPLuCub45o6qMYmWTlZ+3aBIC7p6FXd4wqySs+g7Or1OJplz24OENfc9CzwCo+rMUTRKJRI2RkRHe3t4MGzaMP//8k9DQUE6cOMHSpUsBlWuPkZERnTt35uLFiwQEBNCvXz9+/PFH9QNXVunQoQNr165lw4YNdOzYUSNv6NChTJ06lXXr1nHt2jWGDx9OcHAw/fv3T7etKlWqYGJiwsiRIwkJCWH16tXqaF0p2NvbExYWRnBwME+ePEn3oTUnxlekSBEMDAyYP38+N2/eZNu2bYwfPz5rJyUb9OnTh2fPntGuXTtOnTrFzZs3+eeff+jatav6wbROnTqsWLGCw4cPc/HiRTp37pyl8NfFixfnzJkz7Nmzh+vXrzN69GhOnz6d42Pw9fVl8uTJzJ07l+vXr3PhwgX8/PzUG5Pmy5cPY2Njdu/ezcOHD4mMjARULyHc3d1ZuXKl2g2yfPnyJCQksH//fnUaQO/evbl9+zb9+vXj6tWr/PXXX/j4+DBo0CCNkOGZ0apVK1asWEGXLl3YuHFjhuVcXFzImzcvR48eVafdvHmTyZMnc/bsWSIiIjh+/Dht2rTB2NiYJk2apNuOvA/ff3zbt29n3rx5BAcHc+vWLf7880+USiUlSpRQlzl8+DANGjTIUnvvzFtXQX1hfGnBIRKSkkXz+YeFnfd20XbRcZGcnL1oS18CSqVSbAvZJtzXuquDP4w4NEI8fvVY26a9H09DhQiYIsQ817QR8bYPFiLilCpynkQi+eBktrD4Uyc5OVlMmDBB2NnZCX19fVGkSBExadIkdf758+dF7dq1hZGRkcidO7fo0aOHOuiBEOkHDejfv7/w8PDQSHv+/LkwNDQUJiYmGvVTbBg7dqwoWLCg0NfXF05OTurF/kKkHzRgy5Ytonjx4sLIyEh8++23YvHixRqL0uPi4sR3330nrKysBCD8/PyEEJqL0nNqfKtXrxb29vbC0NBQuLm5iW3btmnYm9XgEKntEkIIS0tLtd1CCHH9+nXRqlUrYWVlJYyNjUXJkiXFgAED1IEQIiMjRZs2bYSFhYUoXLiw8Pf3Tzc4xJv9xMXFCS8vL2FpaSmsrKxEr169xPDhwzUW9WclOMTbAgUIIcSqVauEs7OzMDAwELly5RLu7u5i8+bN6vwlS5aIwoULCx0dHY1zPH/+fAGI7du3q9NatGghdHV10zyzBQYGikqVKgkDAwORP39+4e3tLRITE9X5Hh4eon///mnG8Oa5WbdunTAyMhKbNm3KcNzDhw8Xbdu2VR/fvXtXNG7cWOTLl0/o6+uLQoUKifbt24urV69m2IYQ8j583/EdPnxYeHh4iFy5cgljY2NRvnx5jaiQsbGxwsLCQhw/fjzNuU/Jz4ngEIr/BvfVEBUVhaWlJZGRkR90Z+GPxYw91/gtIARLY3129a9JAavM/Wi/NG6+uMmEkxM4/UD15szB0oHRVUdTKX8lLVv2jsQ8gUtbVDNKd1K9DdQzhpJNoXwb1fol3a97M0OJ5GMTFxdHWFgYDg4OGS4Wl0gkXx4PHz6kTJkynD17Fjs7uS/mp8rvv//OX3/9xT///JNufmbf4dnRBnKN02fMqbBn/B4YAsCkVuW+KtEUmxTL4vOL8b/kT5IyCSNdI35y+onOpTuj/7mJioRXcG3nf0Ee9oPyv038FDpQtJZq3VLJpmD4hQS1kEgkEonkM8HGxoalS5cSEREhhdMnjL6+PvPnz//g/Ujh9JkSGZvIwHXBCAHfVyhE0/K22jbpoxH8KJjhh4dzN/ouAB6FPBheeTiFzDMPK/pJkZwEYQfhwga48jckvN49G1vn10EezPNrzUSJRCKRSCTQokULbZsgeQs9e/b8KP1I4fSZMuavi9x9EUuR3Cb4Nv+MAx9kA6VQsuziMn4L+o1kkUx+0/wMrzycOoXrZBjm8pNCCLgfDOc3wMWNEP3wdZ6VncoNr1wbyJv1CDMSiUQikUgkko+DFE6fIVuD7vJX8D10dRTM9nTGzPDLv4yPXz1mxJERnLyv2nOisX1jRruN/jz2ZHoerhJLF9bDk+uv041zQ5lWqtmlwpXhcxB/EolEIpFIJF8pX/4T9xfG7WevGL31IgD96hSngl3m+wp8CRy+c5hRR0fxLO4ZxnrGjKg8gpbFW37as0yvnsGlzap1S7dTbTCoZ6TalLZ8GyhWF/QMtGejRCKRSCQSiSTLSOH0GZGsFAxaH8zL+CRci1jRt3ZxbZv0QUlMTmTOuTn8eflPAL7J9Q3T3adT1Kqoli3LgMRYuLZLJZZC9r4O8oACinqo3PBKNQOjzz+ao0QikUgkEsnXhhROnxELA0M4Hf4cM0M95ni6oKf75e5ffCvqFsMODePyU9XGvu1LtmdQxUEY6hpq2bI3UCZD2CFVkIfL2yDh5eu8/OVVM0tlvwOLAtqzUSKRSCQSiUTy3kjh9JkQfPsFc/bdAGBs8zIUyWOiZYs+HH+H/s2EExN4lfQKS0NLxlUbR50idbRt1muEgAfnVTNLFzZC9IPXeZZFoPwPqtmlfCW1Z6NEIpFIJBKJJEeRwukzICY+iQFrg0hSCpqWt6W1a0Ftm/RBiEmMYdLJSWwL3QZABZsKTKk5hfymn0hI7ue3VDNLFzbA46uv042sUgV5qAI6X+5MoEQikUgkEsnXihROnwHjt18m/OkrbC2NmNSy3KcdFOEdufz0MsMODeNW1C10FDr87PQzPcv1RFdHV7uGvXoGl7eqZpcijr9O1zWEEo1UYql4PdD7xFwIJRKJ5D+EEPz0009s3LiR58+fExQUhLOzs7bN+qrx8vLixYsXbN26VdumaIXw8HAcHByy9VmsVasWzs7OzJkz54PaJpFkhnw1/omz++ID1p6+jUIBs9o4Y2mir22TchQhBCsur6DDzg7cirqFjYkNyxouo5dTL+2JpsQ4uLQV1rSHGd/A9oH/iSYFOLhD899g6A1o8yeUbCpFk0Qi+aTZvXs3/v7+bN++nfv371O2bFltm5RlmjVrRr169dLNO378OAqFgnPnzqnTNm3aRJ06dciVKxcmJiaUKFGCrl27EhQUpFE3ISGB6dOn4+rqiqmpKZaWljg5OTFq1Cju3bunLnfo0CGaNWtGgQIFUCgUGQqdK1eu0Lx5cywtLTE3N6dq1apERES8/wmQSCSfFFoXTgsWLMDBwQEjIyMqVKjA4cOHMyx75MgRqlevTp48eTA2NqZkyZLMnj37I1r7cXkYFcfwzecB+Mm9GG7F8mjZopzlWdwz+uzvw7TT00hSJlGncB02Nd9EBZsKH98YpVIV5OGvPjDDETZ0hms7QJkINuWg/ngYeAk6/w2uP4KR5ce3USKRSN6B0NBQbG1tqVatGvnz50dPL62zSUJCghYsezvdunXjwIED3Lp1K03esmXLcHZ2xtXVFQBvb288PT1xdnZm27ZtXLp0icWLF1OsWDFGjhyprhcfH0/9+vWZNGkSXl5eHDp0iLNnzzJt2jSePn3K/Pnz1WVjYmJwcnLit99+y9DG0NBQatSoQcmSJQkMDOTff/9l9OjRGBkZ5eCZkEgknwRCi6xdu1bo6+uLJUuWiMuXL4v+/fsLU1NTcevWrXTLnzt3TqxevVpcvHhRhIWFiRUrVggTExOxaNGiLPcZGRkpABEZGZlTw/ggJCcrRYclJ4Sd93bRdN4hEZ+YrG2TcpQT906I2utqi7L+ZYXrn65izZU1QqlUfnxD7l8QYs8oIWaUFMLH4vXPzNJC7PUR4sGlj2+TRCL55IiNjRWXL18WsbGx6jSlUikSYmM/+k92vis7d+4sAPWPnZ2dEEIIDw8P0adPHzFw4ECRJ08e4e7uLoQQIjAwUFSqVEkYGBiI/PnzC29vb5GYmCiEECIsLEyjrZQfDw8PdX9Hjx4VNWvWFEZGRqJQoUKiX79+Ijo6Wp1vZ2cnJk6cKLp06SLMzMxE4cKFM/0fnpiYKGxsbISvr69GekxMjDA3Nxfz588XQghx/PhxAYi5c+em207qczZ58mSho6Mjzp0799ayqQHEli1b0qR7enqKjh07ZjiG9OjcubNo0aKF8PX1FXnz5hXm5uaiZ8+eIj4+Xl1m165donr16sLS0lLkzp1bNG3aVISEhKjz4+PjRZ8+fUT+/PmFoaGhsLOzE5MmTVLnv3jxQvTo0UPdfu3atUVwcHCGNqVc33Xr1okaNWoIIyMjUbFiRXHt2jVx6tQpUaFCBWFqaioaNmwoHj16pK6XnJwsxo4dKwoWLCgMDAyEk5OT2LVrl0bbJ0+eFM7OzsLQ0FBUqFBBbN68WQAiKChIXebSpUuicePGwtTUVOTLl0907NhRPH78WJ3v4eEh+vfvn63zLJGkkN53eArZ0QZaXeM0a9YsunXrRvfu3QGYM2cOe/bsYeHChUyePDlNeRcXF1xcXNTH9vb2bN68mcOHD9OzZ8+PZvfHYNnRMI6EPMFIX4c5ni4Y6Gl9cjBHSFQmsjB4IX9c+AOBoKhlUaa5T6NE7hIfz4gXt+HiRtW6pUeXX6cbWULplqp1S0XcZJAHiUSSKUnx8czr/P1H7/eX5RvRz+Jsxty5cylWrBiLFy/m9OnT6Oq+doFevnw5vXr14ujRowghuHv3Lk2aNMHLy4s///yTq1ev0qNHD4yMjPD19aVw4cLcv39fXf/BgwfUq1cPd3d3AC5cuEDDhg0ZP348S5cu5fHjx/Tt25e+ffvi5+enrjdz5kzGjx/PyJEj2bhxI7169cLd3Z2SJdNGItXT06NTp074+/szZswY9RrfDRs2kJCQQIcOHQBYs2YNZmZm9O7dO93zkHpt8Jo1a6hfv77G80RGZd+GUqlkx44dDBs2jIYNGxIUFISDgwMjRoygZcuWmdbdv38/RkZGBAQEEB4eTpcuXbC2tmbixImAarZr0KBBlCtXjpiYGMaMGUOrVq0IDg5GR0eHefPmsW3bNtavX0+RIkW4ffs2t2/fBlRu8E2bNiV37tzs3LkTS0tLFi1aRN26dbl+/Tq5c+fO0C4fHx/mzJlDkSJF6Nq1K+3atcPCwoK5c+diYmJCmzZtGDNmDAsXLgRUn7GZM2eyaNEiXFxcWLZsGc2bN+fSpUs4OjoSExPDt99+S506dVi5ciVhYWH0799fo8/79+/j4eFBjx49mDVrFrGxsXh7e9OmTRsOHDiQ5eshkXxotCacEhISOHv2LMOHD9dIb9CgAceOHctSG0FBQRw7dowJEyZkWCY+Pp74+Hj1cVRU1LsZ/BG5fC+KabuvATCqaWmK5zPTskU5w93ou3gf8ubfx/8C8J3jdwyrNAwT/Y8QWj32OVz+C85vgFtHXqfrGsA3DVViybGBXK8kkUi+KFLW3Ojq6pI/v2aE0uLFizNt2jT18a+//krhwoX57bffUCgUlCxZknv37uHt7c2YMWM02oiLi6Nly5a4ubnh6+sLwPTp02nfvj0DBgwAwNHRkXnz5uHh4cHChQvVrmtNmjRRCxxvb29mz55NYGBgusIJoGvXrkyfPp3AwEBq164NqNz0WrduTa5cuQC4fv06RYsW1XBDnDVrFmPGjFEf3717F0tLS65fv06tWrU0+mjVqhV79+4FoHz58ll+Dnn06BHR0dFMmTKFCRMmMHXqVHbv3k3r1q0JCAjAw8Mjw7oGBgYsW7YMExMTypQpw7hx4xg6dCjjx49HR0eH7777TqP80qVLyZcvH5cvX6Zs2bJERETg6OhIjRo1UCgU2NnZqcsGBARw4cIFHj16hKGh6v/ajBkz2Lp1Kxs3bsz0ZfOQIUNo2LAhAP3796ddu3bs37+f6tWrAyr3SX9/f3X5GTNm4O3tTdu2bQGYOnUqAQEBzJkzh99//51Vq1aRnJysMdY7d+7Qq1cvdRsLFy7E1dWVSZMmqdOWLVtG4cKFuX79Ot98883bLoVE8lHQmnB68uQJycnJ2NjYaKTb2Njw4MGDDGqpKFSoEI8fPyYpKQlfX1/1jFV6TJ48mbFjx+aIzR+DuMRkBqwLIiFZSb1S+ehQpYi2TcoR/gn/B99jvrxMfImZvhk+bj40cmj0YTtNiofre+D8OrjxDySn8uG3rwnlfoDSzcE414e1QyKRfJHoGRryy/KNWuk3J6hYsaLG8ZUrV3Bzc9OYcalevTrR0dHcuXOHIkVe/z/q1q0bL1++ZO/evej8Nzt/9uxZQkJCWLVqlbqcEAKlUklYWBilSpUCVMIkBYVCQf78+Xn06FGGdpYsWZJq1aqxbNkyateuTWhoKIcPH+aff/7RKPfmTFHXrl1p3rw5J0+epGPHjgghMiy7YMECYmJimDdvHocOHcrQljdRKpUAtGjRgoEDBwLg7OzMsWPH+N///pepcHJycsLE5PWLQzc3N6Kjo7l9+zZ2dnaEhoYyevRoTpw4wZMnT9R9RUREULZsWby8vKhfvz4lSpSgUaNGfPvttzRo0ABQXYvo6Gjy5NFcGx0bG0toaGimY0p9fVKe0cqVK6eRlnK9oqKiuHfvnlpUpVC9enX+/Vf1kvTKlSvpjjU1Z8+eJSAgADOztC+KQ0NDpXCSfDJoPRz5m19eQoi3TpMfPnyY6OhoTpw4wfDhwylevDjt2rVLt+yIESMYNGiQ+jgqKorChQu/v+EfiCm7rnL9YTTWZoZM/a78Zx96PDYplmmnp7Hxuurhonze8kytOZVC5oU+TIdKJUQcU4mly39BXOTrvHyloXwbKPs9WH26nwGJRPJ5oFAosuwy9yliamqqcZze/98UsZE6fcKECezevZtTp05hbm6uTlcqlfz000/88ssvafpKLbr09TWjwyoUCrUoyIhu3brRt29ffv/9d/z8/LCzs6Nu3brqfEdHR44cOUJiYqK6fSsrK6ysrLhz545GW46Ojly9elUjzdbWFiBTF7b0sLa2Rk9Pj9KlS2uklypViiNHjmRQK3NSznWzZs0oXLgwS5YsoUCBAiiVSsqWLasO5OHq6kpYWBi7du1i3759tGnThnr16rFx40aUSiW2trYEBgamad/KyirT/lNfnxRb3kx783pl9iyXWrBmhFKppFmzZkydOjVNXsq1kUg+BbQmnKytrdHV1U0zu/To0aM0s1Bv4uDgAKjegDx8+BBfX98MhZOhoaF6mvpTJ+DaI/yPhQMw44fy5DH7POzOiBvPbzDs0DBCXoSgQEG3ct3o7dwbfZ0PEFL94WWVWLqwEaJS/ZM0LwDlf4BybSD/5xOCVyKRSD42pUuXZtOmTRoPvceOHcPc3JyCBVUbr2/atIlx48axa9cuihUrplHf1dWVS5cuUbx48Ry3rU2bNvTv35/Vq1ezfPlyevToofGw3q5dO+bPn8+CBQvSrJ95k3bt2jFq1CiCgoIyXOeUVQwMDKhUqRLXrl3TSL9+/bqG61x6/Pvvv8TGxmJsbAzAiRMnMDMzo1ChQjx9+pQrV66waNEiatasCZCuELOwsMDT0xNPT0++//57GjVqxLNnz3B1deXBgwfo6elhb2//XmPMDAsLCwoUKMCRI0fUa91A9bmpXLkyoPpcrVixIs1YU+Pq6sqmTZuwt7dPN+qjRPKpoLVPp4GBARUqVGDv3r20atVKnb53715atGiR5XaEEBprmD5XnkTHM3SDKvS4VzV7apXIp2WL3h0hBBuub2Da6WnEJ8djbWzNpBqTcCvg9vbK2SHy7usgDw8vvk43tIDSLVTrluyqyyAPEolEkgV69+7NnDlz6NevH3379uXatWv4+PgwaNAgdHR0uHjxIp06dcLb25syZcqoX3waGBiQO3duvL29qVq1Kn369KFHjx6Ymppy5coV9u7dqxHi+10wMzPD09OTkSNHEhkZiZeXl0a+m5sbgwcPZvDgwdy6dYvWrVurg1ksXboUhUKhdikcOHAgO3bsoE6dOvj6+lKzZk1y5crF9evX2bVrl0YAjejoaEJCQtTHYWFhBAcHkzt3bvUs2tChQ/H09MTd3Z3atWuze/du/v7773Rne1KTkJBAt27dGDVqFLdu3cLHx4e+ffuio6NDrly5yJMnD4sXL8bW1paIiIg0a8Jnz56Nra0tzs7O6OjosGHDBvLnz4+VlRX16tXDzc2Nli1bMnXqVEqUKMG9e/fYuXMnLVu2TOOm+T4MHToUHx8fihUrhrOzM35+fgQHB6tdNtu3b8+vv/6qHmt4eDgzZszQaKNPnz4sWbKEdu3aMXToUKytrQkJCWHt2rUsWbJE45pIJFolp8L8vQsp4ciXLl0qLl++LAYMGCBMTU1FeHi4EEKI4cOHix9//FFd/rfffhPbtm0T169fF9evXxfLli0TFhYW4tdff81yn59iOHKlUim6+Z8Sdt7bRf1ZgSI2IUnbJr0zL+JeiAEHBoiy/mVFWf+y4ue9P4snr57kbCdhh4X4s6UQPpavw4ePzSPEmvZCXNoqRELaUJMSiUTyPmQWyvZTZ/bs2eow5ClkFNo5s3Dkfn5+bw1HfurUKVG/fn1hZmYmTE1NRfny5cXEiRPV+XZ2dmL27NkafTo5OQkfH5+3juPYsWMCEA0aNMiwzLp160StWrWEpaWl0NfXF4UKFRLt27cXJ06c0CgXFxcnpkyZIpycnISxsbEwNDQUJUuWFAMHDhQRERHqcgEBAemOuXPnzhrtLV26VBQvXlwYGRkJJycnsXXr1kzHkhKOfMyYMSJPnjzCzMxMdO/eXcTFxanL7N27V5QqVUoYGhqK8uXLi8DAQI2Q6IsXLxbOzs7C1NRUWFhYiLp162qEWI+KihL9+vUTBQoUEPr6+qJw4cKiQ4cOGuNLTUo48tQhwlPG//z5c3Wan5+fsLS0VB+nDkeur6+fbjjy48ePCycnJ2FgYCCcnZ3Fpk2b0vR1/fp10apVK2FlZSWMjY1FyZIlxYABA9Th4WU4csn7kFPhyBVCZMH59AOyYMECpk2bpt7NfPbs2erpXi8vL8LDw9VvbebPn8+iRYsICwtDT0+PYsWK0aNHD3766Sf1m6S3ERUVhaWlJZGRkVhYWHyoYWWLlSduMWrrRQx0dfirb3VK2X4admWXcw/P4X3YmwcxD9DT0WOA6wB+LP0jOoocmPERAsIPQ+BUzah4Raqp1i2VbgEm2fNNl0gkkqwSFxdHWFiYesN2iUQikXw+ZPYdnh1toHXh9LH51IRTyKNovp1/mLhEJaOalqJ7zaLaNinbJCuT+ePCHyz4dwFKoaSIeRGmuU+jjHWZ929cCAg7qBJMEf+Fh9U1AJcfofovkMv+/fuQSCSStyCFk0QikXy+5JRwkivwtEhCkpIB64KIS1RSo7g1Xas7aNukbPMw5iEjjozg9IPTAHxb9FtGVR2Fqb7pW2q+BSHgZoBKMN3+bxGprgG4doYaA8Gy4HtaLpFIJBKJRCKRZB0pnLTInH3XuXg3CisTfWa2cUJH5/MKPX7w9kFGHR3Fi/gXGOsZM6rqKJoXa/5+jQoBoftVgunOKVWariFU8IIaA8CiwPuaLZFIJBKJRCKRZBspnLRIC+eCHLj6iAH1vsHG4vNx/UhITmDW2VmsuqKKmFMqdymmuU/D3tL+3RsVAkL2QeAUuHtGlaZnBBW7QrVfwELu4yCRSCQSiUQi0R5SOGmREvnN2d6vBnq6n0+47LDIMIYdGsbVZ6rNAzuW6sjACgMx0DV4twaFgBv/qATTvXOqND1jqNRNJZjMM9/TSyKRSCQSiUQi+RhI4aRlPhfRJITgr9C/mHRyErFJseQyzMWEGhNwL+T+9srpNwjXd8PBqXAvSJWmb/JaMJl9vvtYSSQSiUQikUi+PKRwkryV6IRoxp8Yz86wnQBUzl+ZyTUnk8/kHcSNEHB1h0owPVBt+Iu+KVTuDm79wCxvDloukUgkEolEIpHkDFI4STLl4pOLDDs0jNsvb6Or0KWPcx+6lu2Krk42d/FWKuHqdjg4DR5eUKUZmEHlHirBZJon542XSCQSiUQikUhyCCmcJOmiFEr+vPQnc8/NJUkkYWtqyzT3aTjnc85mQ0q4sg0OTYeHF1VpBuZQpSe49ZWb1kokEolEIpFIPgs+jwU2ko/Kk9gn9N7Xm5lnZ5IkkqhvV58NzTZkTzQplXBxM/yvOmzorBJNhhbgPhQGnIe6Y6Rokkgkko+AEIKePXuSO3duFAoFwcHBWaqnUCjYunUrAOHh4dmq+zGoVasWAwYMyNE2fX19cXZ2zrSMl5cXLVu2zNF+vwQ+xPX4nAgMDEShUPDixYss17G3t2fOnDkfzCZJziOFk0SDY/eO8f227zl67yiGuoaMcRvDTI+ZWBpaZq0BZTJc2AgL3WBjF3h0GQwtwcNbJZjqjJKCSSKRSD4iu3fvxt/fn+3bt3P//n3Kli2rFTtyWnBs3ryZ8ePH51h7H4ty5crRvXv3dPPWrFmDvr4+Dx8+BFSid8mSJbi5uWFhYYGZmRllypShf//+hISEaNSNiopi9OjRlClTBmNjY/LkyUOlSpWYNm0az58/V5fbvHkzDRs2xNraOlMxfPz4cerUqYOpqSlWVlbUqlWL2NjYnDkJEslnihROEgASlYnMOjuLn/b+xNO4pxS3Ks7apmv54ZsfUCiysDGvMhnOb4AFVWFTN3h8FYwsodYIlWCqPRKMc334gUgkEolEg9DQUGxtbalWrRr58+dHT+/T9tJPTEzMUrncuXNjbm7+ga3Jebp168b69et59epVmrxly5bx7bffYmNjgxCC9u3b88svv9CkSRP++ecfzp8/z7x58zA2NmbChAnqes+ePaNq1ar4+fkxZMgQTp48ydGjR/Hx8SE4OJjVq1ery8bExFC9enWmTJmSoY3Hjx+nUaNGNGjQgFOnTnH69Gn69u2Ljo58bJR85YivjMjISAGIyMhIbZvyyRARFSHabW8nyvqXFWX9y4pxx8aJ2MTYrFVOShQieK0Q8yoI4WOh+plcRIjAqULEvviwhkskEslHIjY2Vly+fFnExr7+blQqlSI5Pumj/yiVyizb3blzZwGof+zs7IQQQtjZ2YnZs2drlHVychI+Pj7qY0Bs2bJFCCFEWFiYAERQUJBQKpWiWLFiYvr06Rr1L1y4IBQKhQgJCUljh4+Pj4YdgAgICFC3u27dOuHh4SEMDQ3FsmXLxJMnT0Tbtm1FwYIFhbGxsShbtqxYvXq1RpseHh6if//+6mM7OzsxceJE0aVLF2FmZiYKFy4sFi1apFFn2LBhwtHRURgbGwsHBwcxatQokZCQoGGnk5OT+N///icKFSokjI2Nxffffy+eP3+ucU5btGihPlYqlWLq1KnCwcFBGBkZifLly4sNGzZkcEWEePLkiTAwMBD+/v4a6bdu3RI6Ojri77//FkIIsWbNGgGIv/76K912Un8OfvrpJ2Fqairu3Lnz1rIppL6mb1KlShUxatSoDMeQHh4eHqJPnz6iT58+wtLSUuTOnVv8+uuvGn2vWLFCVKhQQZiZmQkbGxvRrl078fDhQ3X+s2fPRPv27YW1tbUwMjISxYsXF8uWLVPn37lzR7Rp00ZYWVmJ3Llzi+bNm4uwsLAMbQoICBCA2L17t3B2dhZGRkaidu3a4uHDh2Lnzp2iZMmSwtzcXLRt21bExMSo68XFxYl+/fqJvHnzCkNDQ1G9enVx6tQpjbZ37NghHB0dhZGRkahVq5bw8/MTgMZn5ejRo6JmzZrCyMhIFCpUSPTr109ER0er89O7DyUfhvS+w1PIjjb4tF87ST44u8J2Me74OKITozE3MGdstbHUt6v/9orJSXBhgyrow7NQVZpxLnDrA5V/AiOLD2u4RCKRaBmRqOTemGMfvd8C46qhMMhaZNO5c+dSrFgxFi9ezOnTp9HVzWZE1HRQKBR07dpVPbuRwrJly6hZsybFihVLU2fIkCFcuXKFqKgo/Pz8ANWM0b179wDw9vZm5syZ+Pn5YWhoSFxcHBUqVMDb2xsLCwt27NjBjz/+SNGiRalSpUqGts2cOZPx48czcuRINm7cSK9evXB3d6dkyZIAmJub4+/vT4ECBbhw4QI9evTA3NycYcOGqdsICQlh/fr1/P3330RFRdGtWzf69OnDqlWr0u1z1KhRbN68mYULF+Lo6MihQ4fo2LEjefPmxcPDI035PHny0KJFC/z8/OjcubM63c/PDxsbGxo3bgyo3PZKlChB8+bNM7wOAEqlknXr1tGxY0cKFiyYadms8OjRI06ePEmHDh2oVq0aoaGhlCxZkokTJ1KjRo1M6y5fvpxu3bpx8uRJzpw5Q8+ePbGzs6NHjx4AJCQkMH78eEqUKMGjR48YOHAgXl5e7Nyp2u5k9OjRXL58mV27dmFtbU1ISIjaPfDVq1fUrl2bmjVrcujQIfT09JgwYQKNGjXi/PnzGBgYZGiXr68vv/32GyYmJrRp04Y2bdpgaGjI6tWriY6OplWrVsyfPx9vb28Ahg0bxqZNm1i+fDl2dnZMmzaNhg0bEhISQu7cubl9+zatW7fm559/plevXpw5c4bBgwdr9HnhwgUaNmzI+PHjWbp0KY8fP6Zv37707dtXfQ9IPj+kcPpKeZX4iimnprAlZAsALvlcmFJzCgXMCmReMTkRzq+HwzPg2U1VmnFuqNZPFVrc8PNzm5BIJJIvFUtLS8zNzdHV1SV//vw51m6XLl0YM2YMp06donLlyiQmJrJy5UqmT5+ebnkzMzOMjY2Jj49P144BAwbQunVrjbTUoqxfv37s3r2bDRs2ZCqcmjRpQu/evQGVGJs9ezaBgYFq4TRq1Ch1WXt7ewYPHsy6des0hFNcXBzLly+nUKFCAMyfP5+mTZsyc+bMNLbHxMQwa9YsDhw4gJubGwBFixblyJEjLFq0KF3hBNC1a1eaNGnCzZs3KVq0KEII/P398fLyUovb69evU6JEiTTn6Y8//gDAysqKO3fu8PjxY168eJGmbIUKFbh27RoAzZo1Y82aNRmet9TcvKn63+7r68uMGTNwdnbmzz//pG7duly8eBFHR8cM6xYuXJjZs2ejUCgoUaIEFy5cYPbs2Wrh1LVrV3XZokWLMm/ePCpXrkx0dDRmZmZERETg4uJCxYoVAdU1SmHt2rXo6Ojwxx9/qIWgn58fVlZWBAYG0qBBgwztmjBhAtWrVwdUrpIjRowgNDSUokWLAvD9998TEBCAt7c3MTExLFy4EH9/f7WIXbJkCXv37mXp0qUMHTqUhQsXUrRo0TRjnTp1qrrP6dOn0759e3XADEdHR+bNm4eHhwcLFy7EyMgoS9dD8mkhhdNXyLVn1xh6aChhkWEoUNCjfA96OfVCTyeTj0NyIvy7Bg7PhOfhqjSTPFDtF6jUHQzNPortEolE8qmg0NehwLhqWulX29ja2tK0aVOWLVtG5cqV2b59O3Fxcfzwww/v1F7Kg3IKycnJTJkyhXXr1nH37l3i4+OJj4/H1NQ003bKly+v/luhUJA/f34ePXqkTtu4cSNz5swhJCSE6OhokpKSsLDQ9JAoUqSIWjQBuLm5oVQquXbtWhrhdPnyZeLi4qhfX9NTIyEhARcXlwztbNCgAYUKFcLPz4/x48dz4MABwsPD6dKli0a5N2eKfv31V/r27cvmzZuZNGlSpmW3bNlCQkIC3t7e2QrqoFQqAfjpp5/U9ri4uLB//36WLVvG5MmTM6xbtWpVDTvc3NyYOXMmycnJ6OrqEhQUhK+vL8HBwTx79kzdV0REBKVLl6ZXr1589913nDt3jgYNGtCyZUuqVVPdY2fPniUkJCTNura4uDhCQ0MzHVPqz4WNjQ0mJiZq0ZSSdurUKUC1JjAxMVEttAD09fWpXLkyV65cAeDKlSvpjjU1KfamnqkUQqBUKgkLC6NUqVKZ2iz5NJHC6StCCMGaq2uYeWYmCcoE8hnnY3LNyVS2rZxxpaQE+He1SjC9iFClmeb9TzB1A4PM/4lJJBLJl4pCociyy9ynho6ODkIIjbSsBmVIoXv37vz444/Mnj0bPz8/PD09MTExeSd73hREM2fOZPbs2cyZM4dy5cphamrKgAEDqkgoBAAAKG9JREFUSEhIyLQdfX19jWOFQqF+OD9x4gRt27Zl7NixNGzYEEtLS9auXcvMmTMzbTPl4Tg9d7eUtnfs2JHGTc7Q0DDDNnV0dPDy8sLf35+xY8fi5+eHu7u7xmyOo6MjV69e1aiXN29e8ubNS758+TTSrKys0pQtUqQIoHJPzE6IbFtbWwBKly6tkV6qVCkiIiKy3M6bxMTE0KBBAxo0aMDKlSvJmzcvERERNGzYUH1dGzduzK1bt9ixYwf79u2jbt269OnThxkzZqBUKqlQoUK6LpN58+bNtO/UnwuFQpHp5yTlvnjzegsh1Glv3jvpoVQq+emnn/jll1/S5KVcG8nnhxROXwkv4l4w5tgYAm4HAOBRyIPx1ceTyyiDSHdJCRC8Eg7PhsgUwZQPqveHil3B4N3+OUokEolE++TNm5f79++rj6OioggLC8tWG02aNMHU1JSFCxeya9cuDh06lGl5AwMDkpOTs9T24cOHadGiBR07dgRUD6E3btx4r7f0R48exc7Ojl9//VWdduvWrTTlIiIiuHfvHgUKqFzXjx8/jo6ODt98802asqVLl8bQ0JCIiIgM3fIyokuXLkyYMIHNmzezefNm/ve//2nkt2vXjvbt2/PXX3/RokWLDNvR0dGhTZs2rFy5ktGjR2e4zimr2NvbU6BAAbWbXwrXr19Xu65lxIkTJ9IcOzo6oqury9WrV3ny5AlTpkyhcOHCAJw5cyZNG3nz5sXLywsvLy9q1qzJ0KFDmTFjBq6urqxbt458+fKlmSXMSYoXL46BgQFHjhyhffv2gOqlwpkzZ9Rud6VLl1bvcZZ6rKlxdXXl0qVLFC9e/IPZKvn4aH++X/LBOfPgDN///T0BtwPQ19FneOXhzK8zP33RlBQPp/+AeS6wfaBKNJnZQMPJ0P9fqNZXiiaJRCL5zKlTpw4rVqzg8OHDXLx4kc6dO2c7cISuri5eXl6MGDGC4sWLp3FVehN7e3vOnz/PtWvXePLkSaYzXMWLF2fv3r0cO3aMK1eu8NNPP/HgwYNs2ZdemxEREaxdu5bQ0FDmzZvHli1b0pQzMjKic+fO/Pvvvxw+fJhffvmFNm3apLs2y9zcnCFDhjBw4ECWL19OaGgoQUFB/P777yxfvjxTexwcHKhTpw49e/ZEX1+f77//XiO/bdu2fP/997Rt25Zx48Zx8uRJwsPDOXjwIOvWrdO4XpMmTaJgwYJUqVKFZcuWcf78eUJDQ9myZQvHjx/XKPvs2TOCg4O5fPkyANeuXSM4OFh9fhUKBUOHDmXevHls3LiRkJAQRo8ezdWrV+nWrVumY7p9+zaDBg3i2rVrrFmzhvnz59O/f39ANctiYGDA/PnzuXnzJtu2bUuzD9eYMWP466+/CAkJ4dKlS2zfvl0tljt06IC1tTUtWrTg8OHDhIWFcfDgQfr378+dO3cytSs7mJqa0qtXL4YOHcru3bu5fPkyPXr04NWrV+rx//zzz4SGhqrHunr1avz9/TXa8fb25vjx4/Tp04fg4GBu3LjBtm3b6NevX47ZKvn4yBmnL5gkZRKLzy9m0flFKIUSewt7prlPo1SedN7YJcZB0Ao4Mhui7qrSzG2h+gCo0Bn0jT+q7RKJRCL5cIwYMYKbN2/y7bffYmlpyfjx47M94wSqhfaTJk3SWPSfET169CAwMJCKFSsSHR1NQECAxuL/1IwePZqwsDAaNmyIiYkJPXv2pGXLlkRGRmbbxhRatGjBwIED6du3L/Hx8TRt2pTRo0fj6+urUa548eK0bt2aJk2a8OzZM5o0acKCBQsybHf8+PHky5ePyZMnc/PmTaysrHB1dWXkyJFvtalbt27s37+fnj17pnFzVCgUrFu3jiVLluDn58e0adNITEykUKFC1K1bl1mzZqnL5smTh1OnTjF16lSmT59OWFgYOjo6ODo64unpqZ4pAdi2bZvGWqq2bdsC4OPjoz4XAwYMIC4ujoEDB/Ls2TOcnJzYu3dvuhETU9OpUydiY2OpXLkyurq69OvXj549ewKqmSR/f39GjhzJvHnzcHV1ZcaMGRpRAw0MDBgxYgTh4eEYGxtTs2ZN1q5dC4CJiQmHDh3C29ub1q1b8/LlSwoWLEjdunVzfAZqypQpKJVKfvzxR16+fEnFihXZs2cPuXKpXjgXKVKETZs2MXDgQBYsWEDlypXT3Afly5fn4MGD/Prrr9SsWRMhBMWKFcPT0zNHbZV8XBQiK46aXxBRUVFYWloSGRn5Qad6tc2DmAd4H/Lm3KNzALQo1oKRVUZiov/GbFFiHJxbrhJML/9z2zAvADUGgmsn0JdRXyQSiSQuLo6wsDAcHBxkNKxUHD16lFq1anHnzh1sbGy0bY5EIpGkS2bf4dnRBnLG6Qtkf8R+xhwdQ1RCFKb6poyqOopvi36rWSgxFs76w5E5EP2f+4NFwdeCSS/jRa0SiUQi+bqJj4/n9u3bjB49mjZt2kjRJJFIvgqkcPqCiE+OZ/rp6ay7tg6AMnnKMN19OoUtCr8ulPAKzvrB0bkQ/VCVZlkYag4C5w5SMEkkEonkraxZs4Zu3brh7OzMihUrtG2ORCKRfBSkcPpCuPniJkMODeHG8xsAeJXx4heXX9DX/S/kZkIMnF4Kx+ZBzGNVmlURqDkYnNqDXsY7bkskEolEkpqUqGcSiUTyNSGF02eOEILNNzYz5dQU4pLjyG2Um4k1JlKjYA1VgfhoVZS8Y/Ph1RNVmpUduA8Bp3agq59x4xKJRCKRSCQSiQSQwumz5mXCS8YdH8fu8N0AVLWtyuSak7E2tob4l3BqCRz/DV49VVXI5aASTOU9pWCSSCQSiUQikUiygRROnyn/Pv4X70Pe3I2+i55Cj74ufelStgs68dFwaAYc/x1in6kK5y4K7kOhXBvQlZdcIpFIJBKJRCLJLvIp+jNDKZQsu7iM34N+J0kkUdCsINPcp1He3A4OzVTNMMW9UBXOU1wlmMp+LwWTRCKRSCQSiUTyHsin6c+Ix68eM/LISE7cPwFAI/tGjHHuj3nQKjjxO8T9tzFgHkfwGAZlvwOd7O0EL5FIJBKJRCKRSNIihdNnwpG7R/j1yK88i3uGsZ4xI5z70/LhLRQLqkH8f4LJuoRKMJVpJQWTRCKRSCQSiUSSg+ho2wBJ5iQmJzLj9Ax67evFs7hnfGNZjLXWtWi1bTiKQ1NVoilvKfh+GfQ+DuW+l6JJIpFIJFpFoVCwdetWbZuhxsvLi5YtW+Zom/7+/lhZWWVaxtfXF2dn5xzt90vgQ1yPz4nw8HAUCgXBwcFZrlOrVi0GDBjwwWySZA0pnD5hIqIi+HHXjyy/vByAdqbFWX35DEWPL4L4KMhXBn5YDr2OSbc8iUQikXx0PpQwyOl2586di7+/f46197Fo1qwZ9erVSzfv+PHjKBQKzp07p07btGkTderUIVeuXJiYmFCiRAm6du1KUFCQRt2EhASmT5+Oq6srpqamWFpa4uTkxKhRo7h375663KFDh2jWrBkFChTIVAxfuXKF5s2bY2lpibm5OVWrViUiIuL9T4BE8okhhdMnyvab2/nh7x+49PQSlgoD5j59yciLBzBMeAk25aDNCvj5CJRpCTryMkokEonk4yGEICkpSdtmkJiYmKVylpaWb50d+hTp1q0bBw4c4NatW2nyli1bhrOzM66urgB4e3vj6emJs7Mz27Zt49KlSyxevJhixYoxcuRIdb34+Hjq16/PpEmT8PLy4tChQ5w9e5Zp06bx9OlT5s+fry4bExODk5MTv/32W4Y2hoaGUqNGDUqWLElgYCD//vsvo0ePxsjIKAfPhETyiSC+MiIjIwUgIiMjtW1KusQkxIiRh0eKsv5lRVn/sqLzohLi/rhcQvhYCLGwuhCX/xYiOVnbZkokEslXRWxsrLh8+bKIjY1VpymVShEfH//Rf5RKZbZs9/DwEH369BF9+vQRlpaWInfu3OLXX3/VaGfFihWiQoUKwszMTNjY2Ih27dqJhw8fqvMDAgIEIHbv3i0qVKgg9PX1xbJlywSg8ePn5yeEEAIQW7ZsEUIIUbt2bdGnTx8Nm548eSIMDAzE/v3709jr5+eXabsLFy4UzZs3FyYmJmLMmDEiKSlJdO3aVdjb2wsjIyPxzTffiDlz5mi02blzZ9GiRQuNc9KvXz8xdOhQkStXLmFjYyN8fHw06sycOVOULVtWmJiYiEKFColevXqJly9fathpaWkptmzZIhwdHYWhoaGoV6+eiIiIUJfx8fERTk5OGu0uW7ZMlCxZUhgaGooSJUqI33//Pd3rJoQQiYmJwsbGRvj6+mqkx8TECHNzczF//nwhhBDHjx8XgJg7d2667aS+1pMnTxY6Ojri3Llzby2bmtTXNDWenp6iY8eOGY4hPVKuh6+vr8ibN68wNzcXPXv2FPHx8eoyu3btEtWrV1d/Zps2bSpCQkLU+fHx8aJPnz4if/78wtDQUNjZ2YlJkyap81+8eCF69Oihbr927doiODg4Q5vCwsIEINatWydq1KghjIyMRMWKFcW1a9fEqVOnRIUKFYSpqalo2LChePTokbpecnKyGDt2rChYsKAwMDAQTk5OYteuXRptnzx5Ujg7OwtDQ0NRoUIFsXnzZgGIoKAgdZlLly6Jxo0bC1NTU5EvXz7RsWNH8fjxY3W+h4eH6N+/f7bOs+Q16X2Hp5AdbSCDQ3xCXH56mWGBg7kVfQcdIfj5RSQ9X0Sha+sEHsOhRGNQKLRtpkQikUhQzXZMmjTpo/c7cuRIDAwMslVn+fLldOvWjZMnT3LmzBl69uyJnZ0dPXr0AFSuW+PHj6dEiRI8evSIgQMH4uXlxc6dOzXaGTZsGDNmzKBo0aIYGRkxePBgdu/ezb59+wDVzM6bdO/enb59+zJz5kwMDQ0BWLVqFQUKFKB27dppynt6enLx4sUM2/Xx8WHy5MnMnj0bXV1dlEolhQoVYv369VhbW3Ps2DF69uyJra0tbdq0yfScDBo0iJMnT3L8+HG8vLyoXr069evXB0BHR4d58+Zhb29PWFgYvXv3ZtiwYSxYsEDdxqtXr5g4cSLLly/HwMCA3r1707ZtW44ePZpun0uWLMHHx4fffvsNFxcXgoKC6NGjB6ampnTu3DlNeT09PTp16oS/vz9jxoxB8d8zwIYNG0hISKBDhw4ArFmzBjMzM3r37p1uv4pUzw5r1qyhfv36uLi4vLXs21AqlezYsYNhw4bRsGFDgoKCcHBwYMSIEW9dw7R//36MjIwICAggPDycLl26YG1tzcSJEwHVbNegQYMoV64cMTExjBkzhlatWhEcHKy+Ntu2bWP9+vUUKVKE27dvc/v2bUA1I9q0aVNy587Nzp07sbS0ZNGiRdStW5fr16+TO3fuDO3y8fFhzpw5FClShK5du9KuXTssLCyYO3cuJiYmtGnThjFjxrBw4UJA5QY6c+ZMFi1ahIuLC8uWLaN58+ZcunQJR0dH/t/enUc1deZxA/+GQGJANqEgVFQcUUBURLTEpaIoLtWpygwWl4pLPSgwKq0Dbd2xolVQqwULI860ilKqtcwcrVJ3ZHBBY3mrwlSt4HaQamVRROC+f/gmL5El0AoXwvdzTs7hPnny3N/NveHkl+fe3y0tLcX48eMxYsQI7Nq1Czdv3sTChQu11nnv3j0MGzYM7733HmJiYvD06VOEh4fD398fx44da/D+oKbHxKkFEAQBu1Rx2PTjF3iOKthWVGDdg1/h2cEVGBsB9BjNhImIiH43BwcHbNq0CRKJBD179kR2djY2bdqkSZxmz56t6dutWzd89tlnGDhwIEpKStC+fXvNc6tXr9YkFgDQvn17GBoaomPHjnWu28/PD6Ghofjuu+80iczOnTsRGBhY65d0hUJR77hTp07VihcAVq1apfnb0dERGRkZ+Prrr+tNnPr06YMVK1YAAJycnLBt2zYcPXpUs33VL8R3dHREZGQk5s+fr5U4PX/+HNu2bcMbb7wB4EUy5uLignPnzmHgwIE11hkZGYno6GhMnjxZM+6VK1fwxRdf1Jo4AS/2zYYNG3DixAlNopmYmIjJkyfD0tISAJCbm4tu3brB0PD/f62LiYnB8uXLNct37tyBubk5cnNz4e3trbWOSZMmIS0tTfO+ZGRk1Pm+VVdQUICSkhKsW7cOa9aswfr16/H9999j8uTJOH78OIYNG1bna2UyGRITE2FsbIxevXph9erVWLJkCSIjI2FgYAA/Pz+t/jt27ICNjQ2uXLkCNzc35OXlwcnJCUOGDIFEIkGXLl00fY8fP47s7GwUFBRokvWNGzfiwIED+OabbzBv3rw64/rggw8wevRoAMDChQsREBCAo0ePYvDgwQBenD5Z/Xq5jRs3Ijw8HO+88w4AYP369Th+/Dg2b96Mzz//HLt370ZlZaXWtt6+fRvz58/XjBEXFwcPDw+tH2ISExPh4OCA3Nxc9OjRQ9euoGbCxElkDwuvYVlaME6VFwAAhpc+wWojB1hM3gI4jWLCRETUQhkZGWldO9Kc620sLy8vrSRFqVQiOjoalZWVkEqluHTpElauXAmVSoWHDx+iqqoKAJCXlwdXV1fN6zw9PRu9brlcjunTpyMxMRH+/v5QqVS4fPny7666V1sM27dvxz/+8Q/cunULT58+RXl5uc7iEn369NFatrOzQ0FBgWb5+PHjWLt2La5cuYKioiJUVFSgrKwMpaWlMDExAfBiRqh6PM7OzrCwsMDVq1drJE4PHjxAfn4+5syZo0lYAaCioqLWmbrqYw4aNAiJiYkYPnw4rl+/jtOnT+PIkSNa/V5OQmfPno0///nPOHv2LKZPnw5BEOrsGxsbi9LSUnz22Wc4depUnbG8TH2cvP3221i8eDEAwN3dHRkZGdi+fXu9iVPfvn1hbGysWVYqlSgpKUF+fj66dOmC69evY9myZcjMzERhYaHWMenm5obAwECMGjUKPXv2xJgxYzB+/Hj4+voCALKyslBSUgIrKyutdT59+hTXr1+vd5uqHxe2trYAgN69e2u1qY+ToqIi3L17V5NUqQ0ePBiXL18G8KJwRm3bWl1WVhaOHz+u9SOF2vXr15k4tSBMnER07thSRPyyHw+kUsiqBCwRzDBlZAwkTiOZMBERtXASiaTRp8y1RKWlpfD19YWvry927dqF1157DXl5eRg9ejTKy8u1+qoThsaaO3cu3N3dcfv2bSQmJsLHx0drhqAxXo7h66+/xuLFixEdHQ2lUglTU1Ns2LABZ8+erXeclxNQiUSi+XJ+69YtjBs3DkFBQYiMjESHDh2Qnp6OOXPm1ChIUdusWW1t6rETEhI0M1RqUmn9VXHnzJmDkJAQfP7559i5cye6dOkCHx8fzfNOTk5IT0/H8+fPNdtlYWEBCwsL3L59W2ssJycnXLt2TavNzs4OAOo9ha021tbWMDQ01EquAcDFxQXp6emNGktN/d5NmDABDg4OSEhIgL29PaqqquDm5qY5Jj08PHDz5k0cOnQIP/zwA/z9/TFy5Eh88803qKqqgp2dHU6cOFFjfF1FQqofF+pYXm5T78uX+6kJgqBpq56w1qWqqgoTJkzA+vXrazyn3jfUMoheji02NhaOjo5o164d+vfvj9OnT9fZd//+/Rg1ahRee+01mJmZQalU4vDhw80Y7av1f1COB1IpugmGSPIIxzuzzkDSg7NMRET0amVmZtZYdnJyglQqxbVr11BYWIh169Zh6NChcHZ21pp5qY9MJkNlZaXOfr1794anpycSEhKQlJRU41S73zsuAJw+fRqDBg3CggUL0K9fP3Tv3l3nrIIuFy5cQEVFBaKjo+Hl5YUePXpolelWq6iowIULFzTLOTk5+O233+Ds7Fyjr62tLV5//XXcuHED3bt313o4OjrWG4+/vz+kUimSkpLwr3/9C7NmzdL6sh4QEICSkhKt0wjrEhAQgLS0tBolyn8PmUyGAQMGICcnR6s9NzdXZ2J8+fJlPH36VLOcmZmJ9u3bo1OnTvj1119x9epVLF26FD4+PnBxccGjR49qjGFmZoYpU6YgISEBycnJ2LdvHx4+fAgPDw/cv38fhoaGNd5ra2vrP7zd1ddvb29fI0nMyMiAi4sLAMDV1bXWba3Ow8MDP/30E7p27Voj3t/7YwU1DVETp+TkZCxatAgff/wxLl26hKFDh2Ls2LF11v4/deoURo0ahYMHDyIrKwvDhw/HhAkTXsmHXwyB3lH4+5/8sWdqOnr2ncGEiYiImkR+fj7CwsKQk5ODPXv2YOvWrZoL1Dt37gyZTIatW7fixo0bSE1NRWRkZIPGVRdOUKlUKCwsxLNnz+rsO3fuXKxbtw6VlZWYNGnSKxu3e/fuuHDhAg4fPozc3FwsW7YM58+fb1D8dfnTn/6EiooKzXvy1VdfYfv27TX6GRkZITQ0FGfPnsXFixcxa9YseHl51Xp9E/Di/lRRUVHYsmULcnNzkZ2djZ07dyImJqbeeNq3b48pU6bgo48+wt27dxEYGKj1vFKpxPvvv4/3338fYWFhSE9Px61bt5CZmYkdO3ZAIpHA4P/dumTx4sVQKpUYMWIEtmzZgosXL+LmzZs4fPgwDh06pDX7VVJSApVKpblRq3qfVP+etmTJEiQnJyMhIQE///wztm3bhn//+991FqpQKy8vx5w5c3DlyhUcOnQIK1asQEhICAwMDGBpaQkrKyvEx8fj559/xrFjxxAWFqb1+k2bNmHv3r24du0acnNzkZKSgo4dO8LCwgIjR46EUqnExIkTcfjwYfzyyy/IyMjA0qVLtRLdV2HJkiVYv349kpOTkZOTg4iICKhUKs3na+rUqTAwMNBs68GDB7Fx40atMYKDg/Hw4UMEBATg3LlzuHHjBo4cOYLZs2c3+AcEaiavuNpfowwcOFAICgrSanN2dhYiIiIaPIarq6uwatWqBvdv6eXIiYio5amvlG1LN2zYMGHBggVCUFCQYGZmJlhaWgoRERFaZaeTkpKErl27CnK5XFAqlUJqaqpWuWR1OfJHjx5pjV1WVib4+fkJFhYWdZYjVysuLhaMjY2FBQsW6Iy5MeOWlZUJgYGBgrm5uWBhYSHMnz9fiIiI0CoDXls58pdLO7/99tvCzJkzNcsxMTGCnZ2doFAohNGjRwtffvml1nugLke+b98+oVu3boJMJhNGjBgh/PLLL5oxaitHvnv3bsHd3V2QyWSCpaWl8Oabbwr79+/X+Z5kZGQIAARfX986+yQnJwve3t6Cubm5YGRkJHTq1EmYOnWqkJmZWeM9W7dundC3b19BoVAIcrlccHZ2FhYvXqxVTl29319+VH+fBEEQduzYIXTv3l1o166d0LdvX+HAgQP1bot6fyxfvlywsrIS2rdvL8ydO1coKyvT9ElLSxNcXFwEuVwu9OnTRzhx4oTW/o+Pjxfc3d0FExMTwczMTPDx8dEqsV5UVCSEhoYK9vb2gpGRkeDg4CBMmzZNa/uqU5cjr14ivLbjXr3f1aqXIzcyMqq1HPl///tfoW/fvoJMJhPc3d2Fffv21VhXbm6uMGnSJMHCwkJQKBSCs7OzsGjRIs3nlOXI/5hXVY5cIggNOPmyCZSXl8PY2BgpKSlavzwtXLgQKpUKJ0+e1DlGVVUVunbtir///e8ICQmptc+zZ8+0fqkqKiqCg4MDHj9+DDMzsz++IUREpPfKyspw8+ZNzanlrYm3tzfc3d2xefNmUePIz89H165dcf78ec1NW4mImkN9/8OLiopgbm7eoNxAtFP1CgsLUVlZqalYomZra4v79+83aIzo6GiUlpbWW240KioK5ubmmoeDg8MfipuIiIga7vnz58jLy0N4eDi8vLyYNBFRqyV6cYj6KpHUZ8+ePVi5ciWSk5NhY2NTZ78PP/wQjx8/1jzUN0cjIiKipnfmzBl06dIFWVlZtV4nRETUWohWjtza2hpSqbTG7FJBQUGNWaiXJScnY86cOUhJScHIkSPr7SuXyzU3PyMiImpraivJ3Jy8vb0bVJKZiKilE23GSSaToX///po7VaulpaVh0KBBdb5uz549CAwMRFJSEt56662mDpOIiIiIiEjcG+CGhYVhxowZ8PT0hFKpRHx8PPLy8hAUFATgxWl2d+7cwZdffgngRdL07rvvYsuWLfDy8tLMVikUinrvuk1ERPQqcOaEiKj1eVX/u0VNnKZMmYJff/0Vq1evxr179+Dm5oaDBw9qbpp27949rXsFfPHFF6ioqEBwcDCCg4M17TNnzsQ///nP5g6fiIjaCCMjIwDAkydPoFAoRI6GiIgao7y8HAC07lP2e4hWjlwsjSk5SEREpHbv3j389ttvsLGxgbGxcYMKGRERkbiqqqpw9+5dGBkZoXPnzjX+dzcmNxB1xomIiKi16NixI4AXRYyIiKj1MDAwqDVpaiwmTkRERA0gkUhgZ2cHGxsbPH/+XOxwiIiogWQyGQwM/nhNPCZOREREjSCVSv/wefJERNT6iH4DXCIiIiIiopaOiRMREREREZEOTJyIiIiIiIh0aHPXOKmrrxcVFYkcCRERERERiUmdEzTkDk1tLnEqLi4GADg4OIgcCRERERERtQTFxcUwNzevt0+buwGu+iZYpqamLeLmhUVFRXBwcEB+fj5vyEtNjscbNTcec9SceLxRc+Mx1/oJgoDi4mLY29vrLFne5macDAwM0KlTJ7HDqMHMzIwfOGo2PN6oufGYo+bE442aG4+51k3XTJMai0MQERERERHpwMSJiIiIiIhIByZOIpPL5VixYgXkcrnYoVAbwOONmhuPOWpOPN6oufGYa1vaXHEIIiIiIiKixuKMExERERERkQ5MnIiIiIiIiHRg4kRERERERKQDEyciIiIiIiIdmDiJKDY2Fo6OjmjXrh369++P06dPix0S6amoqCgMGDAApqamsLGxwcSJE5GTkyN2WNRGREVFQSKRYNGiRWKHQnrszp07mD59OqysrGBsbAx3d3dkZWWJHRbpoYqKCixduhSOjo5QKBTo1q0bVq9ejaqqKrFDoybGxEkkycnJWLRoET7++GNcunQJQ4cOxdixY5GXlyd2aKSHTp48ieDgYGRmZiItLQ0VFRXw9fVFaWmp2KGRnjt//jzi4+PRp08fsUMhPfbo0SMMHjwYRkZGOHToEK5cuYLo6GhYWFiIHRrpofXr12P79u3Ytm0brl69ik8//RQbNmzA1q1bxQ6NmhjLkYvkjTfegIeHB+Li4jRtLi4umDhxIqKiokSMjNqCBw8ewMbGBidPnsSbb74pdjikp0pKSuDh4YHY2FisWbMG7u7u2Lx5s9hhkR6KiIjAmTNneOYGNYvx48fD1tYWO3bs0LT5+fnB2NgYX331lYiRUVPjjJMIysvLkZWVBV9fX612X19fZGRkiBQVtSWPHz8GAHTo0EHkSEifBQcH46233sLIkSPFDoX0XGpqKjw9PfHXv/4VNjY26NevHxISEsQOi/TUkCFDcPToUeTm5gIALl++jPT0dIwbN07kyKipGYodQFtUWFiIyspK2NraarXb2tri/v37IkVFbYUgCAgLC8OQIUPg5uYmdjikp/bu3YuLFy/i/PnzYodCbcCNGzcQFxeHsLAwfPTRRzh37hz+9re/QS6X49133xU7PNIz4eHhePz4MZydnSGVSlFZWYlPPvkEAQEBYodGTYyJk4gkEonWsiAINdqIXrWQkBD8+OOPSE9PFzsU0lP5+flYuHAhjhw5gnbt2okdDrUBVVVV8PT0xNq1awEA/fr1w08//YS4uDgmTvTKJScnY9euXUhKSkKvXr2gUqmwaNEi2NvbY+bMmWKHR02IiZMIrK2tIZVKa8wuFRQU1JiFInqVQkNDkZqailOnTqFTp05ih0N6KisrCwUFBejfv7+mrbKyEqdOncK2bdvw7NkzSKVSESMkfWNnZwdXV1etNhcXF+zbt0+kiEifLVmyBBEREXjnnXcAAL1798atW7cQFRXFxEnP8RonEchkMvTv3x9paWla7WlpaRg0aJBIUZE+EwQBISEh2L9/P44dOwZHR0exQyI95uPjg+zsbKhUKs3D09MT06ZNg0qlYtJEr9zgwYNr3GIhNzcXXbp0ESki0mdPnjyBgYH2V2ipVMpy5G0AZ5xEEhYWhhkzZsDT0xNKpRLx8fHIy8tDUFCQ2KGRHgoODkZSUhK+++47mJqaamY7zc3NoVAoRI6O9I2pqWmN6+dMTExgZWXF6+qoSSxevBiDBg3C2rVr4e/vj3PnziE+Ph7x8fFih0Z6aMKECfjkk0/QuXNn9OrVC5cuXUJMTAxmz54tdmjUxFiOXESxsbH49NNPce/ePbi5uWHTpk0sDU1Noq5r53bu3InAwMDmDYbaJG9vb5Yjpyb1n//8Bx9++CH+97//wdHREWFhYXjvvffEDov0UHFxMZYtW4Zvv/0WBQUFsLe3R0BAAJYvXw6ZTCZ2eNSEmDgRERERERHpwGuciIiIiIiIdGDiREREREREpAMTJyIiIiIiIh2YOBEREREREenAxImIiIiIiEgHJk5EREREREQ6MHEiIiIiIiLSgYkTERERERGRDkyciIiIGkEikeDAgQNih0FERM2MiRMREbUagYGBkEgkNR5jxowROzQiItJzhmIHQERE1BhjxozBzp07tdrkcrlI0RARUVvBGSciImpV5HI5OnbsqPWwtLQE8OI0uri4OIwdOxYKhQKOjo5ISUnRen12djZGjBgBhUIBKysrzJs3DyUlJVp9EhMT0atXL8jlctjZ2SEkJETr+cLCQkyaNAnGxsZwcnJCampq0240ERGJjokTERHplWXLlsHPzw+XL1/G9OnTERAQgKtXrwIAnjx5gjFjxsDS0hLnz59HSkoKfvjhB63EKC4uDsHBwZg3bx6ys7ORmpqK7t27a61j1apV8Pf3x48//ohx48Zh2rRpePjwYbNuJxERNS+JIAiC2EEQERE1RGBgIHbt2oV27dpptYeHh2PZsmWQSCQICgpCXFyc5jkvLy94eHggNjYWCQkJCA8PR35+PkxMTAAABw8exIQJE3D37l3Y2tri9ddfx6xZs7BmzZpaY5BIJFi6dCkiIyMBAKWlpTA1NcXBgwd5rRURkR7jNU5ERNSqDB8+XCsxAoAOHTpo/lYqlVrPKZVKqFQqAMDVq1fRt29fTdIEAIMHD0ZVVRVycnIgkUhw9+5d+Pj41BtDnz59NH+bmJjA1NQUBQUFv3eTiIioFWDiRERErYqJiUmNU+d0kUgkAABBEDR/19ZHoVA0aDwjI6Mar62qqmpUTERE1LrwGiciItIrmZmZNZadnZ0BAK6urlCpVCgtLdU8f+bMGRgYGKBHjx4wNTVF165dcfTo0WaNmYiIWj7OOBERUavy7Nkz3L9/X6vN0NAQ1tbWAICUlBR4enpiyJAh2L17N86dO4cdO3YAAKZNm4YVK1Zg5syZWLlyJR48eIDQ0FDMmDEDtra2AICVK1ciKCgINjY2GDt2LIqLi3HmzBmEhoY274YSEVGLwsSJiIhale+//x52dnZabT179sS1a9cAvKh4t3fvXixYsAAdO3bE7t274erqCgAwNjbG4cOHsXDhQgwYMADGxsbw8/NDTEyMZqyZM2eirKwMmzZtwgcffABra2v85S9/ab4NJCKiFolV9YiISG9IJBJ8++23mDhxotihEBGRnuE1TkRERERERDowcSIiIiIiItKB1zgREZHe4NnnRETUVDjjREREREREpAMTJyIiIiIiIh2YOBEREREREenAxImIiIiIiEgHJk5EREREREQ6MHEiIiIiIiLSgYkTERERERGRDkyciIiIiIiIdPi/eKvDbXp8gYAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHUCAYAAAANwniNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM50lEQVR4nOzdd3gU9drG8e9uek8gIbQQQDpBegmogAUQVMpREH0BBQtHUaxHUDmAR4UjgmDBhhSxgAUsR1ARaYqANA29EwgJIUAa6bvz/rHJQkgCCWyyKffnunJldnb2N88kG8id38wzJsMwDERERERERKRIZmcXICIiIiIiUt4pOImIiIiIiFyGgpOIiIiIiMhlKDiJiIiIiIhchoKTiIiIiIjIZSg4iYiIiIiIXIaCk4iIiIiIyGUoOImIiIiIiFyGgpOIiIiIiMhlKDiJiEiZe/PNNzGZTERERDi7FBERkWJRcBIRkTI3d+5cAHbu3MnGjRudXI2IiMjlKTiJiEiZ2rx5M3/99Rf9+vUD4KOPPnJyRYVLS0tzdgkiIlKOKDiJiEiZygtKU6dOpWvXrixatKhASImJieGhhx4iLCwMd3d3ateuzZ133snJkyft2yQmJvL000/TsGFDPDw8qFGjBn379mXPnj0ArF69GpPJxOrVq/ONfeTIEUwmE/Pnz7evu++++/D19SUqKopevXrh5+fHTTfdBMCKFSvo378/devWxdPTk0aNGvHwww+TkJBQ4Nj27NnD0KFDCQ0NxcPDg3r16jF8+HAyMzM5cuQIrq6uTJkypcDr1q5di8lk4ssvv7yir6mIiJQ+V2cXICIiVUd6ejqff/45HTt2JCIigpEjR/LAAw/w5ZdfMmLECMAWmjp27Eh2djbPP/881157LadPn+ann37i7NmzhIaGkpKSwnXXXceRI0d47rnn6Ny5M6mpqaxdu5bY2FiaNWtW4tqysrK44447ePjhhxk3bhw5OTkAHDx4kMjISB544AECAgI4cuQIM2bM4LrrriMqKgo3NzcA/vrrL6677jqCg4N56aWXaNy4MbGxsXz33XdkZWVRv3597rjjDt577z3+9a9/4eLiYt/322+/Te3atRk4cKADvsoiIlIqDBERkTLy8ccfG4Dx3nvvGYZhGCkpKYavr69x/fXX27cZOXKk4ebmZuzatavIcV566SUDMFasWFHkNqtWrTIAY9WqVfnWHz582ACMefPm2deNGDHCAIy5c+desn6r1WpkZ2cbR48eNQDj22+/tT934403GoGBgUZ8fPxla1q6dKl9XUxMjOHq6mpMnjz5kvsWERHn0ql6IiJSZj766CO8vLy4++67AfD19eWuu+5i3bp17N+/H4Dly5fTs2dPmjdvXuQ4y5cvp0mTJtx8880Ore8f//hHgXXx8fGMHj2asLAwXF1dcXNzIzw8HIDdu3cDtuuh1qxZw+DBgwkJCSly/B49etC6dWveeecd+7r33nsPk8nEQw895NBjERERx1JwEhGRMnHgwAHWrl1Lv379MAyDxMREEhMTufPOO4HznfZOnTpF3bp1LzlWcbYpKW9vb/z9/fOts1qt9OrViyVLlvCvf/2LlStXsmnTJjZs2ADYTj0EOHv2LBaLpVg1Pf7446xcuZK9e/eSnZ3Nhx9+yJ133knNmjUdejwiIuJYCk4iIlIm5s6di2EYfPXVVwQFBdk/8rrrLViwAIvFQkhICMePH7/kWMXZxtPTE4DMzMx86wtr6gBgMpkKrNuxYwd//fUX06ZN47HHHqNHjx507NiR6tWr59uuWrVquLi4XLYmgHvuuYfq1avzzjvv8OWXXxIXF8ejjz562deJiIhzKTiJiEips1gsLFiwgGuuuYZVq1YV+Hj66aeJjY1l+fLl3HrrraxatYq9e/cWOd6tt97Kvn37+PXXX4vcpn79+gD8/fff+dZ/9913xa47L0x5eHjkW//+++/ne+zl5UX37t358ssviwxmeTw9PXnooYdYsGABM2bMoE2bNnTr1q3YNYmIiHOoq56IiJS65cuXc+LECf773//So0ePAs9HRETw9ttv89FHH/H222+zfPlybrjhBp5//nlatWpFYmIiP/74I0899RTNmjXjiSeeYPHixfTv359x48bRqVMn0tPTWbNmDbfddhs9e/akZs2a3HzzzUyZMoWgoCDCw8NZuXIlS5YsKXbdzZo145prrmHcuHEYhkG1atX4/vvvWbFiRYFt8zrtde7cmXHjxtGoUSNOnjzJd999x/vvv4+fn59920ceeYTXXnuNLVu2MGfOnCv6moqISNnSjJOIiJS6jz76CHd3d+6///5Cnw8ODmbgwIH873//w9XVlU2bNnHbbbcxdepU+vTpw2OPPUZSUhLVqlUDwM/Pj99++41Ro0bxwQcf0K9fPx588EH27t1L7dq17eMuXLiQm266ieeee4677rqLmJgYPv/882LX7ebmxvfff0+TJk14+OGHGTp0KPHx8fzyyy8Ftm3dujWbNm2iffv2jB8/nj59+vDcc8/h4eGBu7t7vm3r1KnDddddR7Vq1bjnnnuKXY+IiDiPyTAMw9lFiIiIVCXx8fGEh4fz2GOP8dprrzm7HBERKQadqiciIlJGjh8/zqFDh5g2bRpms5mxY8c6uyQRESkmnaonIiJSRubMmUOPHj3YuXMnn376KXXq1HF2SSIiUkw6VU9EREREROQyNOMkIiIiIiJyGQpOIiIiIiIil6HgJCIiIiIichlVrque1WrlxIkT+Pn52e8ILyIiIiIiVY9hGKSkpFC7dm3M5kvPKVW54HTixAnCwsKcXYaIiIiIiJQTx44do27dupfcpsoFJz8/P8D2xfH393dyNSIiIiIi4izJycmEhYXZM8KlVLnglHd6nr+/v4KTiIiIiIgU6xIeNYcQERERERG5DAUnERERERGRy1BwEhERERERuQwFJxERERERkctQcBIREREREbkMBScREREREZHLUHASERERERG5DAUnERERERGRy1BwEhERERERuQwFJxERERERkctQcBIREREREbkMBScREREREZHLUHASERERERG5DFdnFyAiIiIiIhWU1QpZqZCZDBlJkJH72f74go+Lt7n7Mwhp4uwjKDYFJxERERGRqionq2DIuTjgFLYuM299ChjWK9t32mnHHkspU3ASEREREamIDMM221PSmZ4LH+ekO6YWsxt4BuR++Ns+e/hfsC7gonX+ENrCMfsuIwpOIiIiIiLOcPFsT0lmejKSbc9d6WzPxdz9igg9/oWHHs/A/I9dPcFkKvbusnKsuJhNuDim+jKh4CQiIiIiciWyzkF6YiEBp7B1hTx2+GxPYaEn8KKZn0K28fAHc9ERxjAMMrKtpGbmcC4zh3NZOZzLtHDuXO7jzFO2x5k5nMvK/Xzhdll5251fzrYY/O+x64ioE+CYr0EZUHASEREREQHISoNzpyAtAc6dvmD5lO3xhcvnTjku+Lj7FT3TU+BxQMEQdNFsj8VqkHZRaEnNzCEt08K5jBxSk2zLqZmZpGXFkpp5nHOZOaRl5W6XZbGHpLTcMayGYw71QmlZFscPWooUnERERESkcspKyw07uR/25VO2xgTnTuVfn51W8n2YXYs4le3CkHPp09+yrKZCQ0veLE5aVg6pqRbOnc45P3uTlcq5zMSLZnJs26dnl04gMZnAx90Vb3cXfD1c8fZwwcfdNXfZFV8PF7zdXfG5YNnXw/bYx93F9tkj77Mrvu4VK4pUrGpFREREpOrKTr8oACVceoYo+1zJ9+HiAT7Btg/v3M8+IeBd3fbZJxjDuzrn3IJIJIBkiwfnsi35gs75WR4LaUk5pMafn7mxzfwkkZp52j4rlGVx0HVKFx+K2YRPbsjxuSjc+OaFmNygUyDcXLg+97GXmwtmc/GvY6psFJxERERExDmyM4o4Fa6IGaKs1JLvw8X9ggCUF4KCwccWhCye1UhxDSLR5M9pw5/TWe6cTc/mbFo2Z9OySDyXzdmTWSTmPj6blk1SegLZllMO/3J4uJoLDy65gcbXwzbbU2BdITM83u4ueLiaMZWgYYNcmoKTiIiIiDhGTublZ4EufC4rpeT7MLvlzvxUzw1AebNAwWR5VCPFJYAkcyBn8OOUNYCELDfOpuXYQlBaFmcTs0k8kWUPRikZOUBi7kfJeLia8fdyKzrQuNsCTeGzPRfM8LjbTntzczGX/OshZUbBSUREREQKl5N1+Vkg+3VCp21d40rK7HrBLJDtw+pdnQy3aqS6BpJsDuAMASRY/Thp9SU+04PE9GzOnsudETqd+zkt+4JT3tJzP+KLVYLJBP6ebgR5uxHo7U6QtxtB3u725UCfC9fZPgd5u+PlXpGaacvVUnASERERqUqsFkiNh5QTkBwLKbkfBWaEEq48CF0QgnI8q5PhHsQ51yBSXAI4awrgtOHPqRxfTuT4cTLzglPjTmZx9lwWyRk5FxcNJOV+XJq7q7lAyMkfhnKDj09eSHInwMsNlyp87Y4Uj4KTiIiISGWRmZIbhk5AShwkn7CFIvvnWEg9CUYJuq6ZXOwNEXI8g8n0sIWgVJdAEk0BnMGfU1ZfYi1+nMjy4US6B2fTs0k8m83ZmCwyc4pqfJCZ+1E0P0/X3Nmd8zNBeWEnyOf8zE+gtxtBubNCXm4uuq5HSoWCk4iIiEh5V9gsUWGhqJjXDBkmM4ZPKFneNUnzDCHZNZgklyDOGP4kGP7E5fgQm+PHsUxvYtLdOZOWQ9LpbIzL3svnXO5Hfm4upouCTxEzQT7ntwn0csNV1/xIOaLgJCIiIuJMF84S5fsce0WzRBY3XzK8anDOvQZnXYNJMFUnzgjiWE4gR7L8OZDuz/40LzLTizMrY8F2rdB5fh6uBPoUfQrchdcA5YUhH3fNAknFp+AkIiIiUhocPEtkNbmQ7l6dFLcQzrhU5yTVOGEJIjongIMZ/hzO9CPOqMa5DC8oZrM6P09XQnw9qObjbp/tydcUwdvd9lzeLJC3mzq/SZWl4CQiIiJSUpeaJcoLRaknwSjejU0zXHxIdAkmwVydk0YQx3MCOJIVQIwlkDijGnFGNRIIwJp+6dDiajYR6utOdR8Pqvu6E+Jr+1zd14Pg3OVgHw+C/WyByMNVXeFEikvBSURERCSP1WILPIWeMlfyWSILZhLN1YgniBNW2+lyJ41qxBlBxFGNk0YQcUY10vAscgxfD1eCfd1p6+tBdR93gv08CPa5KAz5uhPs64G/pxtmdYcTKRUKTiIiIlI1OHiWKBVv4owgYq1BnCQ3DBnViDcumiUi/yyRi9lENR93qvu4U9vXg2tzZ4Sq54af4NwZo2A/W1DydNOskEh5oOAkIiIiFZth2G6+mnQMko4XDEcpcRjJJzBlpRZruBzDzCkC7bNBcUbQZWeJvN1dbEEnN/S09HPnBp/cEOR74WlzHgR6aVZIpCJScBIREZHyLScTkmNsoSgxNxwlHcNy9hjWxGOYU2JwsWRccoi8mJJseNlD0IWzRBeGpNMEgMmcOyt0fiaouq87jS6YEbpwvbe7fqUSqez0Uy4iIiLOYxiQftY2W5RoC0IZCUfJPhuNKekYbqkn8MpMKPSlLrkfeU4agcQa1YnNDUIXzxIlugbj7RtAdV8PQi4IPw19PehoP03Oti7I2x0XzQqJyAUUnERERKT05GRBygkyE46ScvIwmaePYjl7DJeUGDzTTuCXEYe7cX62yAx4FzJMuuHOCaM6MUYwMUYwJ4zqnDCCOe0aQqZPHfCvRTV/f3uThGA/D9rmNlDI6yzn46Ffe0TkyulfEBEREbkiVouVxLOnSIw9RNqpI2SfiYak47ilxuCTHktA1kkCrWcwY+ABeFxirFNGADG5YeiEEUyieyjpXrXI8auDERCGb2ANQvw9CfHz4Bo/T7r4eVDDz0NhSETKjP61ERERkXwysi2cSskkPimV1PijZCREY0k8hjn5OJ7nTuCXGUdQzklqWBOoZsqg2mXGyzTciDGqE2cK5qxrKCmetcjyqYXVvy4uQfXwrB5GcGAAIX4edPCz3YzVVTdZFZFyRsFJRESkCjAMg7Np2bZAlJLBqZRMks4kkHUmGpKO4Zo7S+SfFUcNawK1TQm04SwuJqPoQXMvATqDPwkuNUhyr0maVy1yfOtAQF3cqtfDO6Q+1UJqE+LvSQMPV0wmXTckIhWTgpOIiEgFlpljmx2yBaLzn08nnyM7MQZzcgwe507glxlLTSOB2qbT1DadprUpAX9TeuGDXjDZk40rZ11rkOJZi0yf2lj96mAOCsOzejh+NRsSWLM+1Tx9LjvrJCJS0Sk4iYiIlDOGYZCUnn1RGMrI9zg1+SxuKTH4ZcVR15QXiBJoYjpND9NpanIGV9MFN3It4h6qaa4BpHnVItu3DkZAXdyr1cMrpD7eIfUxBYTh5hNCDbOZGmVz6CIi5ZaCk4iISBmzWg3iUzI5fjaNmMR0jp+1fcQkphNzNo0TiecIyLbNDNlCkS0YdTYlUMd0mjqmBPxNabbB3C+xH5MrGd41sfrXxRwYhkf1cFyCwiAg76MO3u4+hXaxExGR/BScREREHCzbYiUuKYNjZ9OIsQei8+EoNimdbEvetUMGdUigtfkgXc2HaGM+SIT5ML6el76hK4DFIwAC6mIOqocpIAwC6uZ+1LOt962Bt7mIqSYRESkRBScREZESysi2XBSGzgek42fTOZmcgbWIngpBJNPNfIg2rgfp6H6ECA4QYE0qsJ1hcsHkXwcCLwxE50MRAXVw8fAr5SMVEZE8Ck4iIiIXScnItgejvDAUczad47nrElIzLzuGu6uZRgHQ1fs4bV0O08Syj9rnduOTdvz8RnmXIJldIbQl1G4HddpDnXaYgpuCi/6bFhEpL/QvsoiIVCmGYZCYlp0biNLsp8/lhaOYxHSS0rMvO46Puwt1g7ypE+RFnUAvwgJcaWY+Rv3MPYQk78Qz/i9Mp/bAOWvBF1dvDHVyQ1LtdlCzFbh5lsLRioiIoyg4iYhIpWK1GiSkZtpnhy48lS4vJKVlWS47TqC3G3UCvagb5EWdQFtAqpsbkuoGehCQFo3pxFaI2QoxWyAqCiyFzET51c4NSblBqVYb8Ap0+HGLiEjpUnASEZEKJcdiJS45o8BpdDGJ5z+ycgqZ5blIiJ/H+WAU5EXdwNzPQd7UDvTC1yP3v0jDgOQTcCI3IG3eCie2Q2bB65LwDMh3uh2124F/Lcd+AURExCkUnEREpFzJzLEQm5hRYKYobwYpLjkDS1GdF3KZTVArwDY7dOFMUd5pdbUDvfB0K+rGRmfg2KbcoJT7kRpXcDtXT6jVOn9QqtYQTCYHfBVERKS8UXASEZEylZaVY2+0cOFs0fHc1t3xKZdvvODmYsoXhOoEettnjuoEelEzwBM3F/Pli8lOh9i/bTNJeTNKZw4V3M7kAjWan59FqtPe9tjF7Qq+AiIiUhE5PTjNnj2badOmERsbS8uWLZk5cybXX399odved999LFiwoMD6Fi1asHPnztIuVUREiunsuSz2xKWw72QK0WfS8oWjs2mXb7zg5eZS6ExR3SBbQArx9cBsLuHMjiUHTu22haOYrbagdHIXGIVc7xTU4PwsUp32UPNacNdtYkVEqjKnBqfFixfzxBNPMHv2bLp168b777/Prbfeyq5du6hXr16B7WfNmsXUqVPtj3NycmjdujV33XVXWZYtIiK5MrItHIhPZU9cCnvjknM/p1x21sjf05U6Qd72a4zqXhCM6gR5EeTthulqTnkzDNvM0Ylt54NS7F+Qk15wW58auSGpPdRpa5tR8q525fsWEZFKyWQYxqVPFC9FnTt3pl27drz77rv2dc2bN2fAgAFMmTLlsq//5ptvGDRoEIcPHyY8PLxY+0xOTiYgIICkpCT8/f2vuHYRkarEajWIPpNmD0Z7T9pC0pGEc0Xe6DWsmhdNQ/1pEOxtC0R5M0dBXvh7OvgUt5S487NIMVtsgSn9bMHt3P3Oh6O8GSX/OrouSUSkiipJNnDajFNWVhZbtmxh3Lhx+db36tWL9evXF2uMjz76iJtvvvmSoSkzM5PMzPN/+UxOTr6ygkVEqoiE1Ez2xqXYZ5H2xqWw72Qq6dmFt/AO8najaU0/mtX0p2lNP5rW9KNJqN/5rnSOlpFk62pnvy5pKyTHFNzOxd12f6S8eyXVaQ/VG4G5GNc+iYiIXMRpwSkhIQGLxUJoaGi+9aGhocTFFdK96CKxsbEsX76czz777JLbTZkyhcmTJ19VrSIilVFaVg77TqbmhqNU9p60haSE1KxCt/dwNdM41Jemof40yw1IzWr6EeLncXWn1V1Kdgac3JH/uqSEfYVsaIKQZvlPtwuNAFf30qlLRESqHKc3h7j4P1vDMIr1H/D8+fMJDAxkwIABl9xu/PjxPPXUU/bHycnJhIWFXVGtIiIVUY7FypHTabZT7PKuQ8pt2lDYydomE4RX886dPTofkupX98GlpA0ZSsJqgVN7z59uF7MVTu4EayHNJALr5T/drlZr8PArvdpERKTKc1pwCg4OxsXFpcDsUnx8fIFZqIsZhsHcuXMZNmwY7u6X/muih4cHHh4eV12viEh5ZxgG8SmZBRo17I9PLfKGsMG+HvZg1DTU9rlxqC/e7qX834NhQGJ0/tPtTmyH7HMFt/Wunv90u9ptwTekdOsTERG5iNOCk7u7O+3bt2fFihUMHDjQvn7FihX079//kq9ds2YNBw4cYNSoUaVdpohIuZSamZM7g3Q+JO07mVJkq28vNxea1PSjWej5U+ya1vSjum8Z/WHpXELuzWQvuF9S2umC27n5QO02+e+XFFhPzRtERMTpnHqq3lNPPcWwYcPo0KEDkZGRfPDBB0RHRzN69GjAdppdTEwMH3/8cb7XffTRR3Tu3JmIiAhnlC0iUmayLVYOJ5zL16hhT1wKx88W0lYbMJugfrCPLRiF+ttDUr1q3iW/79GVslps1yVFb4DoP2whKTG6kGLdILTl+Xsl1W4HIU3B7FI2dYqIiJSAU4PTkCFDOH36NC+99BKxsbFERESwbNkye5e82NhYoqPz/2eblJTE119/zaxZs5xRsohIqTAMg9ikjHzd7PbEpXDo1DmyLIWfZhfq72G/BqlJqC0gNarhi6dbGQeP7HTbbFL0eltYOrYJMgvpYBrcJP91SaER4OZZtrWKiIhcIafex8kZdB8nEXG25IzsAu2+98alkJyRU+j2Pu65p9ld0KihaagfQT5O6hiXfhaiN54PSie2geWiTnzufhDWCepF2j7XbgOeAU4pV0REpCgV4j5OIiKVXVaOlYOnUguEpBNJGYVu72o20TDE53wnu9zrkeoEepXdaXaFSToOR/+wnXYX/QfE7yq4jW+oLSTVi4TwSNtskk65ExGRSkTBSUTkKhmGwfGz6baZo5PnQ9KhU+fIsRY+qV87wLNAu++GIT54uDo5bFitkLAXjq4/f41S0rGC21VvlD8oBTVQAwcREanUFJxEREogMS3L3uY7LyDtO5lKambhp9n5ebraZ46a1Tp/PVKAl1sZV16EnCyI3W4LSEf/gGMbbKfiXcjkArWuPR+U6nUB3xpOKVdERMRZFJxERC4hNimd5VFxrNl3ij1xyZxMzix0OzcXE9eE+ObOHuUGpJp+1A7wLNZNvctMRjIc32SbTTr6B8RshpyLTh1084a6Hc4HpboddHNZERGp8hScREQuEpOYzvKoWJZFxbI1OrHA83WDvM43acgNSQ2CfXBzMZd9sZeTcvL8tUnRf0BcFBgXdenzqnb+lLt6XW2zSy7lZEZMRESknFBwEhEBjp1JY/mOWH6IiuOvY4n5nusQHkSfiJq0rRdIk1A//DzLaagwDDhzKPf6pNygdOZQwe0Cwy8ISpG2NuHlaVZMRESkHFJwEpEq6+jpcyyLimP5jlj+Pp5kX28yQcf61egbUZM+EbWoGVBO7zVkyYGTURd0vNsA5+Iv2shku8ls3rVJ9SIhoI5TyhUREanIFJxEpEo5nHCOZbmn4e08cf4mrWYTdG5Qnb6tatI7oiY1/MphWMpKs12TFL3BNqt0/E/ISs2/jYu77QazedcnhXUCr0CnlCsiIlKZKDiJSKV3ID6V5VGx/BAVy564FPt6F7OJyIbVubVVTXq1qEmIn4cTqyxE2pnzp9wd/cPW/c56Ufc+jwCo1zl3Nqkr1G4LbuUw9ImIiFRwCk4iUintO5lin1nad/L8rIyL2UTXa6rTr1UtbmkRSnXfchKWDAMSo3PvnZR7D6VTewpu51cr9/qkrrbPNZrrRrMiIiJlQMFJRCoFwzDYezKFZX/HsmxHHAfiz4clNxcT3RoF0zfCFpaCfNydWGkuqxXid13Q8W4DJMcU3C64qW02Kbyr7XNguBo5iIiIOIGCk4hUWIZhsCs2mWVRsSyPiuNQwjn7c+4uZq5vHMytrWpxS/NQAryd3AkvJxNObMvteLfBdqPZjKT825hdoVbr/Dea9Ql2Tr0iIiKSj4KTiFQohmGwIyaZZTtiWR4Vy5HTafbn3F3NdG8SQt9WNbmpeSj+zmwbnpEExzadD0oxW8By0c1z3XwgrKPt2qR6XWw3mnX3cU69IiIickkKTiJS7hmGwV/Hk2w3pd0Ry7Ez6fbnPFzN9GgaQt9WtbixWQ3n3WMpOfb8tUlH/4CTOwAj/zbewefvnVQvEmpeCy76Z1hERKQi0P/YIlIuWa0G248nsuzvWJbviCMm8XxY8nQzc2OzGvRtVYueTWvg41HG/5QZBiTsvyAorYfEowW3C2pw/tqkel2h+jW6PklERKSCUnASkXLDajXYGn2WH6Ji+XFHHLFJGfbnvN1d7GGpR9MQvN3L8J8vw4ATWy+40ewfkHY6/zYmM4RG5Ha8i4SwLuBfq+xqFBERkVKl4CQiTmWxGmw+coblO+JYviOWk8nnrwPycXfh5hah3BphC0uebmXcdtuSDTuWwO+zIH5n/udcPaFOh9yOd5FQtxN4+pdtfSIiIlJmFJxEpMxZrAabDp9hWVQsP+6M41TK+bDk5+HKLS1CubVVLa5vHFz2YQkgKw22LYT1b0NStG2dmw80uP789Um124BrObkHlIiIiJQ6BScRKRM5FisbD5/hh6hYft4ZR0Jqlv05f09XbmlRk37X1qRbo2A8XJ10Q9e0M/DnHNj43vlT8XxCoPNo6DgKvIKcU5eIiIg4nYKTiJSabIuVPw6eZvmOWH7aeZIz586HpUBvN3rlzix1uyYYd1ez8wpNOg5/zIYt8yE7915QQfWh62PQ5l5w83JebSIiIlIuKDiJiENl5Vj5/WACy6Ni+XnXSRLTsu3PVfNxp3dL2zVLkddUx83FiWEJ4NRe2/VLfy8Ga45tXWgruO4JaDFArcJFRETETr8ViMhVy8yx8PuBBH74O44Vu+JIzsixPxfs607vljXp26oWnRtUw9XZYQng2J/w2xuw94fz6+pfbwtM19ykluEiIiJSgIKTiFyRjGwL6/bbZpZW7D5JSr6w5MGtEbaw1KlBNVzM5SCIGAYc+MUWmI7+nrvSBM36wXVPQt0OTi1PREREyjcFJxEptoxsC6v3nmL5jlhW7o4nNfN8WAr19+DWiFrcGlGTDvXLSVgCsOTAzqXw+0w4ucO2zuwGrYdA17EQ0sSp5YmIiEjFoOAkIpeUnmVh1d54lkXF8uueeNKyLPbnagV4cmtELfq2qkm7ekGYy0tYAltL8e2fwvo3ITG3pbi7L7S/D7o8AgF1nFqeiIiIVCwKTiJSwLnMHHtYWrXnFOnZ58NSnUAv+raqya2tatGmbmD5CksA6WdhU15L8QTbOu/g8y3Fvas5tz4RERGpkBScRASA1MwcVu4+yfKoOFbviycj22p/LqyaF30jatG3VS2urRuAqTw2T0g+AX+8Y2spnpVqWxdYD7o+bmsp7u7t1PJERESkYlNwEqnCkjOyWbn7JMui4liz7xRZOefDUnh1b/q2qkXfiFpE1PEvn2EJ4NQ+WD8L/loM1tzW56ER0O0JaDlQLcVFRETEIfQbhUgVk5SezS+7TrIsKpZ1+xPIspwPSw2Dfejbqha3tqpJi1rlOCwBHN9s65C35wfAsK0L72brkNfoZrUUFxEREYdScBKpIhJSM5mybA/f/RVDtsWwr29Uw9c2s9SqJk1D/cp3WDIMOLgSfpsJR9adX9+0n+0eTGGdnFWZiIiIVHIKTiKVnGEYfLn5OK8u301imu1Utqahftzaqib9WtWicaifkyssBksO7PrG1lI8Lsq2zuwK1w6xXcNUo5kzqxMREZEqQMFJpBI7eCqV55dEsfHwGQCa1/LnlYERtKsX5OTKiik7Pbel+Ftw9ohtnZuPraV45CMQUNeZ1YmIiEgVouAkUgll5liYveog764+SJbFipebC0/e0piR3Rrg6mJ2dnmXl54If+a2FD93yrbOqxp0+Sd0fEAtxUVERKTMKTiJVDIbDp3m+aVRHDp1DoAeTUP4T/8IwqpVgHbcybGw4R3YPB+yUmzrAupB1zHQ9v/A3cep5YmIiEjVpeAkUkkkpmXx6rLdfLH5OADBvh5MuqMF/VrVKt8NHwASDuS2FF8ElizbuhotbC3FIwaBi5tTyxMRERFRcBKp4AzD4JvtMbz8v92cPmcLHfd0rsdzfZoR4FXOA0fMFluHvN3fY28pXi/S1lK8cS+1FBcREZFyQ8FJpAI7evocL36zg3X7EwBoXMOXKYNa0aF+Ob4GyDDg0CrbPZgOrz2/vsmttpbi9bo4rTQRERGRoig4iVRA2RYrH6w9xJsr95OZY8Xd1czYmxrz4PUNcXctp80frBbY9a0tMMX9bVtndoVWd0G3sVCjuXPrExEREbkEBSeRCmbL0bM8vySKvSdtzRO6NarOKwNaUT+4nDZOyM6Avz6D39+Es4dt69y8od0IiHwUAsOcW5+IiIhIMSg4iVQQSenZvPbjHj7bFI1hQDUfd17s15yBbeuUz+YPGUnw50ew4V04F29b5xUEnUdDp4fUUlxEREQqFAUnkXLOMAyWRcUx6fudnErJBOCu9nV5vm9zgnzcnVxdIVLiYMNs2DwPMpNt6/zrQtfHoN0wtRQXERGRCknBSaQcO342jX9/u5Nf99hmbBoG+/DKwFZEXlPdyZUV4vRB+H0W/PX5+ZbiIc1t1y+1ulMtxUVERKRCU3ASKYdyLFbm/X6EGSv2kZ5twc3FxD97NOKRHtfg6ebi7PLyi9kKv8+EXd9hbyke1jm3pXhvMJfTZhUiIiIiJaDgJFLO/H08kfFLoth5wnaaW6f61Xh1UASNavg5ubILGAYcWp3bUnzN+fWNe9sCU3ik00oTERERKQ0KTiLlRGpmDtN/3suC9UewGhDg5cbzfZtxV/swzOZy0vzBaoHd39luWhu73bbO5GI7Fa/bWAht6czqREREREqNgpNIOfDzzjgmfreT2KQMAPq3qc2E21oQ7Ovh5MpyZWfYrl1a/yacOWRb5+oF7YbbWooHhTu3PhEREZFSpuAk4kRxSRlM/G4HP+08CUC9at68PCCCG5qEOLmyXBlJtu54G2ZDqq1GPAOh88O2luI+wU4tT0RERKSsKDiJOIHFavDJhqNM+2kvqZk5uJpNPHhDQx6/sTFe7uWg+UPKSdj4ru0+TPaW4nUgcoxtlsnD17n1iYiIiJQxBSeRMrbrRDLjl0bx17FEANrWC2TKoFY0q+nv3MLA1lJ8/Vuw/TOw2O4ZRXBTuO4JiLgTXMvhfaNEREREyoCCk0gZScvKYdYv+5nz22EsVgM/D1f+1acp93YOd37zhxPbc1uKfwuG1baubkdbh7wmt6qluIiIiFR5Ck4iZWD13nhe/GYHx8+mA9C3VU0m3t6SUH9P5xVlGHB4ra2l+KFV59c37gXdnoDwrmAqJ938RERERJzM6X9Gnj17Ng0aNMDT05P27duzbt26S26fmZnJCy+8QHh4OB4eHlxzzTXMnTu3jKoVKZn4lAzGfLaV++b9yfGz6dQO8OSjER2YfW9754Umq8U2s/RhT/j4DltoMrlAq7tg9G9w75dQv5tCk4iIiMgFnDrjtHjxYp544glmz55Nt27deP/997n11lvZtWsX9erVK/Q1gwcP5uTJk3z00Uc0atSI+Ph4cnJyyrhykUuzWg0W/XmMqct3k5yRg9kE93drwFO3NMHHw4k/dvt+gp+eh9MHbI9dPaHtMOg6BoLqO68uERERkXLOZBiG4aydd+7cmXbt2vHuu+/a1zVv3pwBAwYwZcqUAtv/+OOP3H333Rw6dIhq1apd0T6Tk5MJCAggKSkJf/9ycDG+VDr7T6YwfkkUm4+eBSCijj9TBl5Lq7oBzi3s2CaY3w8sWeAZYGsn3ulh8C0nrc9FREREylhJsoHT/vSdlZXFli1bGDduXL71vXr1Yv369YW+5rvvvqNDhw689tprLFy4EB8fH+644w7+85//4OXlVehrMjMzyczMtD9OTk523EGIXCAj28I7qw7w3pqDZFsMvN1deLpXU0ZEhuPq4uSzYpNjYfEwW2hqdhsMfA88/Jxbk4iIiEgF4rTglJCQgMViITQ0NN/60NBQ4uLiCn3NoUOH+O233/D09GTp0qUkJCTwyCOPcObMmSKvc5oyZQqTJ092eP0iF1p/IIHnl0Zx5HQaADc3r8Hk/hHUCSw80JepnExY/H+QGgc1WsDA93UfJhEREZEScnpXPdNFF6AbhlFgXR6r1YrJZOLTTz8lIMB22tOMGTO48847eeeddwqddRo/fjxPPfWU/XFycjJhYWEOPAKpys6cy+LlH3axZGsMAKH+Hky+oyW9W9Ys8n1cpgwDfngKYjaDZyDc/alCk4iIiMgVcFpwCg4OxsXFpcDsUnx8fIFZqDy1atWiTp069tAEtmuiDMPg+PHjNG7cuMBrPDw88PDwcGzxUuUZhsHXW2N45YddnE3LxmSCYV3CeaZ3U/w93Zxd3nl/zoFtn4DJDHfOhWoNnV2RiIiISIXktAsv3N3dad++PStWrMi3fsWKFXTt2rXQ13Tr1o0TJ06QmppqX7dv3z7MZjN169Yt1XpF8hw6lco9H27kmS//4mxaNs1q+vH1P7vyUv+I8hWajvwGP+ZeQ3jzZGh0k3PrEREREanAnHrF+lNPPcWcOXOYO3cuu3fv5sknnyQ6OprRo0cDttPshg8fbt/+nnvuoXr16tx///3s2rWLtWvX8uyzzzJy5Mgim0OIOEpmjoU3V+6nz6x1/HHoNJ5uZsbd2ozvH7uOdvWCnF1efonH4IvhYM2x3Z+p62POrkhERESkQnPqNU5Dhgzh9OnTvPTSS8TGxhIREcGyZcsIDw8HIDY2lujoaPv2vr6+rFixgscee4wOHTpQvXp1Bg8ezMsvv+ysQ5AqYtPhMzy/NIoD8bbZzhuahPBy/wjqVfd2cmWFyEqDRfdA2mmoeS3c/qZuZisiIiJylZx6Hydn0H2cpCSS0rKZsnw3i/48BkCwrzsTbmvBHa1rl4/mDxczDFjyIER9Cd7B8NBqCFQzFBEREZHCVIj7OImUZ4Zh8N1fJ/jP/3aRkJoFwN0dwxh3azMCvd2dXN0lrH/LFprMrjB4gUKTiIiIiIMoOIlc5NiZNF74Zgdr950CoFENX14d2IpODao5ubLLOLASfploW+4zFepf59x6RERERCoRBSeRXNkWK3PWHWbWyn1kZFtxdzEz5sZGPNy9IR6uLs4u79LOHIKvRoJhhbb/Bx0fcHZFIiIiIpWKgpMIsC36LOOXRLEnLgWAyIbVeWVgBA1DKsDNYjNT4fN7ICMR6naEfjPUDEJERETEwRScpEpLychm2k97WbjhKIYBQd5uvNCvBf9oV6d8Nn+4mNUK34yGU7vBtyYMXgiuuuGziIiIiKMpOEmVZBgGP+2MY+J3OzmZnAnAoHZ1eLFfC6r5lOPmDxdbNx12fw8u7jDkE/Cv5eyKRERERColBSepck4kpvPvb3fwy+54AOpX9+aVga3o1ijYyZWV0N7lsCr3Hmb9pkNYR+fWIyIiIlKJKThJlWGxGsxff4TpP+8lLcuCm4uJ0d2v4dGejfB0K+fNHy52ah98/aBtueOD0G64c+sRERERqeQUnKRK2BGTxPglUUTFJAHQITyIVwe1okmon5MruwLpibBoKGSlQHg36DPF2RWJiIiIVHoKTlKpncvMYcaKfcz7/TBWA/w8XRl/a3Pu7hiG2VwBmj9czGqBJQ/C6QPgXxfuWgAubs6uSkRERKTSU3CSSmvl7pP8+9udxCSmA3B769pMuK05Nfw8nVzZVVj1Cuz/GVw94e5PwDfE2RWJiIiIVAkKTlLpnEzOYPL3O1kWFQdA3SAv/jMggp5Nazi5squ0c6mtix7AHW9B7bbOrUdERESkClFwkkrDajX4dONRXvtxLymZObiYTTxwXQPG3twYb/cK/laP2wHfPGJbjhwD1w52bj0iIiIiVUwF/21SxGZPXDLjl0SxLToRgNZ1A3h1UCta1g5wbmGOkHYGFt0D2WnQsCfcPNnZFYmIiIhUOQpOUqGlZ1l489f9fLj2EDlWA18PV57t3ZT/6xKOS0Vs/nAxSw58eR8kHoWg+nDnXHDRj62IiIhIWdNvYFJhrd13ihe/2UH0mTQAercMZdIdLakV4OXkyhzol4lweA24+cDdn4F3NWdXJCIiIlIlKThJhWO1GoxfEsXizccAqBXgyeQ7WtKrZU0nV+Zgfy2CP962LQ98F0JbOrceERERkSpMwUkqnDX7TrF48zHMJhjRtT5P92qKr0cleyvHbIXvHrct3/AstOjv3HpEREREqrhK9tumVAUL/jgCwP3dGjDhthbOLaY0pMbD4v8DSyY06QM9nnd2RSIiIiJVntnZBYiUxJGEc6zeewqTCYZ1CXd2OY6XkwVfDIfkGKjeGAZ9AGb9mIqIiIg4m34jkwpl4YajAPRoEkL9YB8nV1MKfhwH0X+Ahz8M/Rw8K0E7dREREZFKQMFJKoy0rBy+yG0IMTyyvnOLKQ1b5sPmjwAT/GMOBDd2dkUiIiIikkvBSSqMb7efICUjh3rVvOneJMTZ5ThW9Eb44Rnb8o0vQJPezq1HRERERPJRcJIKwTAMFqw/AsDwyHDMleHmtnmST8AXw8Cabeued/0zzq5IRERERC6i4CQVwp9HzrInLgVPNzN3tQ9zdjmOk51h66CXehJqtIT+s8FUiUKhiIiISCWh4CQVQl4L8gFt6hDg7ebcYhzFMOCHpyBmC3gGwt2fgoevs6sSERERkUIoOEm5dzI5g592xAEwLLIStSDf9AFs/xRMZrhrPlRr4OyKRERERKQICk5S7n22MZocq0HH+kG0rF1J2nMfXgc/jrct3/IfuKanc+sRERERkUtScJJyLSvHymebooFK1II8MRq+HAGGBVoNhshHnV2RiIiIiFyGgpOUaz/ujONUSiY1/Dzo3bKms8u5ellpsOgeSDsNtVrDHW+qGYSIiIhIBaDgJOXawtymEEM71cPdtYK/XQ0DvhsDcVHgHQxDPgU3L2dXJSIiIiLFUMF/E5XKbOeJJP48chZXs4l7OtdzdjlXb/2bsONrMLvC4I8hsBK1VRcRERGp5BScpNxa+MdRAPpE1CTU39PJ1VylA7/AL5Nsy32mQv1uTi1HREREREpGwUnKpcS0LL7ZHgPAiK71nVvM1Tp9EL4aCYYV2g6Djg84uyIRERERKSEFJymXvtx8nIxsK81q+tEhPMjZ5Vy5zBRbM4iMJKjbEfpNVzMIERERkQpIwUnKHavVYOEG22l6I7rWx1RRg4bVCktHw6k94FsTBi8EVw9nVyUiIiIiV0DBScqdNftOEX0mDX9PV/q3qe3scq7cutdhz//AxR2GfAL+tZxdkYiIiIhcIQUnKXcW5LYgH9whDG93V+cWc6X2LINVr9iW+82AsI7OrUdERERErkqJg1P9+vV56aWXiI6OLo16pIo7knCO1XtPAfB/XcKdXM0VOrUXljxkW+70ELQb5tx6REREROSqlTg4Pf3003z77bc0bNiQW265hUWLFpGZmVkatUkV9EnutU09moZQP9jHydVcgfRE+HwoZKVA+HXQ+1VnVyQiIiIiDlDi4PTYY4+xZcsWtmzZQosWLXj88cepVasWY8aMYevWraVRo1QRaVk5fLH5GAAjIus7t5grYbXA1w/AmYMQEAaDF4CLm7OrEhEREREHuOJrnFq3bs2sWbOIiYlh4sSJzJkzh44dO9K6dWvmzp2LYRiOrFOqgG+3nyA5I4d61bzp3iTE2eWU3K8vw4EV4OplawbhE+zsikRERETEQa74yvvs7GyWLl3KvHnzWLFiBV26dGHUqFGcOHGCF154gV9++YXPPvvMkbVKJWYYBgvWHwFgWJdwzOYK1oJ8xxL4bYZt+Y63oHYbp5YjIiIiIo5V4uC0detW5s2bx+eff46LiwvDhg3jjTfeoFmzZvZtevXqxQ033ODQQqVy23z0LHviUvB0M3NXh7rOLqdk4qLg20dty10fg2vvcm49IiIiIuJwJQ5OHTt25JZbbuHdd99lwIABuLkVvIajRYsW3H333Q4pUKqGvNmmAW3qEOjt7txiSiLtDCy6B7LT4Job4ebJzq5IREREREpBiYPToUOHCA+/dJtoHx8f5s2bd8VFSdVyMjmDH3fEATAssgK1ILfkwJcjIDEagurDPz4Cs4uzqxIRERGRUlDi5hDx8fFs3LixwPqNGzeyefNmhxQlVctnG6PJsRp0rB9Ey9oBzi6n+Fb8Gw6vBTcfuPtz8K7m7IpEREREpJSUODg9+uijHDt2rMD6mJgYHn30UYcUJVVHVo6VzzbZbqY8rCK1IN/+OWx4x7Y88D0IbeHcekRERESkVJU4OO3atYt27doVWN+2bVt27drlkKKk6vhpZxynUjIJ8fOgT8uazi6neGK2wvdjbcs3/Ata3OHcekRERESk1JU4OHl4eHDy5MkC62NjY3F1veLu5lJFffzHEQDu6VQPd9crvq1Y2UmNh8X/B5ZMaHIr9Bjv7IpEREREpAyU+DfVW265hfHjx5OUlGRfl5iYyPPPP88tt9zi0OKkctt5Iok/j5zF1Wzins71nF3O5eVkwRfDITkGgpvAoA/AXAHCnoiIiIhctRL/1jd9+nSOHTtGeHg4PXv2pGfPnjRo0IC4uDimT59e4gJmz55NgwYN8PT0pH379qxbt67IbVevXo3JZCrwsWfPnhLvV5xv4R9HAegdUZNQf08nV1MMPz4H0X+Ahz/c/Rl4+ju7IhEREREpIyU+t65OnTr8/ffffPrpp/z11194eXlx//33M3To0ELv6XQpixcv5oknnmD27Nl069aN999/n1tvvZVdu3ZRr17RMxB79+7F3//8L60hISElPQxxsqS0bL7ZHgPAiIrQFGLzPNg8FzDBP+ZAcGNnVyQiIiIiZeiKLkry8fHhoYceuuqdz5gxg1GjRvHAAw8AMHPmTH766SfeffddpkyZUuTratSoQWBg4FXvX5znyy3HyMi20qymHx3rBzm7nEuL3gDLnrUt3/giNOnt3HpEREREpMxdcTeHXbt2ER0dTVZWVr71d9xRvA5jWVlZbNmyhXHjxuVb36tXL9avX3/J17Zt25aMjAxatGjBiy++SM+ePYvcNjMzk8zMTPvj5OTkYtUnpcdqNfg49zS9EV3rYzKZnFzRJSSfgMXDwJoNLfrD9U87uyIRERERcYISB6dDhw4xcOBAoqKiMJlMGIYBYP/l12KxFGuchIQELBYLoaGh+daHhoYSFxdX6Gtq1arFBx98QPv27cnMzGThwoXcdNNNrF69mhtuuKHQ10yZMoXJkycX9/CkDKzZd4roM2n4ebrSv01tZ5dTtOwMWHQvnIuHGi2h/2wozyFPREREREpNiZtDjB07lgYNGnDy5Em8vb3ZuXMna9eupUOHDqxevbrEBVw822AYRpEzEE2bNuXBBx+kXbt2REZGMnv2bPr168frr79e5Ph5HQDzPgq7ea+UrbwW5IM7hOHtXk5b2BsG/O9JOLEVvILg7k/Bw9fZVYmIiIiIk5T4t9Y//viDX3/9lZCQEMxmM2azmeuuu44pU6bw+OOPs23btmKNExwcjIuLS4HZpfj4+AKzUJfSpUsXPvnkkyKf9/DwwMPDo9jjSek6knCO1ftOATCsS7iTq7mEje/DX5+ByQx3zoNqDZxdkYiIiIg4UYlnnCwWC76+tr+8BwcHc+LECQDCw8PZu3dvscdxd3enffv2rFixIt/6FStW0LVr12KPs23bNmrVqlXs7cW5PtlwFMOAHk1DqB/s4+xyCnd4Lfz0vG2518twTdHX0ImIiIhI1VDiGaeIiAj+/vtvGjZsSOfOnXnttddwd3fngw8+oGHDhiUa66mnnmLYsGF06NCByMhIPvjgA6Kjoxk9ejRgO80uJiaGjz/+GLB13atfvz4tW7YkKyuLTz75hK+//pqvv/66pIchTpCWlcMXm22nSpbbFuRnj8IXI8CwwLVDoMsjzq5IRERERMqBEgenF198kXPnzgHw8ssvc9ttt3H99ddTvXp1Fi9eXKKxhgwZwunTp3nppZeIjY0lIiKCZcuWER5uO4UrNjaW6Oho+/ZZWVk888wzxMTE4OXlRcuWLfnhhx/o27dvSQ9DnODb7SdIzsihXjVvujcph/feykqzNYNIPwO12sDts9QMQkREREQAMBl5bfGuwpkzZwgKCirfbaVzJScnExAQQFJSUr6b6ErpMgyDvm/+xu7YZF7o25wHbyjZ7GSpMwz4aiTsXAI+IfDQagio6+yqRERERKQUlSQblOgap5ycHFxdXdmxY0e+9dWqVasQoUmcZ/PRs+yOTcbTzcxdHcphIPl9li00mV1h8McKTSIiIiKST4mCk6urK+Hh4cW+V5NIngXrjwAwoE0dAr3dnVvMxfb/Ar9Msi3f+l8IL35zEhERERGpGkrcVe/FF19k/PjxnDlzpjTqkUooPjmDH3fY2s4PiyxnLchPH4SvRwIGtBsBHUY5uyIRERERKYdK3BzizTff5MCBA9SuXZvw8HB8fPK3lN66davDipPK4bNN0eRYDTqEB9GydoCzyzkvMwUW3QMZSVC3E/SdpmYQIiIiIlKoEgenAQMGlEIZUlll5Vj5dKOtM+LwrvWdW8yFrFZYOhpO7QG/WjBkIbjqRskiIiIiUrgSB6eJEyeWRh1SSf20M45TKZmE+HnQp2VNZ5dz3trXYM//wMUdhnwCfuWoNhEREREpd0p8jZNISXz8xxEAhnaqh7trOXm77fkBVk+xLd/2BtTt4Nx6RERERKTcK/GMk9lsvmTrcXXckzy7TiTz55GzuJpN3Nu5nrPLsYnfA0sesi13ehja/p9z6xERERGRCqHEwWnp0qX5HmdnZ7Nt2zYWLFjA5MmTHVaYVHwLNxwBoHdETUL9PZ1bDEB6IiwaClmpUP966P2KsysSERERkQqixMGpf//+BdbdeeedtGzZksWLFzNqlNo5CySlZbN0WwwAIyLrO7cYAKsFvh4FZw5BQBjcNR9c3JxdlYiIiIhUEA676KRz58788ssvjhpOKrgvtxwjI9tKs5p+dKwf5Oxy4Nf/wIFfwNUL7v4UfIKdXZGIiIiIVCAOCU7p6em89dZb1K1b1xHDSQVntRos3HAUgOGR9S95TVyZ2PE1/PaGbbn/21CrtXPrEREREZEKp8Sn6gUFBeX7RdgwDFJSUvD29uaTTz5xaHFSMa3Zf4qjp9Pw83RlQNvazi0mLgq+edS23PVxaHWnc+sRERERkQqpxMHpjTfeyBeczGYzISEhdO7cmaCgcnBKljjdx+uPADC4Qxje7iV+iznOudPw+T2Qkw7X3Ag3T3JeLSIiIiJSoZX4t9r77ruvFMqQyuJIwjlW7zsFwLAu4c4rxJIDX46ApGgIagB3zgWzi/PqEREREZEKrcTXOM2bN48vv/yywPovv/ySBQsWOKQoqbg+2XAUw4DuTUKoH+zjvEJ+fhGOrAM3Hxj6OXhpNlRERERErlyJg9PUqVMJDi7YkaxGjRq8+uqrDilKKqb0LAtfbD4GwIiuTpxt2v4ZbHzXtjzofajR3Hm1iIiIiEilUOLgdPToURo0aFBgfXh4ONHR0Q4pSiqmb7fHkJyRQ71q3nRvUsM5RRzfAt8/YVvu/hw0v905dYiIiIhIpVLi4FSjRg3+/vvvAuv/+usvqlev7pCipOIxDIMFf9hakA/rEo6L2QktyFNOwuL/A0smNO0L3ceVfQ0iIiIiUimVODjdfffdPP7446xatQqLxYLFYuHXX39l7Nix3H333aVRo1QAm4+eZXdsMh6uZu7q4IT7eeVkwRfDIeUEBDeBge+D2WH3dxYRERGRKq7EXfVefvlljh49yk033YSrq+3lVquV4cOH6xqnKuzj3NmmAW3qEOjtXvYFLP8XHNsAHgFw9+fg6V/2NYiIiIhIpVXi4OTu7s7ixYt5+eWX2b59O15eXrRq1YrwcCc2AxCnik/OYHlULADDIp3wPtg8F7bMA0zwjzkQ3KjsaxARERGRSu2K707auHFjGjdu7MhapIL6bFM0OVaDDuFBRNQJKNudH/0Dlv3LtnzTBGjSq2z3LyIiIiJVQokvArnzzjuZOnVqgfXTpk3jrrvuckhRUnFk5Vj5dKOtm+LwrvXLdudJMbbrmqzZ0GIAXPdU2e5fRERERKqMEgenNWvW0K9fvwLr+/Tpw9q1ax1SlFQcP+2M41RKJsG+HvRpWbPsdpydAYvvhXPxEBoBA2aDyQmd/ERERESkSihxcEpNTcXdveDF/25ubiQnJzukKKk4FuY2hbincz3cXcuoi51hwP+ehBPbwCsI7v4U3H3KZt8iIiIiUiWV+DfdiIgIFi9eXGD9okWLaNGihUOKkoph14lkNh05g6vZxL2d65Xdjg+thr8+A5ML3DUfguqX3b5FREREpEoqcXOICRMm8I9//IODBw9y4403ArBy5Uo+++wzvvrqK4cXKOXXwg1HAOgdUZNQf8+y2alhwKpXbMsdH4CGPcpmvyIiIiJSpZU4ON1xxx188803vPrqq3z11Vd4eXnRunVrfv31V/z9de+cqiIpLZul22IAGN6lDFuQ718Bx/8EVy+4/umy26+IiIiIVGlX1I68X79+9gYRiYmJfPrppzzxxBP89ddfWCwWhxYo5dOXW46RkW2lWU0/OjWoVjY7NQxY9bJtudMD4BdaNvsVERERkSrviq/m//XXX/m///s/ateuzdtvv03fvn3ZvHmzI2uTcspqNVi4wdYUYnhkfUxl1c1uz/8g9i9w94VuT5TNPkVEREREKOGM0/Hjx5k/fz5z587l3LlzDB48mOzsbL7++ms1hqhC1uw/xdHTafh5ujKgbe2y2anVCqtetS13Hg0+wWWzXxERERERSjDj1LdvX1q0aMGuXbt46623OHHiBG+99VZp1ibl1MfrjwBwV/swvN2v6GzPktu1FOJ3gUcAdB1TNvsUEREREclV7N96f/75Zx5//HH++c9/0rhx49KsScqxo6fPsXrfKQCGRZZRUwhLDqyaYluOfNR27yYRERERkTJU7BmndevWkZKSQocOHejcuTNvv/02p06dKs3apBz6ZMNRDAO6NwmhQXAZ3XQ26ks4vd8WmLr8s2z2KSIiIiJygWIHp8jISD788ENiY2N5+OGHWbRoEXXq1MFqtbJixQpSUlJKs04pB9KzLCz+8xgAI7qW1WxTNqyZalvuNhY81fJeRERERMpeibvqeXt7M3LkSH777TeioqJ4+umnmTp1KjVq1OCOO+4ojRqlnPh2ewzJGTnUq+ZN9yY1yman2z+Ds0fAJwQ6PVQ2+xQRERERucgVtyMHaNq0Ka+99hrHjx/n888/d1RNUg4ZhsGCP2wtyP+vSz1czGXQgjwnE9ZOsy1f9yS4l9GpgSIiIiIiF7mq4JTHxcWFAQMG8N133zliOCmHthw9y+7YZDxczQzuEFY2O936MSQdA79a0GFk2exTRERERKQQDglOUvnlzTYNaFOHQG/30t9hdjqsfd22fP3T4OZV+vsUERERESmCgpNcVnxyBsujYoEybEG+eS6kxkFAGLQbXjb7FBEREREpgoKTXNZnm6LJsRq0Dw8iok5A6e8w6xz89oZt+YZnwdWj9PcpIiIiInIJCk5ySdkWK59tjAZgeFnNNm36AM6dgqD60OaestmniIiIiMglKDjJJf20M474lEyCfT24NaJW6e8wIxl+n2Vb7j4OXNxKf58iIiIiIpeh4CSX9PF6W1OIezrXw921DN4uG96F9LMQ3ASuHVz6+xMRERERKQYFJynS7thkNh05g4vZxD2d6pX+DtPPwh/v2JZ7jAOzS+nvU0RERESkGBScpEgf57Yg79OyJjUDPEt/h+vfhswkqNESWgws/f2JiIiIiBSTgpMUKiktm2+2xQBl1BTiXAJsfM+23HM8mPXWFBEREZHyQ7+dSqG+3HKM9GwLzWr60alBtdLf4e8zISsVarWGZreV/v5EREREREpAwUkKsFoNFm6wnaY3PLI+JpOpdHeYchI2zbEt93wRSnt/IiIiIiIlpOAkBazZf4qjp9Pw83RlQNvapb/D32ZATjrU7QiNbyn9/YmIiIiIlJDTg9Ps2bNp0KABnp6etG/fnnXr1hXrdb///juurq60adOmdAusghbmNoW4q30Y3u6upbuzpOOwea5tuecLmm0SERERkXLJqcFp8eLFPPHEE7zwwgts27aN66+/nltvvZXo6OhLvi4pKYnhw4dz0003lVGlVcfR0+dYtTcegGFl0RRi7etgyYLwbtCwR+nvT0RERETkCjg1OM2YMYNRo0bxwAMP0Lx5c2bOnElYWBjvvvvuJV/38MMPc8899xAZGVlGlVYdn2w4imFA9yYhNAj2Kd2dnT0C2xbaljXbJCIiIiLlmNOCU1ZWFlu2bKFXr1751vfq1Yv169cX+bp58+Zx8OBBJk6cWKz9ZGZmkpycnO9DCpeeZWHxn8eAMmpBvmYaWHOgYU+o36309yciIiIicoWcFpwSEhKwWCyEhobmWx8aGkpcXFyhr9m/fz/jxo3j008/xdW1eNfeTJkyhYCAAPtHWFjYVddeWX33VwzJGTmEVfOiR9Mapbuz0wfhr89tyze+WLr7EhERERG5Sk5vDnFxq2vDMAptf22xWLjnnnuYPHkyTZo0Kfb448ePJykpyf5x7Nixq665MjIMgwXrbU0hhnUJx8VcyqfNrZ4KhgUa94a6HUp3XyIiIiIiV6mUW6YVLTg4GBcXlwKzS/Hx8QVmoQBSUlLYvHkz27ZtY8yYMQBYrVYMw8DV1ZWff/6ZG2+8scDrPDw88PDwKJ2DqES2HD3LrthkPFzNDO5QyrNy8bsh6kvbcs/nS3dfIiIiIiIO4LQZJ3d3d9q3b8+KFSvyrV+xYgVdu3YtsL2/vz9RUVFs377d/jF69GiaNm3K9u3b6dy5c1mVXiktyG1B3r9NbQK93Ut3Z6unAAY0vx1qtyndfYmIiIiIOIDTZpwAnnrqKYYNG0aHDh2IjIzkgw8+IDo6mtGjRwO20+xiYmL4+OOPMZvNRERE5Ht9jRo18PT0LLBeSiY+OYPlUbEADI+sX7o7i/0bdn0LmKCHZptEREREpGJwanAaMmQIp0+f5qWXXiI2NpaIiAiWLVtGeLito1tsbOxl7+kkV+/zTcfIsRq0Dw8iok5A6e5s9RTb54hBENqidPclIiIiIuIgJsMwDGcXUZaSk5MJCAggKSkJf39/Z5fjdNkWK92m/kp8Siaz7m5D/zZ1Sm9nMVvgwxvBZIZHN0Fw49Lbl4iIiIjIZZQkGzi9q544108744hPySTY14NbI2qV7s5+fcX2+dohCk0iIiIiUqEoOFVxH+e2IL+nUxjurqX4dojeAAdXgtkVuv+r9PYjIiIiIlIKFJyqsN2xyWw6cgYXs4l7OoeX7s5+fdn2uc29UK1h6e5LRERERMTBFJyqsI9zW5D3aVmTmgGepbejQ2vgyDpwcYcbni29/YiIiIiIlBIFpyoqKS2bb7bFADA8shRnmwwDVuVe29RuBASW8s11RURERERKgYJTFfXllmOkZ1toGupHpwbVSm9HB1bCsY3g6gnXP116+xERERERKUUKTlWQ1WrwyQbbaXrDu4ZjMplKZ0eGAatyr23q+AD4l3LXPhERERGRUqLgVAWt3X+KI6fT8PN0ZUBp3rdp73I4sQ3cfKDbE6W3HxERERGRUqbgVAXlNYW4q30YPh6upbMTqxVWvWpb7vwQ+IaUzn5ERERERMqAglMVE306jVV74wEYVppNIXZ/CyejwN0Puj5eevsRERERESkDCk5VzCcbj2IYcEOTEBoE+5TOTqwWWDXFthz5KHiXYvMJEREREZEyoOBUhaRnWVj85zEARpTmbNOOryFhL3gGQuQjpbcfEREREZEyouBUhXz3VwxJ6dmEVfOiR9MapbMTSw6snmpb7voYeAaUzn5ERERERMqQglMVYRgGC9bbmkL8X+dwXMyl1IL870Vw5iB4V4fOo0tnHyIiIiIiZUzBqYrYcvQsu2KT8XA1M7hDWOnsJCcLVv/XttztCfDwLZ39iIiIiIiUMQWnKiKvBXn/NrUJ8nEvnZ1sWwhJ0eAbarvhrYiIiIhIJaHgVAXEJ2ewLCoWgOGR9UtnJ9kZsPZ12/L1T4O7d+nsR0RERETECRScqoDPNx0jx2rQPjyIiDql1Kxhy3xIOQH+daDdiNLZh4iIiIiIkyg4VXLZFiufbrSdpje8tFqQZ6XBuum25RueATfP0tmPiIiIiIiTKDhVcj/vPEl8SibBvh7cGlGrdHby54dwLh4Cw6HN/5XOPkREREREnEjBqZJb8McRAO7pFIa7ayl8uzNT4LeZtuXuz4FrKTWeEBERERFxIgWnSmx3bDKbDp/BxWzins6ldJrexvcg/QxUbwTXDimdfYiIiIiIOJmCUyWW14K8d8tQagaUwnVH6Ymw/i3bcvdx4OLq+H2IiIiIiJQDCk6VVFJ6Nt9siwFKsQX5H+9ARhKENIOIQaWzDxERERGRckDBqZL6astx0rMtNA31o3ODao7fQdoZ2PCubbnn82B2cfw+RERERETKCQWnSshqNViY2xRieNdwTCaT43fy+yzISoGaraDZ7Y4fX0RERESkHFFwqoTW7j/FkdNp+Hm4MqBNHcfvIDUeNn1gW+75Apj1NhIRERGRyk2/8VZCeU0h7uxQFx+PUmjY8NtMyE6DOu2hSR/Hjy8iIiIiUs4oOFUy0afTWLU3HoBhXUqhBXnyCfhzjm255/NQGqcBioiIiIiUMwpOlcwnG49iGHBDkxAahvg6fgfrpoMlE+pFwjU3OX58EREREZFySMGpEknPsrD4z2MAjIgshdmmxGjYssC23PMFzTaJiIiISJWh4FSJfPdXDEnp2dQN8qJH0xqO38HaaWDNhgY3QIPrHT++iIiIiEg5peBUSRiGwYL1tqYQw7qE42J28GzQ6YOw7VPbcs8XHTu2iIiIiEg5p+BUSWyNPsuu2GQ8XM0M7hDm+B2seQ0MCzS6Bep1dvz4IiIiIiLlmIJTJZE329S/TW2CfNwdO/ipfRD1hW255/OOHVtEREREpAJQcKoE4lMyWL4jFoDhkfUdv4PVU8CwQtN+UKed48cXERERESnnFJwqgUWbjpFtMWhXL5CIOgGOHTxuB+xcYlvWbJOIiIiIVFEKThVctsXKpxttp+mN6Frf8TtYPcX2ucUAqBnh+PFFRERERCoABacK7uedJzmZnEmwrwe3RtRy7OAntsGe/4HJrNkmEREREanSFJwquAV/HAFgaKcw3F0d/O1c9artc6u7IKSpY8cWEREREalAFJwqsD1xyWw6fAYXs4l7Otdz7ODHNsH+n8HkAt2fc+zYIiIiIiIVjIJTBfbxH7Zrm3q3DKVWgJdjB1/1iu1zm6FQ/RrHji0iIiIiUsEoOFVQSenZLN0aA5RCC/Ijv8Gh1WB2gxv+5dixRUREREQqIAWnCuqrLcdJz7bQNNSPzg2qOW5gw4Bfc2eb2g2HoHDHjS0iIiIiUkEpOFVAVqvBwtymEMMiwzGZTI4b/NAqiF4PLh5wwzOOG1dEREREpAJTcKqA1h1I4MjpNPw8XBnYto7jBr5wtqnDSPCv7bixRUREREQqMAWnCujj9UcAuLNDXXw8XB038L6fIGYzuHrBdU86blwRERERkQpOwamCiT6dxq974wEY1sWB1x8ZxvlOep0fAr9Qx40tIiIiIlLBKThVMJ9sPIphwPWNg2kY4uu4gXd/D3F/g7svdB3ruHFFRERERCoBBacKJD3LwuI/jwEwwpEtyK1WWD3Fttzln+BT3XFji4iIiIhUAgpOFcj3f50gKT2bukFe9GxWw3ED71wC8bvAIwAiH3XcuCIiIiIilYTTg9Ps2bNp0KABnp6etG/fnnXr1hW57W+//Ua3bt2oXr06Xl5eNGvWjDfeeKMMq3UewzCYn9sUYliXcFzMDmpBbsk5P9vUdQx4BTlmXBERERGRSsSBLdlKbvHixTzxxBPMnj2bbt268f7773Prrbeya9cu6tWrV2B7Hx8fxowZw7XXXouPjw+//fYbDz/8MD4+Pjz00ENOOIKyszX6LLtik/FwNTO4Q5jjBo76Ak4fAK9q0Hm048YVEREREalETIZhGM7aeefOnWnXrh3vvvuufV3z5s0ZMGAAU6ZMKdYYgwYNwsfHh4ULFxZr++TkZAICAkhKSsLf3/+K6naGxz/fxnd/neCu9nWZdldrxwxqyYa3O8DZI3DzZLjuCceMKyIiIiJSAZQkGzjtVL2srCy2bNlCr1698q3v1asX69evL9YY27ZtY/369XTv3r3IbTIzM0lOTs73UdHEp2SwfEcsACO61nfcwNs/tYUmnxDo9KDjxhURERERqWScFpwSEhKwWCyEhua/X1BoaChxcXGXfG3dunXx8PCgQ4cOPProozzwwANFbjtlyhQCAgLsH2FhDjzNrYws2nSMbItBu3qBRNQJcMygOZmwZppt+bqnwN3HMeOKiIiIiFRCTm8OYTLlb3JgGEaBdRdbt24dmzdv5r333mPmzJl8/vnnRW47fvx4kpKS7B/Hjh1zSN1lJdti5dONRwEHzzZtWQDJx8GvFnQY6bhxRUREREQqIac1hwgODsbFxaXA7FJ8fHyBWaiLNWjQAIBWrVpx8uRJJk2axNChQwvd1sPDAw8PD8cU7QQ/7zzJyeRMgn3d6RNR0zGDZqfDuum25RueATdPx4wrIiIiIlJJOW3Gyd3dnfbt27NixYp861esWEHXrl2LPY5hGGRmZjq6vHLj4z+OADC0Uz08XF0cM+ifH0FqHATUg7bDHTOmiIiIiEgl5tR25E899RTDhg2jQ4cOREZG8sEHHxAdHc3o0ba22OPHjycmJoaPP/4YgHfeeYd69erRrFkzwHZfp9dff53HHnvMacdQmvbEJbPx8BlczCbu6VywPfsVyUyF33LvfdX9WXB1d8y4IiIiIiKVmFOD05AhQzh9+jQvvfQSsbGxREREsGzZMsLDwwGIjY0lOjravr3VamX8+PEcPnwYV1dXrrnmGqZOncrDDz/srEMoVR//Ybu2qXfLUGoFeDlm0E3vQ1oCBDWA1oWf3igiIiIiIvk59T5OzlBR7uOUlJ5Nl1dXkp5t4fMHuxB5TfWrHzQjCWZeCxmJMPADaD3k6scUEREREamgKsR9nOTSvt5ynPRsC01CfenSsJpjBt3wri00BTeFVnc6ZkwRERERkSpAwakcsloNFm6wnaY3PLL+ZduzF0vaGfjjHdtyj3FgdlCjCRERERGRKkDBqRxadyCBwwnn8PNwZWDbOo4Z9I+3ITMZQiOgxQDHjCkiIiIiUkUoOJVDH68/AsA/2tfFx8MB/TvOJcCG92zLPcaDWd92EREREZGS0G/Q5cyxM2n8ujcegGGR4Y4Z9Lc3IPsc1GoDzfo5ZkwRERERkSpEwamc+WTDUQwDrm8czDUhvlc/YEoc/DnHtnzji+CI66VERERERKoYBadyJD3LwqI/jwEwIrK+YwZdNwNyMqBuJ2h0s2PGFBERERGpYhScypHv/zpBUno2dYO86NmsxtUPmHgMtsyzLd/4gmabRERERESukIJTOWEYBgv+OALA/3UJx8XsgJCz7nWwZEH4ddCg+9WPJyIiIiJSRSk4lRNboxPZeSIZD1czQzqEXf2AZw7Dtk9sy5ptEhERERG5KgpO5cTHubNNd7SuTZCP+9UPuHYaWHPgmhshvOvVjyciIiIiUoUpOJUD8SkZLIuKBWBE1/pXP2DCAfjrc9tyzxevfjwRERERkSpOwakcWLTpGNkWg7b1AomoE3D1A66eAoYVmvSBuu2vfjwRERERkSpOwcnJsi1WPtsYDTioBfnJXbDja9tyz+evfjwREREREVFwcrYVu04Sl5xBsK87t7aqefUDrp4CGND8DqjV+urHExERERERBSdnW7D+CABDO9XDw9Xl6gaL/Rt2fweYNNskIiIiIuJACk5OtCcumY2Hz+BiNnFP53pXP+CqV22fI/4BNZpf/XgiIiIiIgIoODnVF38eB6BXi1BqBXhd3WDHN8O+5WAyQ49xDqhORERERETyuDq7gKrsX32aElHHn2tCfK9+sFWv2D63HgrBja9+PBERERERsVNwciJPNxcGtat79QMd/QMO/gpmV+j+r6sfT0REyj2LxUJ2drazyxARKffc3d0xm6/+RDsFp4rOMODXl23Lbf8Pguo7tRwRESldhmEQFxdHYmKis0sREakQzGYzDRo0wN3d/arGUXCq6A6vgaO/gYs73PCss6sREZFSlheaatSogbe3NyaTydkliYiUW1arlRMnThAbG0u9evWu6t9MBaeKzDDg19xrm9rfBwEOOO1PRETKLYvFYg9N1atXd3Y5IiIVQkhICCdOnCAnJwc3N7crHkdd9SqyA7/A8U3g6gnXP+3sakREpJTlXdPk7e3t5EpERCqOvFP0LBbLVY2j4FRRGcb5TnodHwC/ms6tR0REyoxOzxMRKT5H/Zup4FRR7V0GJ7aBmw9c96SzqxERERERqdQUnCoiq/X8tU2dHwafYOfWIyIiUo4dOXIEk8nE9u3bnV2K00yaNIk2bdo4u4xSt3r1akwmU4m7Tp4+fZoaNWpw5MiRq9q/yWTim2++uar65s+fT2Bg4CX3U1bfz8sdT3nRsWNHlixZUur7UXCqiHZ9A/E7wcMfuj7m7GpERESqrPnz52MymejTp0++9YmJiZhMJlavXu2cwkooL1zWqFGDlJSUfM+1adOGSZMmFXus4vziX95MmTKF22+/nfr16wO2INWnTx9q166Nh4cHYWFhjBkzhuTk5KvaT9euXYmNjSUgIMABVUueCRMmMG7cOKxWa6nuR8GporFaYPVU23Lko+Bdzbn1iIiIXIGsrCxnl1Ail6rX1dWVlStXsmrVqjKsyMbRX8eUlBRef/11h45ZVq70htDp6el89NFHPPDAA/Z1ZrOZ/v37891337Fv3z7mz5/PL7/8wujRo6+qRnd3d2rWrKnrFEugOO/xfv36kZSUxE8//VSqtSg4VTRRX0HCXvAMhC7/dHY1IiLiZIZhkJaV45QPwzCKXWePHj0YM2YMTz31FMHBwdxyyy0A7Nq1i759++Lr60toaCjDhg0jISHB/rqUlBTuvfdefHx8qFWrFm+88QY9evTgiSeesG9T2OlEgYGBzJ8/v9BaLBYLo0aNokGDBnh5edG0aVNmzZqVb5v77ruPAQMGMGXKFGrXrk2TJk2KPDYfHx/uv/9+xo0bd8mvQUxMDEOGDCEoKIjq1avTv3//fKeGXXxcAAMGDOC+++6zP65fvz4vv/wy9913HwEBATz44IMAPPfcczRp0gRvb28aNmzIhAkTrihIPPbYY8yYMYP4+Pgit8nKyuJf//oXderUwcfHh86dO9tn1lavXs39999PUlISJpMJk8nEpEmTeOutt2jVqpV9jG+++QaTycQ777xjX9e7d2/Gjx9vf/zuu+9yzTXX4O7uTtOmTVm4cGG+OkwmE++99x79+/fHx8eHl19+uUCt6enp9OvXjy5dunDmzJlCj2f58uW4uroSGRlpXxcUFMQ///lPOnToQHh4ODfddBOPPPII69atu/QXEEhISGDgwIF4e3vTuHFjvvvuO/tzhZ2qN3/+fOrVq4e3tzcDBw7k9OnTBcacOnUqoaGh+Pn5MWrUKDIyMgpsM2/ePJo3b46npyfNmjVj9uzZ9ufyZhSXLFlCz5498fb2pnXr1vzxxx+XPZ4LXep9duTIEcxmM5s3b873mrfeeovw8HD7vxeX+5kv6t+KSZMmUa9ePTw8PKhduzaPP/64/TUuLi707duXzz//vETHU1K6j1NFYsmGNbmzTd0eB09N84qIVHXp2RZa/Lt0/8palF0v9cbbvfi/SixYsIB//vOf/P777xiGQWxsLN27d+fBBx9kxowZpKen89xzzzF48GB+/fVXAJ566il+//13vvvuO0JDQ/n3v//N1q1br+r6DqvVSt26dfniiy8IDg5m/fr1PPTQQ9SqVYvBgwfbt1u5ciX+/v6sWLHisiFx0qRJNGrUiK+++oo777yzwPNpaWn07NmT66+/nrVr1+Lq6srLL79Mnz59+Pvvv+3tkotj2rRpTJgwgRdffNG+zs/Pj/nz51O7dm2ioqJ48MEH8fPz41//+lexxwUYOnQoK1as4KWXXuLtt98udJv777+fI0eOsGjRImrXrs3SpUvp06cPUVFRdO3alZkzZ/Lvf/+bvXv3AuDr68vhw4cZO3YsCQkJBAcHs2bNGvvnRx99lJycHNavX8+TT9oaXi1dupSxY8cyc+ZMbr75Zv73v/9x//33U7duXXr27GmvZeLEiUyZMoU33ngDFxcXDh8+bH8uKSmJ2267DU9PT1auXImPj0+hx7N27Vo6dOhwya/LiRMnWLJkCd27d7/s13Dy5Mm89tprTJs2jbfeeot7772Xo0ePUq1awbOENm7cyMiRI3n11VcZNGgQP/74IxMnTsy3zRdffMHEiRN55513uP7661m4cCFvvvkmDRs2tG/z4YcfMnHiRN5++23atm3Ltm3bePDBB/Hx8WHEiBH27V544QVef/11GjduzAsvvMDQoUM5cOAArq7F+zm+1Pusfv363HzzzcybNy/f13PevHncd999mEymYv3MQ8F/K7766iveeOMNFi1aRMuWLYmLi+Ovv/7KV1unTp147bXXinUcV8yoYpKSkgzASEpKcnYpJbdlgWFM9DeM/zY0jIwUZ1cjIiJlLD093di1a5eRnp5uX3cuM9sIf+5/Tvk4l5ld7Nq7d+9utGnTJt+6CRMmGL169cq37tixYwZg7N2710hOTjbc3NyML7/80v58YmKi4e3tbYwdO9a+DjCWLl2ab5yAgABj3rx5hmEYxuHDhw3A2LZtW5H1PfLII8Y//vEP++MRI0YYoaGhRmZm5iWPa968eUZAQIBhGIYxbtw4o0mTJkZ2drZx9uxZAzBWrVplGIZhfPTRR0bTpk0Nq9Vqf21mZqbh5eVl/PTTT4Zh2L5GFx6XYRhG//79jREjRtgfh4eHGwMGDLhkTYZhGK+99prRvn17++OJEycarVu3LnL7C79GP/74o+Hm5mYcOHDAMAzDaN26tTFx4kTDMAzjwIEDhslkMmJiYvK9/qabbjLGjx9f4GuSx2q1GsHBwcZXX31lGIZhtGnTxpgyZYpRo0YNwzAMY/369Yarq6uRkmL7/aZr167Ggw8+mG+Mu+66y+jbt6/9MWA88cQT+bZZtWqVARh79uwxWrdubQwaNOiy38P+/fsbI0eOLPS5u+++2/Dy8jIA4/bbb8/3s1cYwHjxxRftj1NTUw2TyWQsX748X31nz541DMMwhg4davTp0yffGEOGDMn39YuMjDRGjx6db5vOnTvn+36GhYUZn332Wb5t/vOf/xiRkZGGYZz//s6ZM8f+/M6dOw3A2L179yWP5+KfrQtd/D5bvHixERQUZGRkZBiGYRjbt283TCaTcfjwYcMwLv8zbxiF/1sxffp0o0mTJkZWVlaRtXz77beG2Ww2LBZLgecK+7czT0mygWacKoqcLFgzzbZ83ZPg4evcekREpFzwcnNh10u9nbbvkrj4r/pbtmxh1apV+PoW/D/t4MGDpKenk52dTadOnezrAwICaNq06ZUVfIH33nuPOXPmcPToUdLT08nKyiowi9WqVasSzQQ999xzvP/++8ydOzffzBXYjvXAgQP4+fnlW5+RkcHBgwdLVHthsyNfffUVM2fO5MCBA6SmppKTk4O/v3+Jxs3Tu3dvrrvuOiZMmMBnn32W77mtW7diGEaBUxczMzOpXr16kWOaTCZuuOEGVq9ezU033cTOnTsZPXo0r7/+Ort372b16tW0a9fO/l7YvXs3Dz30UL4xunXrVuCUyqJmim6++WY6duzIF198gYvLpd+n6enpeHp6FvrcG2+8wcSJE9m7dy/PP/88Tz31VL5T4Apz7bXX2pd9fHzw8/Mr8tTH3bt3M3DgwHzrIiMj+fHHH/Ntc/G1VZGRkfZr6k6dOsWxY8cYNWqU/dRNgJycnAJNKC6srVatWgDEx8fTrFmzSx5Tnsu9zwYMGMCYMWNYunQpd999N3PnzqVnz572phuX+5nPe19d/H296667mDlzJg0bNqRPnz707duX22+/Pd9MmZeXF1arlczMTLy8vIp1PCWl4FRRbPsYkqLBtyZ0HOXsakREpJwwmUwlOl3OmS4+VcpqtXL77bfz3//+t8C2tWrVYv/+/UDBm1caF502ZzKZCqy71PU9X3zxBU8++STTp08nMjISPz8/pk2bxsaNGy9Z7+UEBgYyfvx4Jk+ezG233ZbvOavVSvv27fn0008LvC4kJASwNSQoznFcXNeGDRu4++67mTx5Mr179yYgIIBFixYxffr0EtV/oalTpxIZGcmzzz5b4DhcXFzYsmVLgUBS2C/DF+rRowcffPAB69ato3Xr1gQGBnLDDTewZs0aVq9eTY8ePfJtX9j3/eJ1RX2P+vXrx9dff82uXbvyXVtVmODgYM6ePVvoczVr1qRmzZo0a9aM6tWrc/311zNhwgR76CiMm5tbgeMoqtvbxd/vK5E39ocffkjnzp3zPXfx9+jC2vK+lsXtRFec95m7uzvDhg1j3rx5DBo0iM8++4yZM2fmq/VSP/N5Lv6+hoWFsXfvXlasWMEvv/zCI488wrRp01izZo39mM6cOYO3t3ephSZQcKoYstNhbW6Hm+ufBrfSe0OIiIiUlXbt2vH1119Tv379Qq+xuOaaa3Bzc2PTpk2EhYUBkJyczP79+/NdaxISEkJsbKz98f79+0lLSytyv+vWraNr16488sgj9nUlnfUpymOPPcabb75ZYGakXbt2LF68mBo1ahQ5E3TxcVgsFnbs2JHvmp7C/P7774SHh/PCCy/Y1x09evQqjsJ2vcigQYMKNLxo27YtFouF+Ph4rr/++kJf6+7ujsViKbC+R48ejB07lq+++soekrp3784vv/zC+vXrGTt2rH3b5s2b89tvvzF8+HD7uvXr19O8efNi1T916lR8fX256aabWL16NS1atChy27Zt2/LJJ59cdsy8kJOZmVmsGoqjRYsWbNiwId+6ix83b96cDRs25PtaXLhNaGgoderU4dChQ9x7770Oq+1ixX2fPfDAA0RERDB79myys7MZNGiQ/bnL/cxfipeXF3fccQd33HEHjz76KM2aNSMqKop27doBsGPHDvtyaVFXvYpg8zxIiQX/utB+xOW3FxERqQAeffRRzpw5w9ChQ9m0aROHDh3i559/ZuTIkVgsFvz8/BgxYgTPPvssq1atYufOnYwcORKz2Zxv5uHGG2/k7bffZuvWrWzevJnRo0cX+Kv/hRo1asTmzZv56aef2LdvHxMmTODPP/90yDF5enoyefJk3nzzzXzr7733XoKDg+nfvz/r1q3j8OHDrFmzhrFjx3L8+HH7cfzwww/88MMP7Nmzh0ceeaRYN3Jt1KgR0dHRLFq0iIMHD/Lmm2+ydOnSqz6WV155hV9//dXe5AGgSZMm3HvvvQwfPpwlS5Zw+PBh/vzzT/773/+ybNkywNb5LzU1lZUrV5KQkGAPsREREVSvXp1PP/3UHpx69OjBN998Q3p6Otddd519P88++yzz58/nvffeY//+/cyYMYMlS5bwzDPPFLv+119/nXvvvZcbb7yRPXv2FLld79692blzZ75Zp2XLljFv3jx27NjBkSNHWLZsGf/85z/p1q2b/bQzR3j88cf58ccfee2119i3bx9vv/12vtP0AMaOHcvcuXOZO3cu+/btY+LEiezcuTPfNpMmTWLKlCnMmjWLffv2ERUVxbx585gxY4bDai3u+6x58+Z06dKF5557jqFDh+abAbrcz3xR5s+fz0cffcSOHTs4dOgQCxcuxMvLi/DwcPs269ato1evXg473sIoOJV3Wefgt9w3/Q3PgKuHc+sRERFxkNq1a/P7779jsVjo3bs3ERERjB07loCAAMxm268oM2bMIDIykttuu42bb76Zbt262Vsu55k+fTphYWHccMMN3HPPPTzzzDN4e3sXud/Ro0czaNAghgwZQufOnTl9+nS+2aerNWLEiHwdzwC8vb1Zu3Yt9erVY9CgQTRv3pyRI0eSnp5un4EaOXIkI0aMYPjw4XTv3p0GDRpcdrYJoH///jz55JOMGTOGNm3asH79eiZMmHDVx9GkSRNGjhxZoPX1vHnzGD58OE8//TRNmzbljjvuYOPGjfZZwa5duzJ69GiGDBlCSEiIvdOZyWSyzxTmzVZde+21BAQE0LZt2wLXysyaNYtp06bRsmVL3n//febNm1fgdL7LeeONNxg8eDA33ngj+/btK3SbVq1a0aFDB7744gv7Oi8vLz788EOuu+46mjdvzhNPPMFtt93G//73vxLt/3K6dOnCnDlzeOutt2jTpg0///xzvm6JAEOGDOHf//43zz33HO3bt+fo0aP885/5b0nzwAMPMGfOHObPn0+rVq3o3r078+fPp0GDBg6rtSTvs1GjRpGVlcXIkSPzrS/Oz3xhAgMD+fDDD+nWrRvXXnstK1eu5Pvvv7dfVxcTE8P69eu5//77HXa8hTEZjji5sgJJTk4mICCApKSkK75oskz9NhN+mQhB9WHMZnAp+i9oIiJSuWVkZHD48GEaNGhQ5MXsld25c+eoU6cO06dPZ9QoXfMrjrFs2TKeeeYZduzYcclf4KV4XnnlFRYtWkRUVFSZ7O/ZZ58lKSmJDz74oNDnL/VvZ0myga5xKs8yU+D33HOkuz+n0CQiIlXOtm3b2LNnD506dSIpKYmXXnoJsP31W8RR+vbty/79+4mJibHPnEnJpaamsnv3bt566y3+85//lNl+a9SoUaLTOK+UglN5tuE9SD8D1RtBq8GX315ERKQSev3119m7dy/u7u60b9+edevWERwc7OyypJK5sDmFXJkxY8bw+eefM2DAgAKn6ZWmi7s/lhYFp/Iq/Sysf8u23GM8uOhbJSIiVU/btm3ZsmWLs8sQkWKYP38+8+fPd3YZpUYncZZXf7wDmUkQ0hxaDrr89iIiIiIiUmoUnMqjc6dhw7u25Z7Pgy5SFBERERFxKv1GXh6tnwVZqVDzWmh+u7OrERERERGp8hScypuUk7Axt5Vizxfgghv8iYiIiIiIcyg4lTe/vQE56VCnAzTp7exqREREREQEBafyJSkGNs+1Ld+o2SYRERERkfJCwak8WTcdLJlQrys07OnsakRERCqFI0eOYDKZ2L59u7NLcZpJkybRpk0bZ5dR6lavXo3JZCIxMbFErzt9+jQ1atTgyJEjV7V/k8nEN998c1X1zZ8/n8DAwEvup6y+n5c7nvKiY8eOLFmypNT3o+BUXpw9Cls/ti1rtklERKRCmD9/PiaTiT59+uRbn5iYiMlkYvXq1c4prITywmWNGjVISUnJ91ybNm2YNGlSsccqzi/+5c2UKVO4/fbbqV+/vn2dyWQq8PHee+9d1X66du1KbGwsAQEBV1mxXGjChAmMGzcOq9VaqvtRcCov1r4G1mxo0B3qX+fsakREREpVVlaWs0sokUvV6+rqysqVK1m1alUZVmTj6K9jSkoKr7/+ukPHLCvZ2dlX9Lr09HQ++ugjHnjggQLPzZs3j9jYWPvHiBEjrqpGd3d3atasiUl/IC+24rzH+/XrR1JSEj/99FOp1qLgVB6cPgjbP7ct3/iic2sREZGKxTAg65xzPgyj2GX26NGDMWPG8NRTTxEcHMwtt9wCwK5du+jbty++vr6EhoYybNgwEhIS7K9LSUnh3nvvxcfHh1q1avHGG2/Qo0cPnnjiCfs2hZ1OFBgYyPz58wutxWKxMGrUKBo0aICXlxdNmzZl1qxZ+ba57777GDBgAFOmTKF27do0adKkyGPz8fHh/vvvZ9y4cZf8GsTExDBkyBCCgoKoXr06/fv3z3dq2MXHBTBgwADuu+8+++P69evz8ssvc9999xEQEMCDDz4IwHPPPUeTJk3w9vamYcOGTJgw4YqCxGOPPcaMGTOIj48vcpusrCz+9a9/UadOHXx8fOjcubN9Zm316tXcf//9JCUl2WdpJk2axFtvvUWrVq3sY3zzzTeYTCbeeecd+7revXszfvx4++N3332Xa665Bnd3d5o2bcrChQvz1ZE3A9S/f398fHx4+eWXC9Sanp5Ov3796NKlC2fOnCn0eJYvX46rqyuRkZEFngsMDKRmzZr2Dy8vryK/LnkSEhIYOHAg3t7eNG7cmO+++87+XGGn6s2fP5969erh7e3NwIEDOX36dIExp06dSmhoKH5+fowaNYqMjIwC28ybN4/mzZvj6elJs2bNmD17tv25vBnFJUuW0LNnT7y9vWndujV//PHHZY/nQpd6nx05cgSz2czmzZvzveatt94iPDwcI/ffi8v9zBf1b8WkSZOoV68eHh4e1K5dm8cff9z+GhcXF/r27cvnn39eouMpKacHp9mzZ9OgQQM8PT1p374969atK3LbJUuWcMsttxASEoK/vz+RkZGlnizLxJr/gmGBxr0grJOzqxERkYokOw1ere2cj+y0EpW6YMECXF1d+f3333n//feJjY2le/futGnThs2bN/Pjjz9y8uRJBg8ebH/NU089xe+//853333HihUrWLduHVu3br2qL5nVaqVu3bp88cUX7Nq1i3//+988//zzfPHFF/m2W7lyJbt372bFihX873//u+SYkyZNIioqiq+++qrQ59PS0ujZsye+vr6sXbuW3377DV9fX/r06VPiWaNp06YRERHBli1bmDBhAgB+fn7Mnz+fXbt2MWvWLD788EPeeOONEo0LMHToUBo1asRLL71U5Db3338/v//+O4sWLeLvv//mrrvuok+fPuzfv5+uXbsyc+ZM/P397bM0zzzzDD169GDnzp32X5DXrFlDcHAwa9asASAnJ4f169fTvXt3AJYuXcrYsWN5+umn2bFjBw8//DD3339/gVm9iRMn0r9/f6Kiohg5cmS+55KSkujVqxdZWVmsXLmSatWqFXo8a9eupUOHDoU+N2bMGIKDg+nYsSPvvfdesU4Fmzx5MoMHD+bvv/+mb9++3HvvvUWGto0bNzJy5EgeeeQRtm/fTs+ePQsEwC+++IKJEyfyyiuvsHnzZmrVqpUvFAF8+OGHvPDCC7zyyivs3r2bV199lQkTJrBgwYJ8273wwgs888wzbN++nSZNmjB06FBycnIue0x5LvU+q1+/PjfffDPz5s3L95p58+Zx3333YTKZivUzDwX/rfjqq6944403eP/999m/fz/ffPNNviAO0KlTp0vmCIcwnGjRokWGm5ub8eGHHxq7du0yxo4da/j4+BhHjx4tdPuxY8ca//3vf41NmzYZ+/btM8aPH2+4ubkZW7duLfY+k5KSDMBISkpy1GFcnfg9hjExwDAm+htGTPGPQ0REqp709HRj165dRnp6+vmVmam2/0Oc8ZGZWuzau3fvbrRp0ybfugkTJhi9evXKt+7YsWMGYOzdu9dITk423NzcjC+//NL+fGJiouHt7W2MHTvWvg4wli5dmm+cgIAAY968eYZhGMbhw4cNwNi2bVuR9T3yyCPGP/7xD/vjESNGGKGhoUZmZuYlj2vevHlGQECAYRiGMW7cOKNJkyZGdna2cfbsWQMwVq1aZRiGYXz00UdG06ZNDavVan9tZmam4eXlZfz000+GYdi+Rhcel2EYRv/+/Y0RI0bYH4eHhxsDBgy4ZE2GYRivvfaa0b59e/vjiRMnGq1bty5y+wu/Rj/++KPh5uZmHDhwwDAMw2jdurUxceJEwzAM48CBA4bJZDJiYmLyvf6mm24yxo8fX+BrksdqtRrBwcHGV199ZRiGYbRp08aYMmWKUaNGDcMwDGP9+vWGq6urkZKSYhiGYXTt2tV48MEH841x1113GX379rU/Bownnngi3zarVq0yAGPPnj1G69atjUGDBl32e9i/f39j5MiRBdb/5z//MdavX29s27bNeP311w1vb2/jP//5zyXHAowXX3zR/jg1NdUwmUzG8uXL89V39uxZwzAMY+jQoUafPn3yjTFkyJB8X7/IyEhj9OjR+bbp3Llzvu9nWFiY8dlnnxWoPzIy0jCM89/fOXPm2J/fuXOnARi7d+++5PFc/LN1oYvfZ4sXLzaCgoKMjIwMwzAMY/v27YbJZDIOHz5sGMblf+YNo/B/K6ZPn240adLEyMrKKrKWb7/91jCbzYbFYinwXKH/duYqSTZwLd1YdmkzZsxg1KhR9nNKZ86cyU8//cS7777LlClTCmw/c+bMfI9fffVVvv32W77//nvatm1bFiU73uopgAHNboPaFfQYRETEedy84fkTztt3CVz8V/0tW7awatUqfH19C2x78OBB0tPTyc7OplOn82djBAQE0LRp0yur9wLvvfcec+bM4ejRo6Snp5OVlVWgS1mrVq1wd3cv9pjPPfcc77//PnPnzi3wF/QtW7Zw4MAB/Pz88q3PyMjg4MGDJaq9sNmRr776ipkzZ3LgwAFSU1PJycnB39+/ROPm6d27N9dddx0TJkzgs88+y/fc1q1bMQyjwKmLmZmZVK9evcgxTSYTN9xwA6tXr+amm25i586djB49mtdff53du3ezevVq2rVrZ38v7N69m4ceeijfGN26dStwSmVRM0U333wzHTt25IsvvsDFxeWSx5ueno6np2eB9S++eP7yibz3xksvvZRvfWGuvfZa+7KPjw9+fn5Fnvq4e/duBg4cmG9dZGQkP/74Y75tRo8eXWCbvNm3U6dOcezYMUaNGmU/dRNss3gXN6G4sLZatWoBEB8fT7NmzS55THku9z4bMGAAY8aMYenSpdx9993MnTuXnj172ptuXO5nPu99dfH39a677mLmzJk0bNiQPn360LdvX26//XZcXc9HGS8vL6xWK5mZmcU6pfJKOC04ZWVlsWXLlgLnA/fq1Yv169cXawyr1UpKSkqRU69g+0HOzMy0P05OTr6ygktDXBTsXGpb7jH+0tuKiIgUxmQCdx9nV1EsPj7567Rardx+++3897//LbBtrVq12L9/P0CBC+mNi66tMplMBdZd6vqeL774gieffJLp06cTGRmJn58f06ZNY+PGjZes93ICAwMZP348kydP5rbbbsv3nNVqpX379nz66acFXhcSEgKA2Wwu1nFcXNeGDRu4++67mTx5Mr179yYgIIBFixYxffr0EtV/oalTpxIZGcmzzz5b4DhcXFzYsmVLgUBS2C/DF+rRowcffPAB69ato3Xr1gQGBnLDDTewZs0aVq9eTY8ePfJtX9j3/eJ1RX2P+vXrx9dff82uXbsKnNJ1seDgYM6ePXvJbQC6dOlCcnIyJ0+eJDQ0tMjt3Nzc8j02mUxFnuJ38ff7SuSN/eGHH9K5c+d8z138PbqwtryvZXE70RXnfebu7s6wYcOYN28egwYN4rPPPss38XG5n/k8F39fw8LC2Lt3LytWrOCXX37hkUceYdq0aaxZs8Z+TGfOnMHb27vUQhM4MTglJCRgsVgKvPFCQ0OJi4sr1hjTp0/n3LlzBf6qc6EpU6YwefLkq6q11GzP/StOy4FQM8K5tYiIiJSxdu3a8fXXX1O/fv18fznOc8011+Dm5samTZsICwsDbH8A3b9/v/1aGLAFj9jYWPvj/fv3k5ZW9PVX69ato2vXrjzyyCP2dSWd9SnKY489xptvvllgZqRdu3YsXryYGjVqFDkTdPFxWCwWduzYQc+el7634++//054eDgvvPCCfd3Ro0ev4ihs14sMGjSowB+427Zti8ViIT4+nuuvv77Q17q7u2OxWAqs79GjB2PHjuWrr76yh6Tu3bvzyy+/sH79esaOHWvftnnz5vz2228MHz7cvm79+vU0b968WPVPnToVX19fbrrpJlavXk2LFi2K3LZt27Z88sknlx1z27ZteHp6OrTVeosWLdiwYUO+dRc/bt68ORs2bMj3tbhwm9DQUOrUqcOhQ4e49957HVbbxYr7PnvggQeIiIhg9uzZZGdnM2jQIPtzl/uZvxQvLy/uuOMO7rjjDh599FGaNWtGVFQU7dq1A2DHjh325dLi9OYQxflrQmE+//xzJk2aZP9HqCjjx48nKSnJ/nHs2LGrrtlher0Cdy2Ani9cflsREZFK5tFHH+XMmTMMHTqUTZs2cejQIX7++WdGjhyJxWLBz8+PESNG8Oyzz7Jq1Sp27tzJyJEjMZvN+X5XuPHGG3n77bfZunUrmzdvZvTo0QX+6n+hRo0asXnzZn766Sf27dvHhAkT+PPPPx1yTJ6enkyePJk333wz3/p7772X4OBg+vfvz7p16zh8+DBr1qxh7NixHD9+3H4cP/zwAz/88AN79uzhkUceKdaNXBs1akR0dDSLFi3i4MGDvPnmmyxduvSqj+WVV17h119/Ze/evfZ1TZo04d5772X48OEsWbKEw4cP8+eff/Lf//6XZcuWAbYmAampqaxcuZKEhAR7iI2IiKB69ep8+umn9uDUo0cPvvnmG9LT07nuuvO3Y3n22WeZP38+7733Hvv372fGjBksWbKEZ555ptj1v/7669x7773ceOON7Nmzp8jtevfuzc6dO/PNOn3//fd8+OGH7Nixg4MHDzJnzhxeeOEFHnroITw8PIpdw+U8/vjj/Pjjj7z22mvs27ePt99+O99pegBjx45l7ty5zJ07l3379jFx4kR27tyZb5tJkyYxZcoUZs2axb59+4iKimLevHnMmDHDYbUW933WvHlzunTpwnPPPcfQoUPzzQBd7me+KPPnz+ejjz5ix44dHDp0iIULF+Ll5UV4eLh9m3Xr1tGrVy+HHW9hnBacgoODcXFxKTC7FB8ff8npT4DFixczatQovvjiC26++eZLbuvh4YG/v3++j3LDbIaWAyC4sbMrERERKXO1a9fm999/x2Kx0Lt3byIiIhg7diwBAQGYzbZfUWbMmEFkZCS33XYbN998M926dbO3XM4zffp0wsLCuOGGG7jnnnt45pln8PYu+vqr0aNHM2jQIIYMGULnzp05ffp0vtmnqzVixAgaNmyYb523tzdr166lXr16DBo0iObNmzNy5EjS09Ptv5uMHDmSESNGMHz4cLp3706DBg0uO9sE0L9/f5588knGjBlDmzZtWL9+vb3b3tVo0qQJI0eOLND6et68eQwfPpynn36apk2bcscdd7Bx40b7rGDXrl0ZPXo0Q4YMISQkhNdeew2w/bE8b6Ywb7bq2muvJSAggLZt2xa4VmbWrFlMmzaNli1b8v777zNv3rwCp/NdzhtvvMHgwYO58cYb2bdvX6HbtGrVig4dOuTrqujm5sbs2bOJjIzk2muvZdasWbz00ktXdfpjYbp06cKcOXN46623aNOmDT///HOBa6iGDBnCv//9b5577jnat2/P0aNH+ec//5lvmwceeIA5c+Ywf/58WrVqRffu3Zk/fz4NGjRwWK0leZ+NGjWKrKysAp0Oi/MzX5jAwEA+/PBDunXrxrXXXsvKlSv5/vvv7dfVxcTEsH79eu6//36HHW9hTIYjTq68Qp07d6Z9+/b5Wiq2aNGC/v37F9ocAmwzTSNHjuTzzz9nwIABJd5ncnIyAQEBJCUlla8QJSIichkZGRkcPnzYfhuPqujcuXPUqVOH6dOnM2rUKGeXI5XEsmXLeOaZZ9ixY8clf4GX4nnllVdYtGgRUVFRZbK/Z599lqSkJD744INCn7/Uv50lyQZO7ar31FNPMWzYMDp06EBkZCQffPAB0dHR9s4h48ePJyYmho8//hiwhabhw4cza9YsunTpYp+t8vLyKtA1RERERCq+bdu2sWfPHjp16kRSUpL9/kL9+/d3cmVSmfTt25f9+/cTExNjnzmTkktNTWX37t289dZb/Oc//ymz/daoUaNEp3FeKacGpyFDhnD69GleeuklYmNjiYiIYNmyZfbzFWNjY4mOjrZv//7775OTk8Ojjz7Ko48+al8/YsSIIu8OLiIiIhXb66+/zt69e3F3d6d9+/asW7eO4OBgZ5cllcyFzSnkyowZM+b/27v/mKjrB47jrw+HHBw7f8H4lVq0fiiYKeAKoVbZGFhuNMrF0KC2HAtIYjWsJK1Uli1ty3ENZ/6ROh0rizX7QbZp0hyMRFmRtrUlixy4miIuTe6+fzTZLr5fP/pV7u197vnYbjveB+frtreOl+/35/0Z3RX272164+nfpz+OF6Nb9Uxgqx4AIFyxVQ8Art712qrHJk4AAAAAsEFxAgAgzETYZhEAuCbX699MihMAAGHi0r2JLndzVwBAsAsXLkiSXC7XNb2P0cMhAADAlXO5XJo8ebIGBgYk/XNvoCu5aTwARCq/36/BwUF5PB5FR19b9aE4AQAQRlJSUiRptDwBAC4vKipKM2bMuOb/aKI4AQAQRizLUmpqqpKSkvT333+bjgMAN7yYmJjrcmNjihMAAGHI5XJd8359AMCV43AIAAAAALBBcQIAAAAAGxQnAAAAALARcdc4XboB1pkzZwwnAQAAAGDSpU5wJTfJjbjiNDQ0JEmaPn264SQAAAAAbgRDQ0OaNGnSZb/HClxJvXIQv9+v/v5+eb3eG+KmgWfOnNH06dPV19eniRMnmo4Dh2O+IdSYcwgl5htCjTkX/gKBgIaGhpSWlmZ7ZHnErThFRUVp2rRppmOMMXHiRP7CIWSYbwg15hxCifmGUGPOhTe7laZLOBwCAAAAAGxQnAAAAADABsXJMLfbrdWrV8vtdpuOggjAfEOoMecQSsw3hBpzLrJE3OEQAAAAAHC1WHECAAAAABsUJwAAAACwQXECAAAAABsUJwAAAACwQXEyqKmpSenp6YqNjVV2dra+/fZb05HgUI2NjZo/f768Xq+SkpJUXFysY8eOmY6FCNHY2CjLslRbW2s6Chzst99+09KlS5WQkCCPx6O5c+eqq6vLdCw40MWLF7Vq1Sqlp6crLi5Ot956q9544w35/X7T0TDOKE6G7N69W7W1tXr11Vd1+PBh3XfffSoqKtKJEydMR4MD7d+/X1VVVTp06JDa2tp08eJFFRQUaHh42HQ0OFxnZ6eam5s1Z84c01HgYH/++afy8vI0YcIEff755/rxxx/1zjvvaPLkyaajwYHeeustvf/++9q8ebN6e3u1YcMGvf3223rvvfdMR8M44zhyQ+655x5lZWXJ5/ONjs2aNUvFxcVqbGw0mAyRYHBwUElJSdq/f7/uv/9+03HgUGfPnlVWVpaampq0du1azZ07V++++67pWHCglStXqr29nZ0bCIlHH31UycnJ2rp16+hYSUmJPB6PPvzwQ4PJMN5YcTLgwoUL6urqUkFBQdB4QUGBvvvuO0OpEElOnz4tSZo6darhJHCyqqoqPfLII3r44YdNR4HDtba2KicnR0888YSSkpI0b948bdmyxXQsOFR+fr727dun48ePS5KOHDmigwcPatGiRYaTYbxFmw4QiU6dOqWRkRElJycHjScnJ+vkyZOGUiFSBAIB1dXVKT8/X7NnzzYdBw61a9cuff/99+rs7DQdBRHgl19+kc/nU11dnV555RV1dHTo+eefl9vt1lNPPWU6Hhymvr5ep0+f1syZM+VyuTQyMqJ169aptLTUdDSMM4qTQZZlBX0dCATGjAHXW3V1tY4ePaqDBw+ajgKH6uvr04oVK/TVV18pNjbWdBxEAL/fr5ycHK1fv16SNG/ePP3www/y+XwUJ1x3u3fv1vbt27Vz505lZmaqu7tbtbW1SktLU3l5uel4GEcUJwMSExPlcrnGrC4NDAyMWYUCrqeamhq1trbqwIEDmjZtmuk4cKiuri4NDAwoOzt7dGxkZEQHDhzQ5s2bdf78eblcLoMJ4TSpqanKyMgIGps1a5Y++ugjQ4ngZC+99JJWrlypJ598UpJ011136ddff1VjYyPFyeG4xsmAmJgYZWdnq62tLWi8ra1NCxYsMJQKThYIBFRdXa2PP/5Y33zzjdLT001HgoMtXLhQPT096u7uHn3k5OSorKxM3d3dlCZcd3l5eWNusXD8+HHdfPPNhhLByc6dO6eoqOBfoV0uF8eRRwBWnAypq6vTsmXLlJOTo9zcXDU3N+vEiROqrKw0HQ0OVFVVpZ07d+rTTz+V1+sdXe2cNGmS4uLiDKeD03i93jHXz8XHxyshIYHr6jAuXnjhBS1YsEDr16/XkiVL1NHRoebmZjU3N5uOBgdavHix1q1bpxkzZigzM1OHDx/Wxo0b9cwzz5iOhnHGceQGNTU1acOGDfr99981e/Zsbdq0iaOhMS7+17Vz27ZtU0VFRWjDICI98MADHEeOcfXZZ5/p5Zdf1s8//6z09HTV1dXp2WefNR0LDjQ0NKSGhgbt2bNHAwMDSktLU2lpqV577TXFxMSYjodxRHECAAAAABtc4wQAAAAANihOAAAAAGCD4gQAAAAANihOAAAAAGCD4gQAAAAANihOAAAAAGCD4gQAAAAANihOAAAAAGCD4gQAwFWwLEuffPKJ6RgAgBCjOAEAwkZFRYUsyxrzKCwsNB0NAOBw0aYDAABwNQoLC7Vt27agMbfbbSgNACBSsOIEAAgrbrdbKSkpQY8pU6ZI+mcbnc/nU1FRkeLi4pSenq6Wlpagn+/p6dFDDz2kuLg4JSQkaPny5Tp79mzQ93zwwQfKzMyU2+1Wamqqqqurg14/deqUHnvsMXk8Ht1+++1qbW0d3w8NADCO4gQAcJSGhgaVlJToyJEjWrp0qUpLS9Xb2ytJOnfunAoLCzVlyhR1dnaqpaVFX3/9dVAx8vl8qqqq0vLly9XT06PW1lbddtttQX/G66+/riVLlujo0aNatGiRysrK9Mcff4T0cwIAQssKBAIB0yEAALgSFRUV2r59u2JjY4PG6+vr1dDQIMuyVFlZKZ/PN/ravffeq6ysLDU1NWnLli2qr69XX1+f4uPjJUl79+7V4sWL1d/fr+TkZN100016+umntXbt2v+awbIsrVq1Sm+++aYkaXh4WF6vV3v37uVaKwBwMK5xAgCElQcffDCoGEnS1KlTR5/n5uYGvZabm6vu7m5JUm9vr+6+++7R0iRJeXl58vv9OnbsmCzLUn9/vxYuXHjZDHPmzBl9Hh8fL6/Xq4GBgf/3IwEAwgDFCQAQVuLj48dsnbNjWZYkKRAIjD7/b98TFxd3Re83YcKEMT/r9/uvKhMAILxwjRMAwFEOHTo05uuZM2dKkjIyMtTd3a3h4eHR19vb2xUVFaU77rhDXq9Xt9xyi/bt2xfSzACAGx8rTgCAsHL+/HmdPHkyaCw6OlqJiYmSpJaWFuXk5Cg/P187duxQR0eHtm7dKkkqKyvT6tWrVV5erjVr1mhwcFA1NTVatmyZkpOTJUlr1qxRZWWlkpKSVFRUpKGhIbW3t6umpia0HxQAcEOhOAEAwsoXX3yh1NTUoLE777xTP/30k6R/TrzbtWuXnnvuOaWkpGjHjh3KyMiQJHk8Hn355ZdasWKF5s+fL4/Ho5KSEm3cuHH0vcrLy/XXX39p06ZNevHFF5WYmKjHH388dB8QAHBD4lQ9AIBjWJalPXv2qLi42HQUAIDDcI0TAAAAANigOAEAAACADa5xAgA4BrvPAQDjhRUnAAAAALBBcQIAAAAAGxQnAAAAALBBcQIAAAAAGxQnAAAAALBBcQIAAAAAGxQnAAAAALBBcQIAAAAAG/8BFEOfaPGenkIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -573,7 +547,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHUCAYAAAANwniNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd2AU1aIG8G+2l/RKQg09FBUEKYrSBGkSLCDykKpiBSkiF5EiV7x0Lgo2ilgoKmBDvHQLKog0DdIEQgmE9LZ95v2x2cludtMgsEn4fu/l7u6ZMzNnUnC/PWUESZIkEBERERERUbEU/m4AERERERFRZcfgREREREREVAoGJyIiIiIiolIwOBEREREREZWCwYmIiIiIiKgUDE5ERERERESlYHAiIiIiIiIqBYMTERERERFRKRiciIiIiIiISsHgRERUBQ0YMAB6vR6ZmZnF1hkyZAjUajWuXLlS5uMKgoAZM2bIr3fv3g1BELB79+5S9x0+fDjq1atX5nO5W7ZsGVavXu1VfvbsWQiC4HPbzTR+/HgIgoC+ffv6tR1EROQ/DE5ERFXQqFGjYDab8emnn/rcnpWVhU2bNqFv376Ijo6+5vO0bt0av/zyC1q3bn3NxyiL4oJTTEwMfvnlF/Tp0+eGnr8kNpsNH3/8MQBg69atuHjxot/aQkRE/sPgRERUBfXq1QuxsbFYuXKlz+1r166FyWTCqFGjrus8QUFBaN++PYKCgq7rONdKq9Wiffv2iIyM9Mv5AeDLL7/E1atX0adPHzgcDnz44Yd+a0tp8vPz/d0EIqJqi8GJiKgKUiqVGDZsGA4cOICjR496bV+1ahViYmLQq1cvXL16Fc8++yyaNWuGgIAAREVFoWvXrvjxxx9LPU9xQ/VWr16NJk2aQKvVIj4+HmvWrPG5/8yZM9GuXTuEhYUhKCgIrVu3xooVKyBJklynXr16+Ouvv7Bnzx4IggBBEOQhf8UN1fvpp5/QrVs3BAYGwmAwoGPHjvj222+92igIAnbt2oVnnnkGERERCA8Px0MPPYRLly6Veu0uK1asgEajwapVq1C7dm2sWrXKo/0uf//9NwYPHozo6GhotVrUqVMHTzzxBCwWi1zn4sWLeOqpp1C7dm1oNBrExsbikUcekYdTutp89uxZj2P7+jl07twZLVq0wA8//ICOHTvCYDBg5MiRAID169ejR48eiImJgV6vR3x8PF555RXk5eV5tfu3335Dv379EB4eDp1OhwYNGmDcuHEAgB9//BGCIGDt2rVe+61ZswaCIGD//v1l/l4SEVVlDE5ERFXUyJEjIQiCV69TYmIi9u3bh2HDhkGpVCI9PR0AMH36dHz77bdYtWoV6tevj86dO5dp7lJRq1evxogRIxAfH48vvvgCr776Kl5//XXs3LnTq+7Zs2fx9NNPY8OGDdi4cSMeeughvPDCC3j99dflOps2bUL9+vXRqlUr/PLLL/jll1+wadOmYs+/Z88edO3aFVlZWVixYgXWrl2LwMBA9OvXD+vXr/eqP3r0aKjVanz66aeYO3cudu/ejf/7v/8r07VeuHAB//vf/9C/f39ERkZi2LBhOHXqFH744QePeocPH0bbtm3x66+/YtasWfjuu+8wZ84cWCwWWK1WAM7Q1LZtW2zatAnjx4/Hd999h8WLFyM4OBgZGRllak9RycnJ+L//+z88/vjj2LJlC5599lkAwMmTJ9G7d2+sWLECW7duxbhx47Bhwwb069fPY//vv/8enTp1QlJSEhYuXIjvvvsOr776qhzkOnXqhFatWuHtt9/2Ovdbb72Ftm3bom3bttfUdiKiKkciIqIq67777pMiIiIkq9Uql02YMEECIJ04ccLnPna7XbLZbFK3bt2kAQMGeGwDIE2fPl1+vWvXLgmAtGvXLkmSJMnhcEixsbFS69atJVEU5Xpnz56V1Gq1VLdu3WLb6nA4JJvNJs2aNUsKDw/32L958+bSfffd57XPmTNnJADSqlWr5LL27dtLUVFRUk5Ojsc1tWjRQqpVq5Z83FWrVkkApGeffdbjmHPnzpUASMnJycW21WXWrFkSAGnr1q2SJEnSP//8IwmCIA0dOtSjXteuXaWQkBApJSWl2GONHDlSUqvVUmJiYrF1XG0+c+aMR3nRn4MkOX/2AKQdO3aUeA2iKEo2m03as2ePBEA6fPiwvK1BgwZSgwYNJJPJVGqbDh48KJft27dPAiB9+OGHJZ6biKg6YY8TEVEVNmrUKKSmpuKrr74CANjtdnz88cfo1KkTGjVqJNd755130Lp1a+h0OqhUKqjVauzYsQPHjh0r1/mOHz+OS5cu4fHHH4cgCHJ53bp10bFjR6/6O3fuRPfu3REcHAylUgm1Wo3XXnsNaWlpSElJKff15uXl4bfffsMjjzyCgIAAuVypVGLo0KG4cOECjh8/7rHPgw8+6PH6tttuAwCcO3euxHNJkiQPz7v//vsBAHFxcejcuTO++OILZGdnA3DOK9qzZw8GDhxY4lys7777Dl26dEF8fHzZL7gUoaGh6Nq1q1f5P//8g8cffxw1atSQv+/33XcfAMg/8xMnTuD06dMYNWoUdDpdsecYPHgwoqKiPHqdli5disjISAwaNKjCroWIqLJjcCIiqsIeeeQRBAcHY9WqVQCALVu24MqVKx6LQixcuBDPPPMM2rVrhy+++AK//vor9u/fjwceeAAmk6lc50tLSwMA1KhRw2tb0bJ9+/ahR48eAID3338fP//8M/bv34+pU6cCQLnPDQAZGRmQJAkxMTFe22JjYz3a6BIeHu7xWqvVlun8O3fuxJkzZ/Doo48iOzsbmZmZyMzMxMCBA5Gfny/P+8nIyIDD4UCtWrVKPN7Vq1dLrVNevr4Pubm56NSpE3777TfMnj0bu3fvxv79+7Fx40YAhdd99epVACi1TVqtFk8//TQ+/fRTZGZm4urVq9iwYQNGjx4tfy+JiG4FKn83gIiIrp1er8fgwYPx/vvvIzk5GStXrkRgYCAeffRRuc7HH3+Mzp07Y/ny5R775uTklPt8rhBy+fJlr21Fy9atWwe1Wo1vvvnGo0dj8+bN5T6vS2hoKBQKBZKTk722uRZ8iIiIuObju1uxYgUAZ/BcuHChz+1PP/00wsLCoFQqceHChRKPFxkZWWod1/fJfUEJAEhNTfVZ373Xz2Xnzp24dOkSdu/eLfcyAfC655erd6y0NgHAM888gzfffBMrV66E2WyG3W7HmDFjSt2PiKg6YY8TEVEVN2rUKDgcDsybNw9btmzBY489BoPBIG8XBMGrZ+DIkSP45Zdfyn2uJk2aICYmBmvXrvVYWe7cuXPYu3evR11BEKBSqaBUKuUyk8mEjz76yOu4Wq22TD1QRqMR7dq1w8aNGz3qi6KIjz/+GLVq1ULjxo3LfV1FZWRkYNOmTbj77ruxa9cur68hQ4Zg//79+PPPP6HX63Hffffhs88+KzbgAM4l5Hft2uU1lNCdazXBI0eOeJS7hmKWhStMFf2Zv/vuux6vGzdujAYNGmDlypVeQa2omJgYPProo1i2bBneeecd9OvXD3Xq1Clzm4iIqgMGJyKiKq5Nmza47bbbsHjxYthsNq97N/Xt2xf/+9//MH36dOzcuRPLly9Hz549ERcXV+5zKRQKvP766zhw4AAGDBiAb7/9Fp988gm6d+/uNVSvT58+yM3NxeOPP45t27Zh3bp16NSpk8/hXS1btsThw4exfv167N+/3+cS6y5z5sxBWloaunTpgs8//xxfffUVevfujT///BPz58/32QtTXp988gnMZjNefPFFdO7c2etr8uTJADx7pWw2G9q1a4f3338fu3btwrp16/D444/LPXuzZs1CREQE7r33XixZsgQ7d+7Exo0b8dRTT+Hvv/8GALRt2xZNmjTBxIkTsXbtWmzduhVPP/00fvrppzK3vWPHjggNDcWYMWOwadMmfPPNNxg8eDAOHz7sVfftt9/GuXPn0L59e6xZswa7d+/GmjVrMGTIEK+6Y8eOxenTp3H+/Hk8//zz5f6eEhFVeX5enIKIiCrAkiVLJABSs2bNvLZZLBZp4sSJUs2aNSWdTie1bt1a2rx5szRs2DCvVfBQyqp6Lh988IHUqFEjSaPRSI0bN5ZWrlzp83grV66UmjRpImm1Wql+/frSnDlzpBUrVnitHHf27FmpR48eUmBgoARAPo6vVfUkSZJ+/PFHqWvXrpLRaJT0er3Uvn176euvv/ao41oNbv/+/R7lxV2TuzvuuEOKioqSLBZLsXXat28vRUREyHUSExOlRx99VAoPD5c0Go1Up04dafjw4ZLZbJb3OX/+vDRy5EipRo0aklqtlmJjY6WBAwdKV65ckeucOHFC6tGjhxQUFCRFRkZKL7zwgvTtt9/6XFWvefPmPtu2d+9eqUOHDpLBYJAiIyOl0aNHS3/88YfP7+Uvv/wi9erVSwoODpa0Wq3UoEED6aWXXvJ53Hr16knx8fHFfk+IiKozQZJ83MWPiIiIyM2RI0dw++234+2335bvF0VEdCthcCIiIqJinT59GufOncO//vUvJCUl4dSpUx5z6IiIbhWc40RERETFev3113H//fcjNzcXn332GUMTEd2y2ONERERERERUCvY4ERERERERlYLBiYiIiIiIqBQMTkRERERERKVQ+bsBN5soirh06RICAwMr5CaJRERERERUNUmShJycHMTGxkKhKLlP6ZYLTpcuXULt2rX93QwiIiIiIqokzp8/j1q1apVY55YLToGBgQCc35ygoCA/t4aIiIiIiPwlOzsbtWvXljNCSW654OQanhcUFMTgREREREREZZrCw8UhiIiIiIiISsHgREREREREVAoGJyIiIiIiolIwOBEREREREZWCwYmIiIiIiKgUDE5ERERERESlYHAiIiIiIiIqBYMTERERERFRKRiciIiIiIiISsHgREREREREVAoGJyIiIiIiolIwOBEREREREZWCwYmIiIiIiKgUKn83gIiInCRRAkRJfnR/LokS4Ch4lOAsc/io41YXogRJcpWhsKy4+lIx5xMlQPRun1c7Hb63qaIMCH883t/fXiIiouvC4ERE1ZIcGOwiJJvo9igBdhGSzQHJLhVuc69X8BxFyzyCAjxDhKOYsFNMmeSAV51qSyH4uwVERETXjcGJiG4YSSrohXAFEPcQ4hZKUEy5Z9ApbnvhF4qUo7pkEYUAKAQIChQ8Ch6PUPook5/Da5tQsA8UAgSh4FFZyv5KARDcjqH0ccxizqvQ8T81RERU9fG/ZkS3ENHqgJhrK+xtKRJCUDS8lCnoSAXHcz33PF6loRIgqBTOL7XC+7laAah8lzvLBEChcIaXYkKDd3goDCme21D8fkUDjABnuCEiIiK/YnAiqmZEqwOOdDPsqSbY00ywpxU+d2RZ/do2j3CidoYRQa2Ug4l7aIHP8OJdhmKDTuHx5eBCREREdI0YnIiqIK9wlGoueDTBkV1KOFIpoNAUhA6PkFF8UIEcQnyFEx9Bx1fAUQrsOSEiIqIqi8GJqJISrQ7Y08xwpJlgSzXBkWYueCw9HAk6FVQROqgi9FCF6wsedVCF66EwqBhgiIiIiMqJwYnIj1zhqLDnqGBoXZoJ4nWEI6VRfZOugIiIiOjWwOBEdIOJVodHIHKfe1RqONKrPAIRwxERERGRfzA4EVWAYsNRqhliTsnhSGFQQRmuhzpc53yM0EMZroM6Qg+FgeGIiIiIqDLwe3BatmwZ5s2bh+TkZDRv3hyLFy9Gp06diq3/9ttv46233sLZs2dRp04dTJ06FU888cRNbDHdqkSLo6CnyFRkeF3ZwpEqvKC3qMjQOoYjIiIiosrPr8Fp/fr1GDduHJYtW4a7774b7777Lnr16oXExETUqVPHq/7y5csxZcoUvP/++2jbti327duHJ598EqGhoejXr58froCqG49wlGr2mHdU5nAUUSQgMRwRERERVXmCJEmSv07erl07tG7dGsuXL5fL4uPjkZCQgDlz5njV79ixI+6++27MmzdPLhs3bhx+//13/PTTT2U6Z3Z2NoKDg5GVlYWgoKDrvwiqckSL3a3HyP1+RyaIObYS92U4IiIiIqo+ypMN/NbjZLVaceDAAbzyyise5T169MDevXt97mOxWKDT6TzK9Ho99u3bB5vNBrXa+42rxWKBxWKRX2dnZ1dA66myEy32wh4j996jsoYjt0DEcEREREREfgtOqampcDgciI6O9iiPjo7G5cuXfe7Ts2dPfPDBB0hISEDr1q1x4MABrFy5EjabDampqYiJifHaZ86cOZg5c+YNuQbyr2LDUaoJYm4p4cjomnPEcEREREREpfP74hBFb8QpSVKxN+ecNm0aLl++jPbt20OSJERHR2P48OGYO3culEqlz32mTJmC8ePHy6+zs7NRu3btirsAuukcuVakfZgI6/mcEut5hKMiQ+sUer//6hMRURlIkgRJlCA6JIiuR9eXKEJ0uG0vqCNJEiABkoSC51LBc7htKygTpYLzFDyXAAkSJLGgrtwGZyUJKNzmdpwSz1GOul7bxIL2SADEgm1wbStoj8c277bCrR1Fz+F8XlDu8X33+kmU/LKUiR8lzgwp57lLP1dpBeXaXHLb4Xwvq1QpoFQXPKoUUCg9Xxd+CVCqC7a7vS5aR1F0H5VCrqdQFhxDIfCG9jeZ3949RkREQKlUevUupaSkePVCuej1eqxcuRLvvvsurly5gpiYGLz33nsIDAxERESEz320Wi20Wm2Ft5/8Q7KJSPvomBya5HAkr1Snk8MSwxERVXdyqCgSKCRRgsMhegYKt+AhiSIcDglSkXJXEHE/TtGQ4nEchwTRIbrt734+sZjAI7q1Q3Jrh/dxpILnROSDAO9wpVIUhC630Kb2rKPwsU/hvu77lbLdRz2FsnqHOb+9s9RoNLjzzjuxbds2DBgwQC7ftm0b+vfvX+K+arUatWrVAgCsW7cOffv2hUKhuKHtJf+TJAkZG0/Cei4bgk6JqGduhzra6O9mERF5kEQJNqsDNkuRL7Prud2jzFrMdoetaFARiwSWWztUKBQCBKUAhVKAQlH4KBS8cROEglEtBY+CAAgK5xs6QRAgFLxtKHWbonB0jKBw1gUKy13vEYvdJrg/L2xX0dfOeqVv87ieMm1zvXY7ZpFrdTa78FpkQtGXQrHbiirpzXPFnqf4Aq9dSziWV3tLfulRIDokiHYJDrtY5KuwTLSLcNiK1pEKtxXdxybC4XC+Fl2v7aJn75gEZ7lNLP7C/MA7XBUT2NQKdBzQEGGxVee9nF8/kh8/fjyGDh2KNm3aoEOHDnjvvfeQlJSEMWPGAHAOs7t48SLWrFkDADhx4gT27duHdu3aISMjAwsXLsSff/6JDz/80J+XQTdJzu7zyD+YAiiA8CHxDE1EdN28Qo65aOBxhhhr0fKiIch9u9XhNfToZisuVCiUCghKAUqlAKFIuaJIfaGYcvfjeJQrBSgUhfUF93L3ba7jy+1QeB+nYH+lUuHjOEJBSKm+n2oTFUd0eAYyZ/Bye10QsBwOSX4u2r338Qh1Nu+yYkOdfPyCUGcTvT7AEe0SRLsDNjhKvZ62veNu1LfqhvBrcBo0aBDS0tIwa9YsJCcno0WLFtiyZQvq1q0LAEhOTkZSUpJc3+FwYMGCBTh+/DjUajW6dOmCvXv3ol69en66ArpZ8o+mIvv7cwCAkAcbQNco1M8tIqKbzSPkFAkyVrPdu4fH4oDNV7lbL4/dUvp/2K+ZAKi1So8vjU7lVabWKqHWKaHWqjxeqwrmQfgKFEVDStHAw1BBVD05P8xw/ttSWYii5Bawigl1Nt+hLShSV/oJKhG/3sfJH3gfp6rHeiEHV989AskmIqBjLEIebODvJhFRGThsIsz5No/eGa+em+KGsPno5blZIafkcOP6UrnVL7pdJQcfBhgiosqtStzHiagsHFkWpK5JhGQToW0ciuA+9f3dJKJbisMhwpJnhyXfBku+HeY856PzyyZvM+cX1rEU1LHfqHH3BSFHo1VCXTTk6HwEHq2qMNx41WPIISKismFwokpLtDqQuiYRYrYVqigDwh9vCkHJNzZE5SU6RFhMdljy7DC7wo0cetzK8ty25dthzrdffy+PAGfAKRpyfAacYnp7dN5D2BhyiIjoZmNwokpJEiVkbDgO28VcKIwqRAxrBoWOv6506xJFCVZTQe+OWw+QK+h4lnn2DtnM1z/ETaNXQWtwfamhMzofPcs8X2sNKmj1KnkFLyIioqqM70SpUsredg6mP9MApYDw/2sGVbje300ium6SKMFqtsuBx1ykh6ekUGQ12697pTa1TllM8HE++go+OoMaGoMKCoYfIiK6xTE4UaWTdzAFObvOAwBCBzSCNi7Yzy0iKiRJEmxmh4/hbSUPebPk2WA12Uu9Q31pVFoldIYivT1GV8gpKDd6Bh+t0dnzo1DyfndERETXisGJKhXLuWxkfH4CABBwXy0Y20T7uUV0q5EkCeZcGzIu5yPjch4yruQj83I+sq6a5B4i6TpvOqpSKzwCj9ag9hl6PHuBnI9KFcMPERGRPzA4UaVhzzAj7aNEwCFB1ywcwT3r+btJVI2JDhHZqWZnOLqcj8wr+c6wdCUPljx7qfsrVYXhR1d0Xk/RHiCPMjWUaoYfIiKiqobBiSoF0WJH6uq/IObaoI4xImxQE04opwphMdmRWRCIMi47e48yLuch66oJoqOYniMBCArXISTaiNAaBoTWMCA4ygB9oNo59M2ggkpTeW4+SERERDcegxP5nSRKSF97HPYr+VAEqhE+rDkUleiO2FT5SaKE3ExLYe+RW1DKz7IWu59Ko0BItAGhNZwByfU8JErPYEREREQeGJzI77K2nIH573RApUDEE82hCtH6u0lUSdmtDmSmFAypu5yPTLc5SCXdbNUYrEFIDSNCow0IKehBCq1hRECIlj2bREREVCYMTuRXefsuI/eniwCAsEcbQ1M70M8tIn+TJAmmHJvP3qOcdHOxS3IrlAKCowpCUbTz0RWWNHr+U0dERETXh+8myG/MpzORsfkUACCoex0Ybo/0c4voZnI4RGRfNbktzFC4SIMlv/jFGbQGVeHQuoKeo9BoA4IidFxum4iIiG4YBifyC1uqCWkfHwNECfrbIxHYrY6/m0Q3iCXfVji0rqDnKONyPrKvmiAWt6x3weIMoTWMznDkNg9JF6CGIHB4HREREd1cDE5004n5NqSt/guSyQ5N7UCEPdKIb4SrOEmUkJNulucbuXqPMq7kw5RdwuIMWqVz3lF04bwj5wp2eqjUXJyBiIiIKg8GJ7qpJIeItE//hj3VBGWwFuFPNIPAN8hVhs3icA6ru5JXMPcoXx5e5yhpcYYQrTz3KKRG4RLfxhAtQzMRERFVCQxOdNNIkoTMr/+B5VQmBI0C4cOaQRmo8XezqAhJkpCfbS1ctU4OSHnITbcUu59CJSAkyuC2cl3BPKQoLs5AREREVR/fzdBNk7f3EvJ+TQYEIGxQU2hiA/zdpFuawy4i66rJY9U6V1iymh3F7qc1qhAmzz0qXKQhKJyLMxAREVH1xeBEN4X5eDoyv/kHABD8QD3om4f7uUW3DrvNgYzL+Ui/lIf0S7lIT3YOrcu6aoJUzOIMggAEReg9FmZw3f9IH8BeQiIiIrr1MDjRDWe7koe0T/8GJMBwZzQC7q3l7yZVSw6HiKwrJqRdynWGpOQ8pF/KQ1ZKPqRiFq9Ta5WFy3q79R6FRBqgVLP3iIiIiMiFwYluKEeuFakfJkKyOKCpF4TQAQ25GMB1EkUJ2ammwh6kS3lIu5SHzCv5EB2+E5LWoEJYrBHhsQEIjTEiNMYZlIwhGv48iIiIiMqAwYluGMkuIu3jY3Ckm6EM0yF8aDMIKvZilJUkOZf4dgakvMJepOS8YlewU2uVCIs1Or9inEEprKYRhiAGJCIiIqLrweBEN4QkScjYeBLWs9kQtEpEDGsGpVHt72ZVSq5V7FzhyH2ona2YRRqUagVCaxicwcgVlGKNCAzVQVAwIBERERFVNAYnuiFy9lxA/h8pgACED4mHOtro7yZVCuZcG9KTc5F2sbAHKe1SLix5dp/1FQoBITUMBcPsjAiLcQaloEg9FAxIRERERDcNgxNVONNfqcj+/iwAIKRfA+gah/q3QX5gNdnlxRnkHqRLecjPtvqsLwhAUKTeqwcpJMoAJYc3EhEREfkdgxNVKOvFXKSvOw5IgLF9DAI6xvq7STeU3epc6jvtUi7SLxb2IJV0o9jAMB3Carp6kIwIiw1AaA0DVBrlTWw5ERHdKiRJAhwOSA6H12PhcxGQRECSAFF07iMBgPM1JKmwzFXPVSZKznquMlEs3Lfo8SRJ3r/cx5MkuT0lHk8U5f3l40mFx/Q4XsH+13Q81zEhAAoFIACCQgEICkChcA6d9/EcCsFZD0Lhc/d6Ba/dn0MhOOcqKxSAULCPj3oe+7jaU0q9wudC8dsUisLzF7S9uG3VeU41gxNVGEe2FWlr/oJkE6FtGIKQfg383aQK47CLyLyS79WDlJVqKviPgzdjsKag5yjAY8EGjY5/dkRE10sqeEMOh0N+LjlEQCwIA6IIye4ofF1sYHALDg47JIcIyWEv2N/ueRy3R0l0AK5HX/t7PLqdq9jjiIDd7nz0Oo53++Xr8LV/waOrnvONP9FNVDRQFTwWDVi1338P+pYt/d3aMuM7OKoQks2B1I8S4ciyQhWpR/iQeAjKqveJgyhKyL5q8ghHaZfykHUlH2IxN4vVGdWFc5BqBhT0Ihmh42IYRFRAkiTnm1mrFaLVCslqg2RzfyzyZbMVvmkv6AlwvqEueO6rrLTtDrGg56DwuST6KJMK9iluu6vM7bkkOpyfwhe7vWz7lOc4xd6gjspHqXT2SiiVzjezgFvvg/NLcHvufAMsQIAgvxl2lsNZ5rEvIAhFjqUQALgfS1G4b4Ucr6Dc1/EKelSu6XhCQXlBez3KAOffjejWgyWKhb/LUgnPXT1apdUTi/T8yftIJe/v3uPnc58iz4vZVm6uYxQp9vqrrWKhnsGJrpskSUj/7ARs53OgMKgQMaw5FPrK/asliYVLfaddypXnI2Uk58Nh9/1HrNEpvXqQwmMDoA9UV+tuaaKqRnI4CsOHWxgRPcoKHosLLzZbQcBxq+vjmK79RVtp9Wx8o+8PCgUEpdIZDnw+KiAoVc7goFKVvE2hAFRKCAql/CiolIDC9zHl/ZUKQH50q+u+v8/Hgv2L2+ZqUzHnKPm6Cx6r+bAqqjjFha0Sg5xYMOzR/bkryBW8Vtes6e9LK5fK/e6WqoTs7UkwHUkFFALChsRDFaH3d5NkkiQhP8vq1YOUnpwHu8X3Ut8qtQKhMQU9SG4hKSBUy//AEPkgSZIzHJjNEM0WSFZL4XOL2a2XxRVSfIcPV3gRPcKHdwDxCEM272PC4ftvu1JRKiFoNBDUauejRg2FWuNZplIV9AIIzk/FXc8VSre5EJ7bPcoUirJv91nmfF78PmXZrihhn3JsVyrdhviUtt0tLPHfbKIKIQiC898gpRK38l8VgxNdl/zDKcjZkQQACB3QELoGIX5riynH6hGM0gvCkiW/mKW+lQJCaxgKw1GMEeE1jQgM51LfVHVJkgTJUhBcLBZIFgtEs7mwrCDYiGYzJLMFosX56LPMYnEew2x2llmshcd1O75ksVTq3hRnMHEPKe5faghqNRQaDQS1poS6arlMoSmmntq9bkEYKq6ukovBEBFVNQxOdM0sSdlI/+wEACCgU00Y29a4YeeSJAk2iwOWfDvMeTZY8mzIumoqDEqXcmHKsfncV1AICInSy3OPXEEpOEoPpZJLfdONI4liYXBx75GxmAvCjLXgeTFl7oHFo8wVWHyVFb+i402hUEDQ6aDQap2PGg0ErbaYQOIMFig1uKg9yjzCiM/w4gwuCo0aUHMoLRERVQwGJ7om9kwz0tYkAnYJuqZhCO4VV6b9RIcIi8kOS15BAHIFoXwbzHl2WPJtzm35znBUGJTsxS7O4C4oQicHo3DXvZCiDVCp+ekulUySJIh5eXBkZsKRmeV8zMqEI8v5XMzKlntiCntkzBDlXhi3bQVlktX3fbtuGqVSDjCCVlsYZuQyDRRanbNMp4WgLaHMdQydDoLWtU1b+LzguFCpGFSIiKhaYnCicnOY7Uhd/RfEXBuEcB3MbaJx5nAqzPk2OQxZ8tyCkFsvkdV8fXMPFCoBOoMaWoPKeT8ktx6k0BoGLvVNBQEoH2JWJuyZmRCzsuTw48jKgiOj4NG9rODxhs6NUamcPSU6HQSdtjCceJUVPGq1hcGluDKdDoJG6xFcPEKSmis7EhERVRS+y7yFiaIEq6mwR8eSbyvo6bF7BqB8e2GPUJ4VLUURNVQKmEUJP/yTA9NbR8p9bo1OCa1RDZ3RGYK0BjV0RhW0Ba91RrUckJz1nI8qNVcAulVIkgTJZPIKN4W9Qb7DjyMrC7D5HrZZFoJWC2VICJTBwW6PwVAEBUGhN7j1yBT2vvjskdEWBCJXj4yK/9wSERFVZfwveTVgtzncwk5hT0+JQ9/y7bCY7MXevLU4zXQK1NAp4ZAk7Dc5gAA1Qo1qaA1qaI0qZ9gxugUhQ2E40hkLtulVUHBu0S1FNJkKw02mr8DjPiQuy9lTlJnlXML5GglqtTP4FIQfRUiwdyAKLtjutk2h01XglRMREVF1weBUSUiiBKvZ7jPsyEGooAfIfeibOd8Oh+36bh6m1iqdoccVcAzqwl4eg1vouZgD/HwJABD6cCM81rYGe39uMaLF4hZ+Mj3Cj8eQuCK9Qte1YIFa7Qw2cuApGn6CvcKPMjgYgl7P308iIiKqMAxOfvT3r8n4/duzMOfbYM23X9dqvoKAkoe+ebz2DEVKVem9P5Z/snD1C+cKeoFdayPorphrbyz5nWi1FoadkobCFRkSJ5nN135Slcp34HEPPkXLgoMhGAwMQEREROR3DE5+5LCJyLpq8ihTaRQF4afI8Lbihr4VPKp1N+5Gf/Y0E9I+TgQcEvQtIxDUve4NOQ9VHEd2Nqznz8N24SJsF87DeuECbOcvwHbhAmwpKZDy86/94Eqld/BxCz+K4GCoQkKgcO8hCgmGwmhkACIiIqIqi8HJj+q1jMCAiUZ5XpDOoIZSXbnm/ohmO1I//Ativh3qWgEIfbSx847t5Fei1QrbxYs+g5H1wgWI2dmlH0ShgDIoyGMOkGfgcZsDFBwMZWhBPaMRgqJy/Z4SERER3WgMTn5kDNHCGKL1dzOKJTkkpH1yDPYUE5RBGkQ80QwKDe+HdDNIogj71VTYLpx3hiE5FDl7kexXrqC0sZ3K8HBoatWCulYtqGvXKnweEwNlSAgUgYEMQERERERlxOBExcr85jQsJzMhqBUIH9YcyqDKG/KqIkdOjtxDZCsSjGwXLpR681RBr/cRjGpDXasmNDVrQmE03qQrISIiIqr+GJzIp9xfLiHvl2QAQNigJtDUDPBzi6oeyWqFLTlZ7i1yDqm7CNt5Zy+SIyur5AMolVDXqAF17YIwVKs21LVqQVPbGZaUYWGcM0RERER0k/g9OC1btgzz5s1DcnIymjdvjsWLF6NTp07F1v/kk08wd+5cnDx5EsHBwXjggQcwf/58hIeH38RWV2/mkxnI/Po0ACCoZz3oW0T4uUWVkyRJcKSmOoPRxQuFizGcPw/rxQuwX74CiCUvFa8MDYW6dm1oatUs7C2q7QxI6ho1IKjVN+lqiIiIiKgkfg1O69evx7hx47Bs2TLcfffdePfdd9GrVy8kJiaiTp06XvV/+uknPPHEE1i0aBH69euHixcvYsyYMRg9ejQ2bdrkhyuofmwp+Uj75BggAobWUQjsXMvfTfIrR24ebBcvOMNQkQUYbBcvlro8t6DT+ewtUteqBXXNWlAGcDgdERERUVUgSNL13D3o+rRr1w6tW7fG8uXL5bL4+HgkJCRgzpw5XvXnz5+P5cuX4/Tp03LZ0qVLMXfuXJw/f75M58zOzkZwcDCysrIQFBR0/RdRjTjybEhZdgiONDM0dYMQ+WRLCGW4x1NVJtlssF2+7BmMLhYuxuDIyCj5AAoFVDWifQYjTa1aUEZEcDgdERERUSVVnmzgtx4nq9WKAwcO4JVXXvEo79GjB/bu3etzn44dO2Lq1KnYsmULevXqhZSUFHz++efo06dPseexWCywWCzy6+yyLNN8C5LsItI+PgZHmhnKUC3Ch8ZXi9AkSRIcaWmFK9MVGVJnu3y59OF0ISG+F2CoXds5nE6juUlXQ0RERET+4rfglJqaCofDgejoaI/y6OhoXL582ec+HTt2xCeffIJBgwbBbDbDbrfjwQcfxNKlS4s9z5w5czBz5swKbXt1I0kSMjafgvVMFgStEhHDm0MZUHXCgJif7+wtKvgquhiDZDKVuL+g1UJds6YzGNWsVbgYQ8FcI2UAF8YgIiIiutX5fXGIosOYJEkqdmhTYmIiXnzxRbz22mvo2bMnkpOTMWnSJIwZMwYrVqzwuc+UKVMwfvx4+XV2djZq165dcRdQDeT+eBH5v18BBCDs8aZQR1feeTeSKMJ04ACyvv4G5uN/w3bhIhxpaSXvJAhQ1agBTc2aXqFIXbMWVJERvJ8REREREZXIb8EpIiICSqXSq3cpJSXFqxfKZc6cObj77rsxadIkAMBtt90Go9GITp06Yfbs2YiJifHaR6vVQqvl/YeKY0pMQ9Z3ZwAAwX3qQ98kzM8t8s2alISszV8i66uvYLtwwWu7IjjYOxjVdM45UsXGQsHhdERERER0HfwWnDQaDe68805s27YNAwYMkMu3bduG/v37+9wnPz8fKpVnk5VKJQBnTxWVjzU5D+nrjgMSYLyrBgLujvV3kzw4cnKQvXUrsjZ/CdOBA3K5wmhE4AM9EdDpXmjqFAyn40IfRERERHQD+XWo3vjx4zF06FC0adMGHTp0wHvvvYekpCSMGTMGgHOY3cWLF7FmzRoAQL9+/fDkk09i+fLl8lC9cePG4a677kJsbOV601/ZOXKsSPvwL0hWB7QNghHSv0GlWP1NcjiQt/cXZG3ejJzt2yG5FvYQBBg7dEDwgAQEdu8OhV7v34YSERER0S3Fr8Fp0KBBSEtLw6xZs5CcnIwWLVpgy5YtqFu3LgAgOTkZSUlJcv3hw4cjJycHb731FiZMmICQkBB07doV//nPf/x1CVWSZBOR9lEiHJkWqCL0CB8SD0Hp3zk+llOnkLV5M7K++hr2lBS5XNOgAYIT+iP4wQehLmYIJxERERHRjebX+zj5w61+HydJkpC+/jhMh65C0KsQ9eztUEca/NIWe0YGsr/dgqzNm2H+80+5XBkcjKA+fRA8IAG6Fi0qRU8YEREREVU/VeI+TuQfOTvPw3ToKqAQED4k/qaHJslqRe6PPzqH4u3eA9hszg0qFQLuvRfBCf0R0LkzF3MgIiIiokqFwekWkn/kKrK3nQMAhPRvAF3DkJtyXkmSYP4rEVmbNyP722/hyMiQt2mbxSMkIQFBffpAFR5+U9pDRERERFReDE63COuFHGR8dgIAEHB3LALaeS/dXtFsKSnI/vprZG3eDMvJU3K5MjICwX37ITghAbomjW94O4iIiIiIrheD0y3AnmVB6oeJkGwidE1CEdyn/g07l2g2I2fHDmRt/hJ5P/8MiCIAQNBoENi9G4ITEmDs2BGCir96RERERFR18N1rNSdaHUj78C+IOVaoog0IG9wUgqJiF1uQJAmmgweRtWkzsrduhZiTI2/Tt2qF4IQEBPV6gPdaIiIiIqIqi8GpGpNECRnrj8N2KQ8KoxoRw5pDoau4H7n1wkVkffUlsr78ErZzhcvGq2JjENy/P0L694emXr0KOx8RERERkb8wOFVj2f87B9NfaYBSQPjQeKjCdNd9TEduHnK+/x5Zmzcjf/9+uVwwGBDUoweCExJguKstBIV/7wtFRERERFSRGJyqqbwDV5Cz+zwAIPThRtDWC77mY0kOB/J/+w2ZmzcjZ9t2SCaTc4MgwNC+HUISEhDYvTsURmNFNJ2IiIiIqNJhcKqGLGezkLHxJAAgsHNtGFtHX9tx/jmDrM2bkfXVV7BfviyXa+rVQ3BCAoIf7Ad1bGyFtJmIiIiIqDJjcKpm7OlmpH2UCDgk6JuHI6hH3XLt78jMRPZ33yFz82aYDx+RyxVBQQjq3QshCQnQ3X47BKFiF5ggIiIiIqrMGJyqEdFsR+qHf0HMs0NdMwChg5qUaQU9yWZD7k8/IWvzl8jduROSzebcoFQi4J57EDwgAQFdukCh1d7gKyAiIiIiqpwYnKoJSZSQvvZv2K/kQxGoQcQTzaDQKEvcx3zsGLI2f4msb76BIy1NLtc2aeIcite3D1SRkTe66URERERElR6DUzWR9e0/MB/PgKBWIGJYMyiDffcO2VNTkfX1N8javBmW48flcmV4OIL79kXwgATomja9Wc0mIiIiIqoSGJyqgdzfkpH78yUAQOjAxtDUCvTYLlosyN21C1mbNiP3p58AhwMAIKjVCOjaFcEJ/RFwzz0Q1Oqb3nYiIiIioqqAwamKM5/KROaXpwEAQffXhaGlc2idJEkwHz6MzM2bkb3lO4jZ2fI+uttvQ0hCAoJ69YIyJMQfzSYiIiIiqlIYnKow29V8pH18DBAlGO6IRGDX2rAlJyPry6+QtXkzrGfPynVVNWog+MEHEZzQH9r69f3XaCIiIiKiKojBqYoS821I+zARktkOdU0jBM3fSBr5H+T/+hsgSQAAQa9H4P3dEZKQAEO7dhCUJS8WQUREREREvjE4VUGSQ0Tax8dgTzUBMCHzk1chZqbI2w133YXghAQE9ugBZYDRfw0lIiIiIqomGJyqGMvZs0hb8wfE/EhINjPyf5wLMTsF6jp1EJzQH8EP9oemVk1/N5OIiIiIqFphcKoCHNnZyP5uK7I2b4Y9KxS62x6DJImw/PUxgnp2RPCABOhbtYIglH6zWyIiIiIiKj8Gp0pKstuRt3cvsjZvRs72HZCsViijWkDfYSAAQFffipoz34VCp/NzS4mIiIiIqj8Gp0rGfOIEsjZ/iayvv4LjaqpcrmvRHurGwwBRAUObaIQ+3Ig9TERERERENwmDUyVgT09H9jffIGvzlzAnJsrlytBQBPXti8Ce/ZC9wwRHhgWauGCEJjRkaCIiIiIiuokYnPwo79ffkL5mDXJ/+AGw252FajUCO9+H4IQEBHTqBChUuPr+UTgyLFCF6xD+f/EQVAr/NpyIiIiI6BbD4ORHluN/I3fnTgCArkULBCckIKhPb6hCQwEAkiQhY8MJWM9lQ9ApET6sOZRGtT+bTERERER0S2Jw8qOgvn1hv3oVwQkJ0DZs6LU9Z/cF5B9MARRA+JB4qKMMfmglERERERExOPmRKjwcURMn+txm+jMV2d+fBQCEPNgAukahN7FlRERERETkjpNlKiHrxVykrz8OAAjoGIuA9rF+bhERERER0a2NwamScWRbkPbhX5BsIrSNQxHcp76/m0REREREdMtjcKpERKsDqWsS4ci2QhWlR/jjTSEouew4EREREZG/MThVEpIoIeOzE7BdyIXCoELEsOZQ6DgFjYiIiIioMmBwqiSyt5+D6WgqoBQQPrQZVOF6fzeJiIiIiIgKMDhVAvmHUpCz8zwAIHRAI2jjgv3cIiIiIiIicsfg5GeWc9lI//wEACDgvlowton2c4uIiIiIiKgoBic/smeYkfZRImCXoGsWjuCe9fzdJCIiIiIi8oHByY9yfrgAMdcGdYwRYYOaQFBwBT0iIiIiosqIy7b5UUjf+hA0SgR0iIVCq/R3c4iIiIiIqBgMTn4kKBUI6RXn72YQEREREVEpOFSPiIiIiIioFAxOREREREREpWBwIiIiIiIiKgWDExERERERUSn8HpyWLVuGuLg46HQ63Hnnnfjxxx+LrTt8+HAIguD11bx585vYYiIiIiIiutX4NTitX78e48aNw9SpU3Hw4EF06tQJvXr1QlJSks/6S5YsQXJysvx1/vx5hIWF4dFHH73JLSciIiIioluJIEmS5K+Tt2vXDq1bt8by5cvlsvj4eCQkJGDOnDml7r9582Y89NBDOHPmDOrWrVumc2ZnZyM4OBhZWVkICgq65rYTEREREVHVVp5s4LceJ6vVigMHDqBHjx4e5T169MDevXvLdIwVK1age/fuJYYmi8WC7Oxsjy8iIiIiIqLy8FtwSk1NhcPhQHR0tEd5dHQ0Ll++XOr+ycnJ+O677zB69OgS682ZMwfBwcHyV+3ata+r3UREREREdOvx++IQgiB4vJYkyavMl9WrVyMkJAQJCQkl1psyZQqysrLkr/Pnz19Pc4mIiIiI6Bak8teJIyIioFQqvXqXUlJSvHqhipIkCStXrsTQoUOh0WhKrKvVaqHVaq+7vUREREREdOvyW4+TRqPBnXfeiW3btnmUb9u2DR07dixx3z179uDUqVMYNWrUjWwiERERERERAD/2OAHA+PHjMXToULRp0wYdOnTAe++9h6SkJIwZMwaAc5jdxYsXsWbNGo/9VqxYgXbt2qFFixb+aDYREREREd1i/BqcBg0ahLS0NMyaNQvJyclo0aIFtmzZIq+Sl5yc7HVPp6ysLHzxxRdYsmSJP5pMRERERES3IL/ex8kfeB8nIiIiIiICqsh9nIiIiIiIiKoKBiciIiIiIqJSMDgRERERERGVgsGJiIiIiIioFAxOREREREREpWBwIiIiIiIiKgWDExERERERUSkYnIiIiIiIiErB4ERERERERFQKBiciIiIiIqJSMDgRERERERGVgsGJiIiIiIioFAxOREREREREpWBwIiIiIiIiKgWDExERERERUSkYnIiIiIiIiErB4ERERERERFQKBiciIiIiIqJSMDgRERERERGVgsGJiIiIiIioFAxOREREREREpSh3cKpXrx5mzZqFpKSkG9EeIiIiIiKiSqfcwWnChAn48ssvUb9+fdx///1Yt24dLBbLjWgbERERERFRpVDu4PTCCy/gwIEDOHDgAJo1a4YXX3wRMTExeP755/HHH3/ciDYSERERERH5lSBJknQ9B7DZbFi2bBkmT54Mm82GFi1aYOzYsRgxYgQEQaiodlaY7OxsBAcHIysrC0FBQf5uDhERERER+Ul5soHqWk9is9mwadMmrFq1Ctu2bUP79u0xatQoXLp0CVOnTsX27dvx6aefXuvhiYiIiIiIKo1yB6c//vgDq1atwtq1a6FUKjF06FAsWrQITZs2lev06NED9957b4U2lIiIiIiIyF/KHZzatm2L+++/H8uXL0dCQgLUarVXnWbNmuGxxx6rkAYSERERERH5W7mD0z///IO6deuWWMdoNGLVqlXX3CgiIiIiIqLKpNyr6qWkpOC3337zKv/tt9/w+++/V0ijiIiIiIiIKpNyB6fnnnsO58+f9yq/ePEinnvuuQppFBERERERUWVS7uCUmJiI1q1be5W3atUKiYmJFdIoIiIiIiKiyqTcwUmr1eLKlSte5cnJyVCprnl1cyIiIiIiokqr3MHp/vvvx5QpU5CVlSWXZWZm4l//+hfuv//+Cm0cERERERFRZVDuLqIFCxbg3nvvRd26ddGqVSsAwKFDhxAdHY2PPvqowhtIRERERFQZiKKEPKsdOWY7ci3OR5tDhCQBEiRnJQmuZ5DkIsntOSAVvJDk/ylSx+MYUpHjST7qFJ7f13mKbUsx50GR4xV3nsL6hddTeGypyH6F5S4P3h6LqCAdqopyB6eaNWviyJEj+OSTT3D48GHo9XqMGDECgwcP9nlPJyIiIiIif5IkCSabA7lmO7ILQk+u2Y4csw05BQEo12xHrsWGHLPdrcwmh6Rcsx25Vjvc3vfTdbqzbmj1Dk6A8z5NTz31VEW3hYiIiIjIg8XucAs2dmSbbQWhpyDQ+CjLcQs8rkeHWHGJR6UQEKhTIUCngkbpnPkiCAKEgu2CALheCULhfl51Cl4IENyeF+4kAB7lgs9yAfCo4+OYZW1PMeVw27e4ayy+PcVfS6hBg6rkmldzSExMRFJSEqxWq0f5gw8+eN2NIiIiIqKqze4Q5eDiHmg8y2xyKMoueJ3r1gOUY7bD6hArrE2CAARoVQjSqRGgVcnhx/lcjUCdCoFaZ1mgW53AInW0KoUcCOjWUe7g9M8//2DAgAE4evQoBEGQxym6fnkcDkfFtpCIiIiIbhrveTxFem98DnHzLjPZKvY9oVGjLDHQuJe5XgfoVAjSqRCgdQYeg0bJwEPXrNzBaezYsYiLi8P27dtRv3597Nu3D2lpaZgwYQLmz59/I9pIREREVCVJkgS7KMHukGATRdgdEuwOETax4NEhwV5QbnWUvN3mEGEXnY+2gnqu176Ob7N7breLhcfz3N9ZJ89tWFtF0qkVcnApDDoqH2XqgmDk3esToFVBqWDgIf8qd3D65ZdfsHPnTkRGRkKhUEChUOCee+7BnDlz8OKLL+LgwYM3op1ERER0i5EkCY6CN/bOUCHKb/JtPp7bHWJh+CgSEuRwURAWvEOJq27hsVzhxRlK3J8XHqvweJ7Bxr0NVZVaKXgEl6K9Oa5hboFaX2XOUGTUqqBRlfvuN0SVUrmDk8PhQEBAAAAgIiICly5dQpMmTVC3bl0cP3683A1YtmwZ5s2bh+TkZDRv3hyLFy9Gp06diq1vsVgwa9YsfPzxx7h8+TJq1aqFqVOnYuTIkeU+NxER0a1CFJ1v+G0OZ0+Eza3XweYQYbUXBgf35z6DSkFPhtUtjLg/d6/r6knx9dw7ALn2EeWwVB0pBEClVECtEJyPSgEqhQIqpQC122u10rldpXCWq4qUq93K1QX1vI9XsI+quPO5jqmQh7a5AhDn8RB5KndwatGiBY4cOYL69eujXbt2mDt3LjQaDd577z3Ur1+/XMdav349xo0bh2XLluHuu+/Gu+++i169eiExMRF16tTxuc/AgQNx5coVrFixAg0bNkRKSgrs9ortUiYiovKzO0SY7SIsNgfMdhFmmwMWmwiHKMn3DZEAiJIk34vEVSZJheVSwU1Q3Ou67kciP0rwKBd9HE+Cs1y+X4qrTPQ8HlzndqvjcU7J/dzOuihSV3R7Drf9xCLHQ0FbpaJtLXptQEFPi2fgKDWkiBKs9sJeEJu9oK4oVeiKYv7kHiI0SoXP54WhxDtQOF+7wod3EFG5Hc93EPEMMupStnscXylArVBAwSFnRFWSILnfhaoMvv/+e+Tl5eGhhx7CP//8g759++Lvv/9GeHg41q9fj65du5b5WO3atUPr1q2xfPlyuSw+Ph4JCQmYM2eOV/2tW7fisccewz///IOwsLDyNFuWnZ2N4OBgZGVlISgo6JqOQURU2dkcIiwF4cX5VRBk5GDjWeZex2x3Bh6LWx2vej7q2KvJG/NbhSAAaqWiIHA439hrPMJAYdBQu5WpFALUKoUcLFw9GWqlwuu5SiFAoyoMKu7PnXU9z61WOYOGezs0RQIKe0CIqCKVJxuUu8epZ8+e8vP69esjMTER6enpCA0NLdc/ZlarFQcOHMArr7ziUd6jRw/s3bvX5z5fffUV2rRpg7lz5+Kjjz6C0WjEgw8+iNdffx16vd7nPhaLBRaLRX6dnZ1d5jYSEV0vSXLOnbB4BBXnc89gUiTEuOp4BBbP0FJsHbvo994FjVIBrVoBrUoJlUKQ7/0hCIJ8vw/XPUYUrvuFuNVRuG2He5lbucfxXM/hPF7hsZz1FYpijue2n7Ndgsd+rvbB6xxu9zlxnaNo+0o6nleZ9/GUCshhpaQgIQcaVy9JQXlxz131OdGeiKh8yhWc7HY7dDodDh06hBYtWsjl19L7k5qaCofDgejoaI/y6OhoXL582ec+//zzD3766SfodDps2rQJqampePbZZ5Geno6VK1f63GfOnDmYOXNmudtHRLceSZKQZ3UgI8+KjHwr0vOsyMy3OR9NNmdPjVt48dVbYykyVM1sc8DfHTEalQI6lQI6tRJatQI6lRI6tRI6dUGZSgGtWllQXljmXkenUspBSC4rWs+tDt+UExFRdVOu4KRSqVC3bt0KvVdT0V4qSZKK7bkSRRGCIOCTTz5BcHAwAGDhwoV45JFH8Pbbb/vsdZoyZQrGjx8vv87Ozkbt2rUrrP1EVDlJkoRssx2ZRQJQRr7ryyYHpIw8m1x+o1fAcg8aHiHEZzApDCPuYUfrEViUxYYircpZj/MpiIiIrl+5h+q9+uqrmDJlCj7++ONrnmcEOFfkUyqVXr1LKSkpXr1QLjExMahZs6YcmgDnnChJknDhwgU0atTIax+tVgutVnvN7SQi/xNFCdlmGzJcvT/uYSi/8LV7GMrMt13znButSoEwowYhBg3CjGqEGDQI0ath0Cg9go22ILRo3cJLyaGIK1QRERFVVeUOTv/9739x6tQpxMbGom7dujAajR7b//jjjzIdR6PR4M4778S2bdswYMAAuXzbtm3o37+/z33uvvtufPbZZ8jNzZWXRD9x4gQUCgVq1apV3kshIj9wiBKyTL4DkLP3p0hvUL4NmfnWax7uplcrC0KQujAMGdQFoaiwPNSgQahRgzCDBnqNsmIvmoiIiKq8cgenhISECjv5+PHjMXToULRp0wYdOnTAe++9h6SkJIwZMwaAc5jdxYsXsWbNGgDA448/jtdffx0jRozAzJkzkZqaikmTJmHkyJHFLg5BRDeOzSEisyDYyD0+JQSgjHwrskw2lG8tz0IBWlWxASjUoEaoKwAZNAg1qhFq0ECnZggiIiKi61fu4DR9+vQKO/mgQYOQlpaGWbNmITk5GS1atMCWLVtQt25dAEBycjKSkpLk+gEBAdi2bRteeOEFtGnTBuHh4Rg4cCBmz55dYW0iulVZ7SIyCwKO3BuUX2RukFs4Ss+zIsd87fdQC9Sp3Hp51PJzXwEozKBBsEENrYohiIiIiPyj3Pdxqup4Hye6VaXlWrDr+FX8dSnLIwC5FkfItVx7CArWqwuHvRk85wbJvUFyMHLWUysVFXh1REREROV3Q+/jpFCUPLm5IlfcI6JrJ0kSTqXkYvuxFGw/dgV/JGWUOkROECAHG/cA5NEb5BaAQg1qBOvVUDEEERERUTVX7uC0adMmj9c2mw0HDx7Ehx9+yPslEfmZzSFi/5l0bD+Wgh1/X8G5tHyP7c1jg9CxQTgiA7VuQ+GcASjMqEGQTs2lq4mIiIh8qLChep9++inWr1+PL7/8siIOd8NwqB5VN1n5Nuw+kYLtx1Kw+3iKx7wjjVKBDg3C0b1ZNLo1jUJsCBdRISIiInK5oUP1itOuXTs8+eSTFXU4IirB2dQ8bD92BduPXcH+sxlwuK3VHW7UoEvTKHSPj0anRhEwaivsz5yIiIjollUh76hMJhOWLl3KeykR3SAOUcIfSRnYfuwKdhxLwamUXI/tjaMD0C0+Gt3jo3BH7VAoOdyOiIiIqEKVOziFhoZ6LA4hSRJycnJgMBjw8ccfV2jjiG5luRY7fjxxFduOXcHu41eRnmeVt6kUAu6KC0P3+Gh0j49GnXCDH1tKREREVP2VOzgtWrTIIzgpFApERkaiXbt2CA0NrdDGEd1qLmaasOPYFWxLvILf/kmH1SHK24J0KnkI3r2NIxGsV/uxpURERES3lnIHp+HDh9+AZhDdmkRRwpGLWdhx7Aq2H0vBseRsj+31wg3oHh+NbvHRaFMvlPc+IiIiIvKTcgenVatWISAgAI8++qhH+WeffYb8/HwMGzaswhpHVB2ZrA78fCrVOV/p7xRczbHI2xQC0KZuGLrFR6FbfDQaRBpLvG8aUWUhSRLsVgtsZjOsJhOsZueXzWyGSqNB7WYt/d1EIiKi61Lu4PTmm2/inXfe8SqPiorCU089xeBE5ENKthk7/k7B9sQr+OlUKiz2wiF4AVoV7m0cge7x0ejcJAphRo0fW0q3CtHhkION1WSCzewKO2bYTPmwms0F200F282FYchk8rldkkSf56rRoBGGvLHoJl8hERFRxSp3cDp37hzi4uK8yuvWrYukpKQKaRRRVSdJEhKTs7HjWAp2HLuCwxeyPLbXDNGje0GvUrv6YdCqlH5qKVUFkiTBbrN6hpwiYcf9dbFhyGKWQ47dain9xNdIrdVBrdNBo9dDrdMjNLZ6rbjqcDhgs9n83QwiIiojjUYDheL6pzuUOzhFRUXhyJEjqFevnkf54cOHER4eft0NIqqqLHYHfjmdJoelS1lmj+231w7B/QVhqWmNQA7Bq8ZE0VHYQ2NyCzIW99c+enUsnsHIajEX9O6YIIm+e3Oul0KphEbnDDjOoKPzeK3R6ZzP3bartTooNVooNBooVGpApYagVEJQKiFBgN3hgN1uh81mg81mg15fPW68LEkSLl++jMzMTH83hYiIykGhUCAuLg4azfWN6il3cHrsscfw4osvIjAwEPfeey8AYM+ePRg7diwee+yx62oMUVWTlmvBruNXsT3xCn48eRV5Voe8TadW4J6Gkbi/WRS6NI1CVKDOjy2lkkiSJIcWqykf1vx8WM0mWEz5sJmcj9b8/MI6ruFqFt89PTeyN0el1TpDjE4PdUGw0ej0UGl1UOn0UGq1UGq0ENQaKDUaCCo1FEoVoFQ6vxRKSIICkgBIEOAQRdhsNjnouB7z3Z7bMvJgt2fJQchut0OSpNIbWyAmJgbNmjW7Yd+Tm8UVmqKiomAwGPjhBxFRFSCKIi5duoTk5GTUqVPnuv7tLndwmj17Ns6dO4du3bpBpVLJDXriiSfwxhtvXHNDiKoCSZJwKiUX2wt6lQ4kZcD9/WNUoFa+Ee3dDSOgU3MI3o0iD19zCzbOHh634JOfD5vZtd0EqznfGXyKBCOryVTs/Jxrbh8AQaGE2mCASm+ASquHSqeFSquDQqOFwi3YCEoVoFJBUCghKRSAQgEJAiQIECFBlCQ4RMkj5OS6hRibzQaHxQJk37jAVhxBEKBSqaBWq6FWq30+rw6jERwOhxyaqsP1EBHdSiIjI3Hp0iXY7Xao1dd+O5dyByeNRoP169dj9uzZOHToEPR6PVq2bIm6detecyOIKjObQ8T+s+nYnpiCHX9fwbm0fI/tzWKC0L2ZMyy1iA2GQsFPoUvisNsKA42PsGPNz4fFZILNnA9Lvsl7u9tz0eEo/YRlIAGAQgko1VAZDFDqDVBqdVBotRDUWkCtBhSuXhsFICggCQJECJAAOESxINyIBcPUHMX3yogAzCJgNgMwe2+vAEqlstQwU1HPlUrlLdHz4prTZDDwZtNERFWNa4iew+G4ucHJpVGjRmjUqNE1n5ioMsvKt2H3iRRsP5aC3cdTkGO2y9s0SgU6NAhH92bR6NY0CrEh1WP+RklEh6NgiFp+YbAxOR+dZQWBRg4+xQcjxw2YVK/SGaA2GqDSG6HU6aHQ6iBoNBBUGkClhqR0Dk9zFPTg2EUJNocDNrsdVqsN1pLaJAKwOABcX0i73oBSnroVMQGWfLsVQiIRUXVTUf92lzs4PfLII2jTpg1eeeUVj/J58+Zh3759+OyzzyqkYUQ329nUPOe9lY6lYN/ZdDjEwt6CcKMGXZpGoXt8FO5pFIkA7TV/5uAXNqsFeenpyM1Igyk72zl0zeQZdkoKPnZLxQ8Bk+fqGAxQ6fRQ6QxQ6PVQqJ3zc5y9PEqICiXEgt4duyjBLjpgsztgtTkDj8Vigd1u9zy4q1cH5evVUalU0Gq10Ol0Hl+usmsNP7dKrwwREVF1Vu53f3v27MH06dO9yh944AHMnz+/QhpFdDM4RAkHkzKwrSAsnUrJ9djeKCpAHoJ3R+1QKCvhEDyH3Ya8zAzkpqcjL8MZjHIzXM/TkZuehryMdJjzcks/WBko1Wo57Gj0BnmlNYVWD6VWB0GjBVRqQKWCpFRAhBIiAIckwS4V9PLY7LDabDCbzci2WGA2mwuHtJlEwGQCYLqm9mm12hKDT0nlWq32urrvicjb2bNnERcXh4MHD+KOO+7wd3P8YsaMGdi8eTMOHTrk76bcULt370aXLl2QkZGBkJCQMu+XlpaG+Ph47Nu3z2vF5vIQBAGbNm1CQkLCNbdv9erVGDduXIkrZ96sn2dp11NZtG3bFlOmTMFDDz3k76bcFOUOTrm5uT6X8lOr1cjOzq6QRhHdKLkWO348cRXbjl3B7uNXkZ5nlbepFALuigtD9/hodI+PRp1w/81lEEUH8rOyCsNQunsQcoaj3Ix0mLKzSj9YAZVGi4DQMOiDg6E1GKHRG5z329HrIai1UGicy0pLCiVEpRIiBIgSCgOP3QGr1Qqz2Qyz2YwssxkWiwVWsxUwX3vYcVEoFCUGndLKtFoth6gR3UJWr16NESNGoGfPnti6datcnpmZidDQUOzatQudO3f2XwPLyBUuIyMjcfr0aQQGBsrb7rjjDiQkJGDGjBllOlZZ3vhXNnPmzEG/fv3k0JSWloYhQ4bgyJEjSEtLQ1RUFPr374833ngDQUFB13yejh07Ijk5GcHBwRXUcgKAadOmYeLEiUhISLgl/htc7uDUokULrF+/Hq+99ppH+bp166rFcrNU/VzMNGHHsSvYfiwFv55Og9VRuHpakE6FLk2d91a6r3EkgvU3tsdBEkWYcnPknqDcgmBU2EOUjryMNORlZpZ5lTeFUoWAsDAYQsOgCw6FJjAYSmMAlFo9oNZAUiphB2Cx2pCfn49ckwmpBeHHkpMNhyOjQq5NrVZfV/BRq9UczkZ0E1it1uu+l8nNVFJ7VSoVduzYgV27dqFLly6Vpl3XIicnB/Pnz8fMmTMr7Jg3y7XeENpkMmHFihXYsmWLXKZQKNC/f3/Mnj0bkZGROHXqFJ577jmkp6fj008/veY2ajQa1KhR45r3vxWV5Xe8T58+ePLJJ/H999+jV69eN6ll/lPu4DRt2jQ8/PDDOH36NLp27QoA2LFjBz799FN8/vnnFd5AovISRQlHL2Zhe0FYOpbs2RNaL9yA7vHR6BYfjTb1QqFWXv8nJJIkwZKf5wxA6UWHzLk9T0+H6LCXfjwAglIFXWgYtMFhUAcGQWUwQtDqAJUaokIp9wSZzBak5efjotkM5NqA3FQAqeVqvyAIXr03pQ1tK1qmVHLpdaLKqHPnzmjRogU0Gg3WrFmD5s2bY8+ePUhMTMTEiRPxww8/wGg0okePHli0aBEiIiIAON/IjxkzBps3b0ZQUBBefvllfPnll7jjjjuwePFiAL6HE4WEhGDx4sUYPny4V1scDgeeeuop7Ny5E5cvX0adOnXw7LPPYuzYsXKd4cOHIzMzE+3atcPSpUuh0Whw9uxZn9dmNBoxcOBAvPLKK/jtt9+K/R5cvHgR48ePx//+9z8oFArcc889WLJkidzL0blzZ4/rAoCEhASEhIRg9erVAIB69eph9OjROHXqlHzNH374ISZPnoxNmzbhwoULqFGjBoYMGYLXXnut3EN/X3jhBSxcuBDPPfccoqKifNaxWq149dVX8cknnyAzMxMtWrTAf/7zH3Tu3Bm7d+/GiBEjABROhJ8+fTrCw8Px3nvv4ejRowCAzZs3Y8CAAXjrrbfw3HPPAQB69uyJ1q1bY86cOQCA5cuXY/78+Th//jzi4uLw6quvYujQoXI7BEHA8uXL8d1332H79u2YOHGiV3A1mUx45JFHkJaWhi1btiAsLMzrer777juoVCp06NBBLgsNDcUzzzwjv65bty6effZZzJs3r9TvYWpqKgYMGIDvv/8eNWvWxIIFC/Dggw8C8D1Ub/Xq1XjttdeQmpqKnj174p577vE65ptvvolFixYhPz8fAwcORGRkpFedVatWYe7cuThz5gzq1auHF198Ec8++yyAwh7FL774AkuXLsVvv/2GRo0a4Z133vG47tKU9Ht29uxZ1K9fH/v27UObNm3kfZYuXYr58+fj7NmzEASh1L/54v6tmDFjBlauXIkrV64gPDwcjzzyCP773/8CcK7i2rt3b6xdu5bByZcHH3wQmzdvxhtvvIHPP/8cer0et99+O3bu3HldXahE18NkdeDnU6nOxR3+TsHVnMLFDBQCcGfdUDksNYg0lqtnw2Y2y+HHY7hcwfA5V29RSTc9lQQBklIFSaWGpDNAHRAIdUAQlHoDBI0OUKvhEBSwiyKsdjvMFitEUUSO6wAWEbDkAIUlxdLr9TAYDF5fRqMRBoMBer3eK/hoNJpbooudqCJJkgSTrWKWxC8Pvbr8i418+OGHeOaZZ/Dzzz9DkiQkJyfjvvvuw5NPPomFCxfCZDJh8uTJGDhwIHbu3AkAGD9+PH7++Wd89dVXiI6OxmuvvYY//vjjuuYqiaKIWrVqYcOGDYiIiMDevXvx1FNPISYmBgMHDpTr7dixA0FBQdi2bVupN1ueMWMGGjZsiM8//xyPPPKI1/b8/Hx06dIFnTp1wg8//ACVSoXZs2fjgQcewJEjR8rVazRv3jxMmzYNr776qlwWGBiI1atXIzY2FkePHsWTTz6JwMBAvPzyy2U+LgAMHjwY27Ztw6xZs/DWW2/5rDNixAicPXsW69atQ2xsLDZt2oQHHngAR48eRceOHbF48WK89tprOH78OAAgICAAZ86cwdixY5GamoqIiAjs2bNHfnzuuedgt9uxd+9evPTSSwCATZs2YezYsVi8eDG6d++Ob775BiNGjECtWrU8wtH06dMxZ84cLFq0CEqlEmfOnJG3ZWVloW/fvtDpdNixYweMRqPP6/nhhx883uj7cunSJWzcuBH33Xdfqd/DmTNnYu7cuZg3bx6WLl2KIUOG4Ny5cz5D22+//YaRI0fijTfewEMPPYStW7d6zeHfsGEDpk+fjrfffhudOnXCRx99hP/+97+oX7++XOf999/H9OnT8dZbb6FVq1Y4ePAgnnzySRiNRgwbNkyuN3XqVMyfPx+NGjXC1KlTMXjwYJw6dUq+J2ppSvo9q1evHrp3745Vq1Z5fD9XrVqF4cOHQxCEMv3NA97/Vnz++edYtGgR1q1bh+bNm+Py5cs4fPiwR9vuuusuzJ07t0zXUdVd09Jgffr0QZ8+fQA4xxJ/8sknGDduHA4fPgxHBd1Xhag0Kdlm7PjbeSPaH0+mwmIvHNpm1ChxX5NIdGsajS5NoxBm9P4Po91qRV5mulsAKgxH7sHIavK8b5MEOEOQ60ulgmQIhBQY5lwKW2+AoNFCUqrggACbKMIheg67k2cDOQCYLM4vH9RqtUfoKenLaDSy54foJjLZHGj22vc3/byJs3rCoCnff74bNmzo8cbmtddeQ+vWrT1uXL9y5UrUrl0bJ06cQExMDD788EN8+umn6NatGwDnm7DY2NjrartarfYYihYXF4e9e/diw4YNHsHJaDTigw8+KFOoiY2NxdixYzF16lSfE+nXrVsHhUKBDz74QA6cq1atQkhICHbv3o0ePXqUuf1du3bFxIkTPcrcQ1S9evUwYcIErF+/vtzBSRAEvPnmm+jXrx9eeuklNGjQwGP76dOnsXbtWly4cEH+OUycOBFbt27FqlWr8MYbbyA4OBiCIHgMSWvRogXCw8OxZ88ePPzww9i9ezcmTJiARYsWAQD2798Ps9ks97bMnz8fw4cPl3tMxo8fj19//RXz58/3CE6PP/44Ro4cKb92BacrV65g0KBBaNCgAdauXVviz/Ds2bPF/k4NHjwYX375JUwmE/r164cPPvig1O/h8OHDMXjwYADAG2+8gaVLl2Lfvn144IEHvOouWbIEPXv2lFeJbty4Mfbu3esxX27x4sUYOXIkRo8eDQCYPXs2tm/fDrO5cLXW119/HQsWLJAXR4iLi0NiYiLeffddj+A0ceJE+b3zzJkz0bx5c5w6dQpNmzYt9bqA0n/PRo8ejTFjxmDhwoXQarU4fPgwDh06hI0bNwJw9iKW9DffuHFjAN7/VmzZsgU1atRA9+7doVarUadOHdx1110ebatZsyaSkpIgimK1/xD2mtdU3rlzJ1auXImNGzeibt26ePjhh7FixYqKbBuRTwfOpeM/W49j35l0j/KaIXp0j49Cl8bhaBmmgDUnE7kZ55H002Ekus8lSncGJHNuTsGNTxWQlOrCEOQeikIiIYWrALUGUGshKZVwoAyf9EoA7J4fIigUihJDj69yrvJGRBWh6Kf6Bw4cwK5duxAQEOBV9/Tp0zCZTLDZbB5vkIKDg9GkSZPrbss777yDDz74AOfOnYPJZILVavXqxWrZsmW5eoImT56Md999FytXrvQIYIDzWk+dOuWx6AIAmM1mnD59ulxt99U78vnnn2Px4sU4deoUcnNzYbfbr3kEjmu42LRp07zm8/zxxx+QJEl+g+tisVgQHh5e7DEFQcC9996L3bt3o1u3bvjrr78wZswYzJ8/H8eOHcPu3bvRunVr+Xfh2LFjeOqppzyOcffdd2PJkiUeZcX1FHXv3h1t27bFhg0bSv0gz2QyQafT+dy2aNEiTJ8+HcePH8e//vUvjB8/HsuWLSvxeLfddpv83Gg0IjAwECkpKT7rHjt2DAMGDPAo69Chg0dwOnbsGMaMGeNVZ9euXQCAq1ev4vz58xg1ahSefPJJuY7dbvdahMK9bTExMQCAlJSUMgen0n7PEhIS8Pzzz2PTpk147LHHsHLlSnTp0kUejlra37zr96roz/XRRx/F4sWLUb9+fTzwwAPo3bs3+vXr59FTptfrIYoiLBYL9PrqfW/LcgWnCxcuYPXq1Vi5ciXy8vIwcOBA2Gw2fPHFF1wYgm64Cxn5+M/W49hyMAk1LFfQ3JaFBkYH4gx2hCssEDKykPNtBvZ/lod9CqVbEFJ79g4ptZAia0Oq4XwN4do+HdHpdOXqDdJqtVz8gKga0auVSJzV0y/nLa+iQ6VEUUS/fv3wn//8x6tuTEwMTp48CcD7ppFFh80JguBVVtJCARs2bMBLL72EBQsWoEOHDggMDMS8efO85icVN7SrOCEhIZgyZQpmzpyJvn37emwTRRF33nknPvnkE6/9XPNVFApFma6jaLt+/fVXPPbYY5g5cyZ69uyJ4OBgrFu3DgsWLChX+929+eab6NChAyZNmuR1HUqlEgcOHPAKJL7eDLvr3Lkz3nvvPfz444+4/fbbERISgnvvvRd79uzB7t27vVYf9PVzL1pW3M+oT58++OKLL5CYmIiWLVuW2K6IiAhkZPheoKhGjRqoUaMGmjZtivDwcHTq1AnTpk2TQ4cvRT9sFAQBouh7oaXShoCWhevY77//Ptq1a+exrejPyL1tru9lcW0rqiy/ZxqNBkOHDsWqVavw0EMP4dNPP/WYs1fa37xL0Z9r7dq1cfz4cWzbtg3bt2+X55vt2bNHvqb09HR5KkB1V+bg1Lt3b/z000/o27cvli5digceeABKpRLvvPPOjWwfEbLzTHj/i934/Zd9iLVexighD9DpIWrUkCQ1cswqZCtVkDTBQKz3OOaycA2JK2tvkF6v55A4olucIAjlHjJXWbRu3RpffPEF6tWr53OORYMGDaBWq7Fv3z7Url0bAJCdnY2TJ096zDWJjIxEcnKy/PrkyZPIz8/3Op7Ljz/+iI4dO8rDwACUu9enOC+88AL++9//evWMtG7dGuvXr0dUVFSxPUFFr8PhcODPP/8sdaW+n3/+GXXr1sXUqVPlsnPnzl3HVTjnizz00EPyEDKXVq1aweFwICUlBZ06dfK5r0aj8TllonPnzhg7diw+//xzOSTdd9992L59O/bu3euxOEd8fDx++uknPPHEE3LZ3r17ER8fX6b2v/nmmwgICEC3bt2we/fuEj9Yb9WqFT7++ONSj+kKOZYKvBl7s2bN8Ouvv3qUFX0dHx+PX3/91eN74V4nOjoaNWvWxD///IMhQ4ZUWNuKKuvv2ejRo9GiRQssW7YMNpvN495Kpf3Nl0Sv1+PBBx/Egw8+iOeeew5NmzbF0aNH0bp1awDAn3/+KT+v7sr8nfvf//6HF198Ec888wwaNWp0I9tEtzjR4UDy6RM4duB3HD6aiPzcLECrR5MIPaCMhrWU/QVBKHUIXNGvqrQ0LxHR9Xruuefw/vvvY/DgwZg0aRIiIiJw6tQprFu3Du+//z4CAwMxbNgwTJo0CWFhYYiKisL06dOhUCg8eh66du2Kt956C+3bt4coipg8eXKJQ4wbNmyINWvW4Pvvv0dcXBw++ugj7N+/H3Fxcdd9TTqdDjNnzpRXinMZMmQI5s2bh/79+2PWrFmoVasWkpKSsHHjRkyaNAm1atVC165dMX78eHz77bdo0KABFi1aVKZ7ITVs2BBJSUlYt24d2rZti2+//RabNm267mv597//jebNm3u8wW3cuDGGDBmCJ554AgsWLECrVq2QmpqKnTt3omXLlujduzfq1auH3Nxc7NixA7fffrv83zjXPKdPPvkEX375JQBnmJowYQIAeKwmN2nSJAwcOBCtW7dGt27d8PXXX2Pjxo3Yvn17mds/f/58OBwOdO3aFbt37y52OFrPnj0xZcoUZGRkIDQ0FIBzTs2VK1fQtm1bBAQEIDExES+//DLuvvvu67pBblEvvvgiOnbsiLlz5yIhIQH/+9//PIbpAcDYsWMxbNgwtGnTBvfccw8++eQT/PXXXx6LQ8yYMQMvvvgigoKC0KtXL1gsFvz+++/IyMjA+PHjK6StZf09i4+PR/v27TF58mSMHDnSoweotL/54j4MXr16NRwOB9q1aweDwYCPPvoIer0edevWlev8+OOP5ZorWJWVOTj9+OOPWLlyJdq0aYOmTZti6NChGDRo0I1sG90ibFYrjh85jBN/HsHF8+eRlZ8Pu1oHKBSARguEFS7LqhAERISHo1adOggLC/MZjHQ6HYfEERGVIDY2Fj///DMmT56Mnj17wmKxoG7dunjggQfkyd0LFy7EmDFj0LdvX3k58vPnz3vMSVmwYAFGjBiBe++9F7GxsViyZAkOHDhQ7HnHjBmDQ4cOYdCgQRAEAYMHD8azzz6L7777rkKua9iwYViwYAESExPlMoPBgB9++AGTJ0/GQw89hJycHNSsWRPdunWTe6BGjhyJw4cP44knnoBKpcJLL71UpvtC9e/fHy+99BKef/55WCwW9OnTB9OmTSvzDWuL07hxY4wcORLvvfeeR/mqVaswe/ZsTJgwARcvXkR4eDg6dOiA3r17A3De5HXMmDEYNGgQ0tLSMH36dMyYMQOCIOC+++7D5s2b5d6q2267DcHBwahfv77XXJklS5Zg3rx5ePHFFxEXF4dVq1aV+2bCixYt8ghPRedmAc65bG3atMGGDRvw9NNPA3D2brz//vt46aWXYLFYULt2bZ89cNerffv2+OCDD+TvUffu3fHqq6/i9ddfl+sMGjQIp0+fxuTJk2E2m/Hwww/jmWeewfffFy4KM3r0aBgMBsybNw8vv/wyjEYjWrZsiXHjxlVYW8vzezZq1Cjs3bvXY+EOoGx/876EhITgzTffxPjx4+FwONCyZUt8/fXX8ry6ixcvYu/evWXqOawOBKmcgzzz8/Oxbt06rFy5Evv27YPD4cDChQsxcuRIr4mXlVF2djaCg4ORlZXF5dP9wGKx4PLlyzj99zGcOXUSqWnpMDlEwEfQkUQJ+Q4lImrEokuHO1CnVi1ERkZyiBwR3XRmsxlnzpxBXFxcsZPZq7u8vDz53jijRo3yd3OomtiyZQsmTpyIP//8s9qvyHYz/Pvf/8a6devk+3bdaJMmTUJWVpZXyK9sSvo3vDzZoNyDsw0GA0aOHImRI0fi+PHjWLFiBd5880288soruP/++/HVV1+V95BUTeXn5yM5ORnJyclIOnsGly5eRK7J7F1RECA47FBIwBWrBkkIwzllNHq3aYKXezRBZKD25jeeiOgWd/DgQfz999+46667kJWVhVmzZgFwfvpNVFF69+6NkydP4uLFi/J8Oiq/3NxcHDt2DEuXLvXoNbvRoqKiPJbolyQJoiRChFj43O1LgmdZiC4EakXVWUG43D1OvjgcDnz99ddYuXJlpQ9O7HGqeJIkIScnRw5Jly9fxsWLF5GT4/tmrYLNCqXVhNCAANSsXQfpgbXxzt9ASp5zQmuH+uGY1rcZmsXy50NElcOt2ON08OBBjB49GsePH4dGo8Gdd96JhQsXlrpSGhHdfMOHD8fatWuRkJCATz/9tNjROSUFm6KhxleZJEkQIRZbr7yxIi44Dga1oSK+BSWqqB6nCglOVQmD0/WRJAkZGRlySHIFpby8PJ/1BasZSnM+lBYzIiPC0KBJUzS8vTViGjXFgQs5mPVNIv66lA0AqBtuwNTe8bi/WTTnKBFRpXIrBiciuvlcYaYsgaXMocat/Ga+7VcIzsVkFILC+QWF/NxVHqGLgFZ140cW+W2oHt06HA4H0tLSvEKSz+VAJQkKixkKcx6UFhOUZhNqxESjXovbUadZS8Q2bQaNzrm6S1JaPl7YcBTf/XkZABCoVeHFbo3wRMe60Ko4f4mIiIgqN1ES4ZAcEEVR7sG5lt4a9x4gvwYbH6HGVeYr/JRWJkColh+CMzgRAOddrlNSUjxC0pUrV2C3270rSxIU5nwozfmFjxYTourURe1Wt6NOi9tQK74FtAbPm6jlmG14e9dprPzpDKwOEQoBGHxXHbx0f2NEBHAeExEREd0cruDiEB3OAFQQhBySAw6x8HVx5Tcj4JQYYArKi5YJKFKnhHrVMdjcaAxOtyDXynaXL1+WQ9LVq1d93sFaqRCgcdjgyEyHwpQHhTkfCosZAiSExdZC7bvuQp3mLVGrWUsYgoJ9ns8hSvjs9/OY/7/jSM113oXpnoYReLVvPJrW4HBJIiIiKh9JkuRAI4qF4UYOOj4CkaueKzRVBIWggFJQeocaHyGmPKHGFZSocmFwquZcK9u5h6S0tDSfdbUaDYxqFYS8bJiSL0DIz4FgtUCA8xclOLoGarfuhDotbkPtZi0REBZe6vn3nk7F698cw7Fk5zymuAgjXu0Tj65No/gPAhER0S3KFXzcg45HyCmlN6iig49C4Xx0fbm/dtVRKjxfM9zcehicqglfK9slJycjKyvLZ/3AwECEBgVCY7fBmnoZWf+chCM/F7aC7UoAAWHhqNO8I2o3vw21m9+G4KjoMrfnXFoe3thyDN//dQUAEKRTYWz3xhjavi40Kt6ngYiIqCpzzc0pay+Pr16fiuDqpXGFmqJBR37uKi8Sfhh8qDwYnKqgoivbuUJScSvbhYaGIiYmBoE6LaScTOSeP4MrR39FhsnkUc8QFIzazW9Dnea3oU6L2xBSI7bc/6Bkm214e+cprPz5DGwOCUqFgCHt6mBc98YIM2qu+ZqJiIioYsnD3UQH7JLdo5enpN4g1+uKIAefMvbyuNdz7Ut0szA4VXLlWdlOEARERkaiRo0aiImJgVGlgDklGZf/TsT57zfhfK7nfZW0RiNqN2uJ2s1vR53mLRFeu+41f/LiECWs25+Ehf87gbQ85zymTo0iMK1vMzSODrymYxIRUdV29uxZxMXF4eDBg7jjjjv83Ry/mDFjBjZv3oxDhw7d0PO49wDZRbtHIHJ/LLr9egmCAKWgxP6f92Pog0Nx+NxhhIWGldzr41aekZ6B+Kbx2LdvH+rVq3dd7di0aRMSEhJ8bt+9eze6dOmCjIwMhISE+KyzevVqjBs3DpmZmcWe52b9PEu7nsqibdu2mDJlCh566CF/N+WmYHCqRMqzsp1SqUR0dLQckmJiYqCDhEvH/8L5v47i0NaNyM/K9NhHrdOjVtNmqN3idtRpfhsi68VBobj+5b9/PpWK179JxN+XncGsfqQR0/o0Q+cmkewCJyKiG2L16tUYMWIEevbsia1bt8rlmZmZCA0Nxa5du9C5c2f/NbCMXOEyMjISp0+fRmCg88NGURLRqlUr9H2wL6a8OsUj8PgKRg7JgU2fbsJ/Xv0Pfjn9S7na4N6z4x503AOPVwBy6/UBgOTAZABAnaA6CAkMKfO558yZg379+nmEJl/vHZYvX44xY8aU67rcdezYEcnJyQgO9r2QFV2badOmYeLEiUhISIBCUf17/xic/Ojq1av4559/Sl3ZTqPRyAHJ9RgZGYm8jHSc/+sIzu//CQf/PIKctKse+6nUGsQ2iUedFrejdvOWiK7fCEpVxf3Iz6Tm4d/fHsP2Y855TMF6NcZ1b4T/a18XamX1/+MhIqqKrFYrNJqqM3S6pPaqVCrs2LEDu3btQpcuXSpNu3yxi3afgSclPwUAkJ2TjX/N/hdemPyCPEzOYrcgw5yBc9nnytU2tUINpUIJlUIlhx6VoPJ4LDoM7nrYbLbSK/lgMpmwYsUKbNmyxWvbqlWr8MADD8ivrzfwuN5LUdmV5Xe8T58+ePLJJ/H999+jV69eN6ll/sN3t3504sQJfPfddzh06BCuXLkCURSh1+tRv3593H333XjkkUfw/PPP45VXXsHIkSNxb4f20Odn4+hXn2P1+DF4/7kR2LpsEf7aswM5aVehUKpQs2lztH94MAZOn4PnVq7Do9P+jXYDBiK2cXyFhaYskw2zv0lEj0V7sP3YFSgVAoZ3rIfdEztjxN1xDE1ERJVI586d8fzzz2P8+PGIiIjA/fffDwBITExE7969ERAQgOjoaAwdOhSpqanyfjk5ORgyZAiMRiNiYmKwaNEidO7cGePGjZPrCIKAzZs3e5wvJCQEq1ev9tkWh8OBUaNGIS4uDnq9Hk2aNMGSJUs86gwfPhwJCQmYM2cOYmNj0bhx42KvzWg0YsSIEXjllVdK/B5cvHgRgwYNQmhoKMLDw9G/f3+cPXvW43vkfl0AkJCQgOHDh8uv69Wrh9mzZ2P48OEIDg7GyNEjkW/Lx0sTX0LDRg1hMBhQN64uxk0eh9Npp/FP1j84mXESqfmpMNvNOJ5+HKczT+Ns1lmczzmP5NxkpOSnINOcCQB4fPTjWPn2Sly+ctlj/pBCUECr0sKoNkIn6PD27LfR/bbuuKvuXRjWexiSDiahfkh9JB9Oxqsvvoqc7Bw0CW+ChqENsWrhKmxavQk92vdApCESYbow7PxuJwI0AVjx7gqoFWooBAV69uyJKVOmyOdcvnw5GjRoAI1GgyZNmuCjjz7y+N4IgoB33nkH/fv3h9FoxOzZs72+5yaTCX369EH79u2Rnp7u8+fy3XffQaVSoUOHDl7bQkJCUKNGDflLr9cX9+OVpaamYsCAATAYDGjUqBG++uoredvu3bshCILHMLzVq1ejTp06MBgMGDBggM9Vh998801ER0cjMDAQo0aNgtls9qqzatUqxMfHQ6fToWnTpli2bJm87ezZsxAEARs3bkSXLl1gMBhw++2345dfytcrOHnyZDRu3BgGgwH169fHtGnT5MB69uxZKBQK/P777x77LF26FHXr1pXvOVXa33xx/1bMmDEDderUgVarRWxsLF588UV5H6VSid69e2Pt2rXlup6qyu89TsuWLcO8efOQnJyM5s2bY/HixejUqZPPuq7xqUUdO3YMTZs2vdFNrXC1a9dG48aN5aF2NWrUQHBwsNxFbcrNwYXEozj81RGc/+sI0i4keewvCApEN2iIOgWr3tVs0gxqne6GtdfuELF2/3ks2nYC6QXzmLo0icTUPvFoGMV5TER0i5EkwJZ/HbtLhfNPROfwK+druzxRXxAEuP8fAEBjgOB2A0v3RwBeZQ7RgQ8//BCjnhqFbbu3ARJwOuk07rvvPowYNQJvzn0TZrMZU6dMxaMDH8W27dsgQMBLL72En3/+GV999RWio6Px2muv4Y8//riuuUqiKKJWrVrYsGEDIiIisHfvXjz11FOIiYnBwIED5Xo7duxAUFAQtm3bVuqNRmfMmIGGDRvi888/xyOPPOK1PT8/H126dEGnTp3www8/QKVSYfbs2XjggQdw5MgRqNQq589CtCPXmiv/TCwOC/Jt+Tifc77gZ2THf+b+B2MmjMG6besAAGeyzsChdmDGkhmIqhGFk8dOYvpL06HUKTHyhZHOa0ZhCHLv6XH1/OTrnL9Dw4YMw4EfD+DTpZ/iv0v/C6WghE6lQ4Q+Ag1DGgIAhgwZgrNnz2LD+g2IjY3Fpk2bMKDfABw9ehT3droXixcvxmuvvYbjx48DAAICAnDmzBmMHTsWqampiIiIwJ49e+TH5557Dna7HXv37sVLL70EANi0aRPGjh2LxYsXo3v37vjmm28wYsQI1KpVy+M92PTp0zFnzhwsWrQISqUSZ86ckbdlZWWhb9++0Ol02LFjB4xGo8+f3Q8//IA2bdr43Pb8889j9OjRiIuLw6hRo/DUU0+VOhRs5syZmDt3LubNm4elS5diyJAhOHfuHMLCwrzq/vbbbxg5ciTeeOMNPPTQQ9i6dSumT5/uUWfDhg2YPn063n77bXTq1AkfffQR/vvf/6J+/fpynffffx/Tp0/HW2+9hVatWuHgwYN48sknYTQaMWzYMLne1KlTMX/+fDRq1AhTp07F4MGDcerUKajK+KF2YGAgVq9ejdjYWBw9ehRPPvkkAgMD8fLLL6NevXro3r07Vq1a5fH9XLVqFYYPHw5BEJCcnIz77rsPTz75JBYuXAiTyYTJkydj4MCB2Llzp7zPhx9+iGeeeQY///wzJEnC559/jkWLFmHdunVo3rw5Ll++jMOHD3u07a677sLcuXPLdB1VnV+D0/r16zFu3DgsW7YMd999N95991306tULiYmJqFOnTrH7HT9+HEFBhTdOjYyMvBnNrXB16tTB448/Lr+25OfjzMHfkfTXEZz/8whSzv3j/A+zm8h69VGnuXNBh1rxzaE1+P7HqKL9ePIqXv8mESeu5AIAGkYF4NU+8ejcJOqmnJ+IqNKx5QNvxF7z7gIAdcFXeSQ+vQOSuvRP313MDjNq1auFJ6c8KZfNf3M+GrdojGETnW/sjDDilQWvoPvt3fH9/u8RGR2JD9d8iLnvzEWN22tAEAS8suAVbG2xFRnmDJxIPyF/yJecl4zTmafloCZKIlJNqUjKTsKl3EsAgCt5V3Ax9yIECBgzaYxc9/4B92PQD4Pw0dqP0LVfVwgQYHFYYDAaMP+t+dBqtRAgIMeaU/A9KwyEVofzA7zwqHA8/8Lz+NfUf6HPg31gczg/hTfZTciyZGHNR2sgCRJeX/K6vHjCq4teRet6rfHhVx+iY+eOyLfnI8uS5TEkzuqwwuqwItvivA+hBAl3dboLw58bDgDy0tZjJ4+Vh8Td1uQ2pJxNwZcbv8T0f02HUqFEmC4MWpUWzcKb+Zy7YzM42xusC8bc/8xFv379MGnCJDRo0MCj3unTp7F27VpcuHABsbHO37uJEydi69atWLVqFd544w35w1f3IWktWrRAeHg49uzZg4cffhi7d+/GhAkTsGjRIgDA/v37YTabcc899zh/N+bPx/Dhw/Hss88CAMaPH49ff/0V8+fP9whOjz/+OEaOHCm/dgWnK1euYNCgQWjQoAHWrl1b4lCvs2fPytfi7vXXX0e3bt2g1+uxY8cOTJgwAampqXj11VeLPRbg7K0cPHgwAOCNN97A0qVLsW/fPo8hfy5LlixBz5495d7Kxo0bY+/evR7z5RYvXoyRI0di9OjRAIDZs2dj+/btHr1Or7/+OhYsWCAvjhAXF4fExES8++67HsFp4sSJ6NOnDwBnwGvevDlOnTpV5g/+3a+9Xr16mDBhAtavX4+XX34ZADB69GiMGTMGCxcuhFarxeHDh3Ho0CFs3LgRgLMXsXXr1njjjTfk46xcuRK1a9fGiRMn5J7dhg0beoSgLVu2oEaNGujevTvUajXq1KmDu+66y6NtNWvWRFJSEkRRrPbznPwanBYuXIhRo0bJv5CLFy/G999/j+XLl2POnDnF7hcVFVXsiihVic1ixqXjfyPpr8M4/+cRXP7nJKQic5zCatZ23nC2+W2oFd8ChqCbO6nx9NVcvPHtMez42zkGO8Sgxvj7G2PwXXU4JI+Ibhkmmwl20Q6TzQSrYHX2Dlmy4Y+PjsJ14ZA0ekiQIEkSJEhw/r/kUeZ6VApK3Nb6NmhVWrnesSPHsP/n/bir3l3O/QG4Hs6fOQ+zyQy7zY6WrVs6N0kSjIFG1GtQD6IkwiYWzmmxOWww2z2HL1nsFuRYc5BrdX7YlmvNlYekrV+9Hl98/AWSLyTDbDLDZrOhaYumuJLnnC9rsplQv2l9XLVeBazFfx+u5l+FKIk4lXkKA54agHffexf/ees/6Nm/JwDgct5lXMi5gL2/7cWZ02fQMLqhZxvNFiSdSULHzh0hQJCHxLl6gtQKNXQqHWoYa0ClUEGlUKFT+05oHNpYXigBAD7//HMsXrwYp06dQm5uLux2O4KCghCkdX7Aq1Ko5MBXmp49e+Kee+7BtGnT8Omnn3ps++OPPyBJktfQRYvFgvDw4m9ILwgC7r33XuzevRvdunXDX3/9hTFjxmD+/Pk4duwYdu/ejdatWyMgIACAcxTPU0895XGMu+++22tIZXE9Rd27d0fbtm2xYcMGKJUlL0BlMpmg8zFSxj0kuHo4Z82aVWpwuu222+TnRqMRgYGBSElJ8Vn32LFjGDBggEdZhw4dPILTsWPHvBak6NChA3bt2gXAOVf9/PnzGDVqFJ58svCDCbvd7jUny71tMTExAICUlJQyB6fifs9cEhIS8Pzzz2PTpk147LHHsHLlSnTp0kVedOPAgQPYtWuX/HN2d/r0afn3qujP9dFHH8XixYtRv359PPDAA+jduzf69evn0VOm1+shiiIsFkuZhlRWZX4LTlarFQcOHPAal9yjRw/s3bu3xH1btWoFs9mMZs2a4dVXXy1xQqjFYvFYujs7O/v6Gl6Bftv0GX7btN6jLCQ6BrWbt0TtFrejdrOWCAj17l6+GbLybViy4yTW/HIWdlGCSiHgiQ71MLZbIwQbyvv5KBFR5WNz2JBmTkOqKRVpJuej6yvNnOZRFqwIxuSGk4FcQKEu+NBIkpD69A6fx1YICvnNtso1LEtQeZWpFKpyrz4arTYA5dhHp9IhJjRGHu4FAHqlHv369cN//vMfj7qSJKFGTA2cOHECANAgtAFqhdaSg5hGoUGwNhj1g+tDggRBEBChj0CdoDpyUHPYHQjRhSAmIEbuTQnThyHKEIXNX2zGvGnzMP2N6WjdrjWMRiOWL1mOg78fRLA2GBIkqJVqBAYEwqh2jqjwCINuz13BRSEoEBISgifHPonl85bjvh73AXAukGBQG6ASVLit1W1YtmIZFAoFVIJKXh2uRnQNhIWEIUAbgBBtiMf3SCk5h8qF652hRICAkMAQqJWF/w389ddf8dhjj2HmzJno2bMngoODsW7dOixYsKDMP5+i3nzzTXTo0AGTJk3yKBdFEUqlEgcOHPAKJL7eDLvr3Lkz3nvvPfz444+4/fbbERISgnvvvRd79uzB7t27vVYfLPo7KUmSV1lxw+/69OmDL774AomJiWjZsmWJ7YqIiEBGRkaJdQCgffv2yM7OxpUrVxAdHV1sPbXa8/2JIAg+F90CUOoQ0LJwHfv9999Hu3btPLYV/Rm5t831vSyubUWV5fdMo9Fg6NChWLVqFR566CF8+umnWLx4sUdbff3NA4VBDvD+udauXRvHjx/Htm3bsH37djz77LOYN28e9uzZI19Teno6DAZDtQ9NgB+DU2pqKhwOh9cfQHR0NC5fvuxzn5iYGLz33nu48847YbFY8NFHH6Fbt27YvXs37r33Xp/7zJkzBzNnzqzw9leE2s1a4q8fdshzlOo0vw1Bkf4d+mZziPj0tyQs2n4CmfnO/+B1axqFf/WJR4PIkv9hJiLyN4foQIYlA2mmguBjTvUIROmmdOdzcyqyLFllPm6wJhgCBKgUKmjVWjn0yF9FXlf2m3K2bt0aX3zxBerVq+dzjkXjRo2hVqvxx+9/IK5uHADnB4+nTp1C586doS8YKhgZGYnMq5kI1DjnuZ48eRL5+fkwqo0I04UhW+f8sDJUF4pIQySO7DuCjh074pWXCj80nZ40HWqFGrUCawEAjGojbCob6gXXK/EaYgJioBAUiA+PBwDMfmU21q9Yj+/WfAcAqBVYC3HBcbi3/b34dtO3aFavmccn9O4iIyORnJwsv3Y4HPjzzz9LXanv559/Rt26dTF16lS57Ny58q2AV9Rdd92Fhx56yOuD5VatWsHhcCAlJaXYueAajQYOh/e9mTp37oyxY8fi888/l0PSfffdh+3bt2Pv3r0YO3asXDc+Ph4//fQTnnjiCbls7969iI+PL1P733zzTQQEBMjvz5o1a1Zs3VatWuHjjz8u9ZgHDx6ETqer0NFGzZo1w6+//upRVvR1fHw8fv31V4/vhXud6Oho1KxZE//88w+GDBlSYW0rqqy/Z6NHj0aLFi2wbNky2Gw2j3srlfY3XxK9Xo8HH3wQDz74IJ577jk0bdoUR48eRevWrQEAf/75p/y8uvP74hBl+VTDpUmTJmjSpIn8ukOHDjh//jzmz59fbHCaMmUKxo8fL7/Ozs5G7dq1K6Dl169Oi9vw1NurKs29jnYfT8Hsb4/hVIpzaEXj6AC82qcZ7m1cNeeQEVH1IEkSsq3ZXr1Ack+RubDHKN2c7rEiWWlUggph+jBE6CPkr3BdOML14R5lgUIgrly4grjgOJ9Di6qa5557Du+//z4GDx6MSZMmISIiAqdOncK6devw/vvvIzAwEMOGDcOkSZMQFhaGqKgoTJ8+HQqFwuO/WV27dsVbb72F9u3bQxRFTJ482etTf3cNGzbEmjVr8P333yMuLg4fffQR9u/fj7i4uOu+Jp1Oh5kzZ+K5557zKB8yZAjmzZuH/v37Y9asWahVqxaSkpKwceNGTJo0CbVq1ULXrl0xfvx4fPvtt2jQoAEWLVpU4k1Q3a8nKSkJ69atQ9u2bfHtt99i06ZN130t//73v9G8eXOPN7iNGzfGkCFD8MQTT2DBggVo1aoVUlNTsXPnTrRs2RK9e/dGvXr1kJubix07duD222+HwWCAwWCQ5zl98skn+PLLLwE4w9SECRMAQJ7fBACTJk3CwIED0bp1a3Tr1g1ff/01Nm7ciO3bt5e5/fPnz4fD4UDXrl2xe/fuYoejuVbzy8jIQGhoKADg66+/xuXLl9GhQwfo9Xrs2rULU6dOxVNPPQWtVlvu72VxXnzxRXTs2BFz585FQkIC/ve//3kM0wOAsWPHYtiwYWjTpg3uuecefPLJJ/jrr788FoeYMWMGXnzxRQQFBaFXr16wWCz4/fffkZGR4fH+83qU9fcsPj4e7du3x+TJkzFy5EiPHqDS/uaLG1a5evVqOBwOtGvXDgaDAR999BH0ej3q1q0r1/nxxx/Ro0ePCrnWys5vwSkiIgJKpdKrdyklJaXEbtii2rdvX+KnFVqttkL/0CqSUEkm0J1KycHsb49h93HnfaBCDWqM79EEg9vWhorzmIjoBsm35fsOQz6Gz7nPqSmNAAGhulBn+NG5BSK9WyAqKA/SBpWpd8jXEsRVWWxsLH7++WdMnjwZPXv2hMViQd26dfHAAw/Ik7sXLlyIMWPGoG/fvggKCsLLL7+M8+fPewTHBQsWYMSIEbj33nsRGxuLJUuW4MCBA8Wed8yYMTh06BAGDRoEQRAwePBgPPvss/juu+8q5LqGDRuGBQsWIDExUS4zGAz44YcfMHnyZDz00EPIyclBzZo10a1bN7kHauTIkTh8+DCeeOIJqFQqvPTSS2W6L1T//v3x0ksv4fnnn4fFYkGfPn0wbdo0zJgx47quo3Hjxhg5ciTee+89j/JVq1Zh9uzZmDBhAi5evIjw8HB06NABvXv3BuC8yeuYMWMwaNAgpKWlYfr06ZgxYwYEQcB9992HzZs3y71Vt912G4KDg1G/fn2vuTJLlizBvHnz8OKLLyIuLg6rVq0q982EFy1a5BGefC0r37JlS7Rp0wYbNmzA008/DcA5pG3ZsmUYP348RFFE/fr1MWvWLK9AfL3at2+PDz74QP4ede/eHa+++ipef/11uc6gQYNw+vRpTJ48GWazGQ8//DCeeeYZfP/993Kd0aNHw2AwYN68eXj55ZdhNBrRsmVLr+Xtr0d5fs9GjRqFvXv3eizcAZTtb96XkJAQvPnmmxg/fjwcDgdatmyJr7/+Wp5Xd/HiRezdu7dMPYfVgSBVxCDPa9SuXTvceeedHuvdN2vWDP379y9xcQh3jzzyCNLT0z2WUixJdnY2goODkZWVVWyX/a0iI8+KJTtO4qNfz8EhSlArBQzrUA8vdGuEYD3nMRFR+dlFO9LN6bhquoo0Uxqu5l8tNgzl28u3lHegOtCrJyhcH45wnWdZqC4UKkXFfi5oNptx5swZxMVVjx6na5GXl4eaNWtiwYIFGDVqlL+bQ9XEli1bMHHiRPz555/VfkW2m+Hf//431q1bh6NHj96U802aNAlZWVleIb+yKenf8PJkA78O1Rs/fjyGDh2KNm3aoEOHDnjvvfeQlJQkr2AyZcoUXLx4EWvWrAHgXHWvXr16aN68OaxWKz7++GN88cUX+OKLL/x5GVWOzSHi41/PYfH2k8gyOT/Fvb9ZNP7VOx5xETdneXMiqlrybfm4anKGoKKhyFWWakpFhjmjcJW2MtApdWUKQ+H6cGiVlXP0QHV18OBB/P3337jrrruQlZWFWbNmAXB++k1UUXr37o2TJ0/i4sWLlWYqRVWUm5uLY8eOYenSpR69ZjdaVFQUJk6ceNPO529+DU6uruRZs2YhOTkZLVq0wJYtW+Rxk8nJyUhKKrzpq9VqxcSJE3Hx4kXo9Xo0b94c3377rdxFTSWTJAm7j1/F698m4p+reQCApjUCMa1vM9zdMMLPrSOim819IYWrpqu4mn8VaWbPQOQKRSa7qczHVQgKj+ATaYj0OW8oQh8Bg8pQaeZ5krf58+fj+PHj0Gg0uPPOO/Hjjz8iIoL/vaCK5b44BV2b559/HmvXrkVCQoLXML0bqejqj9WdX4fq+cOtOlTvxBXnPKYfTjjnMYUbNZjQowkGta0NpYJvWoiqE7Pd7NUT5CsUpZvT4ZC8V+Aqjl6lR6Q+0iMQuYegSH0kwvXhCNWGQqko+f4tVQ2H6hERVV3VYqge3XjpeVYs3n4Cn/yWJM9jGnl3HJ7r2hBBOs5jIqoqJElCpiXTc6hcQShKzXcur30131meY8sp83FdCym4ByK5l0gfLpdH6iNhUBtu4BUSERFVbgxO1ZTVLuKjX89hyfYTyDbbAQA9m0djSq941OM8JqJKw+qweoagIj1FrlCUakqFXbSX+bhapdarJ0gOQW49RWG6sApfSIGIiKg64n8tqxlJkrDz7xT8+9tj+CfVOY8pPiYI0/rGo2MDjksnuhkkSUKOLccZetxDkI9AVJ6bsAJAiDbEa3icr16iAHUA5w4RERFVIAanauT45RzM/jYRP55MBQBEBGgwsUcTPNqG85iIKoJdtMs3XC0uFLmW27Y4LGU+rlqh9lo0wVcvUbguHGolh9gSERH5A4NTNZCWa8Gi7Sfw6W9JECVAo1RgVKc4PNu5AQI5j4nomuTb8vFn6p84dPUQDqYcxLG0Y0g3p5drqe1ATaDPEOQejiINkQjSBLF3iIiIqJJjcKrCrHYRH+49i//uPImcgnlMvVvWwCsPxKNOOCdxE5XH5bzLOHT1EA6lOIPS8fTjPlecUwpK51LbBh9D5VwBqaB3SKfi6mtERETVBYNTFSRJErYlXsEbW47hbFo+AKB5bBBe69sM7eqH+7l1RJWfXbTjRMYJHEpxBqVDVw8hOS/Zq160IRqtolrhjqg7cFvEbYgNiEWoLhQKgXe3JyqLs2fPIi4uDgcPHsQdd9zh7+b4xYwZM7B582YcOnTI3025oXbv3o0uXbogIyMDISEhZd4vLS0N8fHx2LdvH+rVq3fD2leW38XVq1dj3LhxyMzMLPY4Zfl5Dh8+HJmZmdi8efN1tbkkVeVvy2KxoFGjRti0aRPuvPNOfzfnujE4VTHHkrPx+jeJ2Hs6DQAQGajFpJ5N8HDrWpzHRFSMHGsOjlw9goMpB3Ho6iEcvXoU+fZ8jzoKQYEmoU1wR9QdzrAUeQdiAmL81GIiKs3q1asxYsQI9OzZE1u3bpXLMzMzERoail27dqFz587+a2AZud4AR0ZG4vTp0wgMDJS33XHHHUhISMCMGTPKdKyyvPGvbObMmYN+/fp5hKaxY8fip59+wp9//on4+HifIeXo0aN4/vnnsW/fPoSFheHpp5/GtGnTrmvY86BBg9C7d+9r3p+8abVaTJw4EZMnT8b27dv93ZzrxuBURaTmWrDgfyewfn/BPCaVAk92isMznRsiQMsfI5GLJEm4kHtB7k06ePUgTmWc8pqbFKAOwO2Rt+OOqDvkHiXep4huBVarFRqNxt/NKLOS2qtSqbBjxw7s2rULXbp0qTTtuhY5OTmYP38+Zs6cWWHHvFlsNts17WcymbBixQps2bLFo1ySJIwcORK//fYbjhw54rVfdnY27r//fnTp0gX79+/HiRMnMHz4cBiNRkyYMOGa2gIAer0eer3+mve/FZXl72DIkCGYNGkSjh07hvj4+JvUshuD400qOYvdgXf3nEbnebuxdp8zNPW5LQY7xt+HST2bMjTRLc/msOHw1cP48K8P8dKul9D1s67ovbE3/vXTv7DhxAaczDgJCRJqBdRCv/r9MK39NHzx4Bf46bGf8M7972DM7WPQPqY9QxNVW507d8bzzz+P8ePHIyIiAvfffz8AIDExEb1790ZAQACio6MxdOhQpKamyvvl5ORgyJAhMBqNiImJwaJFi9C5c2eMGzdOriMIgtdwpJCQEKxevdpnWxwOB0aNGoW4uDjo9Xo0adIES5Ys8agzfPhwJCQkYM6cOYj9f/buOqzK8w3g+PfQHQIiCiIqMydhYmHr7NjP3sTuoU7FBlun2O0EnO2suU3dDExsxY6BKObQqSBIn+f3x5EzjoQ44xjP57q44O37rcN7nyfeggX54osvctw3U1NTunbtyogRI3I9Bnfv3qVdu3ZYW1tjY2NDixYtuHnzpsYxyrxfAC1btsTHx0c9XKRIESZNmoSPjw+Wlpb07NkTAD8/P7744gtMTEwoWrQoY8eO/U+JxMCBA5k1axYxMTE5zpOSksLw4cMpVKgQpqamVK5cmf379wOqqnJdu3YlNjYWhUKBQqEgICCA+fPn8+WXX6rXsW3bNhQKBQsXLlSPa9iwISNHjlQPL168mGLFimFgYECJEiVYtWqVRhwKhYIlS5bQokULTE1NmTRpUpZYExMTadKkCVWqVOHx48fZ7s/OnTvR09PDy8tLY/y8efPo378/RYsWzXa5NWvWkJSUREhICGXLlqV169aMGjWKWbNmIUTuHfjcuHGD2rVrY2JigpubG0ePHlVPCwkJyVLNcNq0adjb22Nubk737t1JSkrSmJ6ens6QIUOwsrLCxsaG4cOHZ4lBCMEPP/xA0aJFMTY2xs3NjU2bNqmn79+/H4VCwd69e6lQoQImJiZUrVqVa9eu5bovL8eR27118OBB9PX1efDggcZy33//PTVr1lQPh4WFUbNmTYyNjXFycuK7774jISFBPT27+yAlJYUBAwbg4OCAkZERRYoUYerUqeplbGxsqFq1KuvWrcvz/nyoZOL0gRJCsOviA+rPOsjUnVeJT07jy0KW/NzHi4UdPXHKJx/ypM/T06Sn7L+9n9mnZ9NlZxe81nnReUdnZp6ayZ7oPTxKfISejh7l7MrxbelvmV1rNqFtQ9nZZidTakyhbYm2fGH9Bbo6utreFekjJ4Tgeerz9/7zqgfD7KxcuRI9PT2OHDnC0qVLuX//Pt7e3ri7u3Pq1Cl27drF33//Tdu2bdXLDBkyhCNHjrB9+3Z2797NoUOHOHPmzBsdM6VSiaOjIxs3buTy5cuMGzeOUaNGsXHjRo359u7dy5UrV9i9eze//fZbrusMCAjgwoULGg+imT1//pzatWtjZmbGwYMHOXz4MGZmZjRq1IiUlJTXin/GjBmULVuW06dPM3bsWADMzc0JCQnh8uXLzJ07l+XLlzN79uzXWi9Ahw4dKF68OBMmTMhxnq5du3LkyBHWr1/P+fPn+d///kejRo3466+/qFq1KnPmzMHCwoL79+9z//59hg4dSq1atbh06ZI6KT5w4AC2trYcOHAAgLS0NMLCwvD29gZg69at+Pr68v3333Px4kV69+5N165dCQ0N1YjF39+fFi1acOHCBbp166YxLTY2lgYNGpCSksLevXvJly9ftvtz8OBBKlSo8NrH6ujRo3h7e2NoaKge17BhQ+7du6eREGdn9OjRDB06lPDwcL744gs6dOhAWlr2LxffuHEj/v7+TJ48mVOnTuHg4MCiRYs05gkMDCQoKIgVK1Zw+PBhHj9+zNatWzXmGTNmDMHBwSxevJhLly4xePBgOnfurD4HmWMLDAzk1KlT6OnpZTmuuXnVvVWzZk2KFi2qkQSnpaWxevVqunbtCqiqPzZs2JDWrVtz/vx5NmzYwOHDhxkwYIDGtl6+D+bNm8f27dvZuHEj165dY/Xq1Vnaq1WqVIlDhw7leX8+VLK44gN08W4sE3+7zPEo1Tc0+c0NGd6oJK09CqEj2zFJnxEhBFFxUf9Wu4s5y824m1nmszK0wt3OXd0+qbRNadmjnfTOJaYlUnlt5fe+3eMdj792CWnx4sX54Ycf1MPjxo3D09OTKVOmqMcFBQXh5OTE9evXcXBwYOXKlaxdu5a6desCEBwcTMGCBd8odn19fY2qaC4uLoSFhbFx40aNpM3U1JQff/wxT1XhChYsiK+vL6NHj6Zly5ZZpq9fvx4dHR1+/PFHdfuX4OBgrKys2L9/Pw0aNMhz/HXq1GHo0KEa48aMGaP+u0iRInz//fds2LCB4cOH53m9oCrFmTZtGs2aNWPw4MEUK1ZMY3pkZCTr1q3jzp076vMwdOhQdu3aRXBwMFOmTMHS0hKFQkGBAgXUy5UtWxYbGxsOHDhAmzZt2L9/P99//706uTt58iRJSUlUr14dgJkzZ+Lj40O/fv0AVQJ97NgxZs6cqVEdsmPHjhoP9lFRUQD8/ffftGvXjmLFirFu3bpcz+HNmzf/0zX14MGDLA/m9vb26mkuLi45Ljt06FCaNGkCwPjx4ylTpgwRERGULFkyy7xz5syhW7du9OjRA4BJkyaxZ88ejVKnOXPmMHLkSNq0aQPAkiVL+OOPP9TTExISmDVrFvv27VOXrBUtWpTDhw+zdOlSdcIKMHnyZPXwiBEjaNKkCUlJSRgZvfr/WV7ure7duxMcHMywYcMA+P3333n+/Ll6+owZM+jYsaO69NXV1ZV58+bh7e3N4sWL1XG8fB9ER0fj6upK9erVUSgUODs7Z4mvUKFCr0xqPwYycfqAxDxLIvCP62w8fRshwFBPh941i9Lbuximskqe9BlISktSvzspo7e72OTYLPO5WLqoO3Bwz+9OEYsi8j1IkpSLl7/VP336NKGhoZiZmWWZNzIyksTERFJTU6lUqZJ6vKWlJSVKlHjjWJYsWcKPP/7IrVu3SExMJCUlJUuvYF9++eVrtR/y8/Nj6dKlBAUFaSRgoNrXiIgIjU4XAJKSkoiMjHyt2LMrHdm0aRNz5swhIiKC+Ph40tLSsLCweK31ZmjYsCHVq1dn7NixrF27VmPamTNnEEJkqbqYnJyMjU3OPeoqFApq1qzJ/v37qVu3LpcuXaJPnz7MnDmTK1eusH//fjw9PdXXwpUrV+jVq5fGOqpVq5alSmVOJUX16tWjYsWKbNy4EV3d3Ev2ExMT85QU5LRfmWWUxL7qf0G5cuXUfzs4qDoAiomJyTZxunLlCn369NEY5+XlpS59i42N5f79+xpVDfX09KhQoYI6nsuXL5OUlKSuIpshJSUFDw+PPMVWuHDhXPcpw6vuLR8fH8aMGcOxY8eoUqWK+n4xNTUF/r1X1qxZo15GCIFSqSQqKkrdPunlc+/j40P9+vUpUaIEjRo1omnTplm+kDA2Nub5c81OmT5G8mn8A5CUmk7QkSgW7osgIUX13pjmbgXx+6okhaxkI0Xp0/Xw+UP1C2bPxZzj8uPLpCk1q0wY6hpS1rasOlFys3PDyshKOwFLUibGesYc73hcK9t9XRkPRhmUSiXNmjVj+vTpWeZ1cHDgr7/+AnJ+OM2gUCiyjMutfc/GjRsZPHgwgYGBeHl5YW5uzowZMzh+XPM4vhzvq1hZWTFy5EjGjx9P06ZNNaYplUrKly+v8TCYwc7ODgAdHZ087cfLcR07doz27dszfvx4GjZsiKWlJevXrycwMPC14s9s2rRpeHl5qUsFMu+Hrq4up0+fzpKQZJcAZ1arVi2WLVvGoUOHcHNzw8rKipo1a3LgwAH279+fpffB7M77y+NyOkdNmjRh8+bNXL58WaNtVXZsbW158uRJrvNkp0CBAlna6mS0DcsoecqJvr6++u+MfVIqla8dQ15lrPv333+nUKFCGtMyVzV809jycm/lz5+fZs2aERwcTNGiRdmxY4e6jVzGtnr37s13332XZf2Zk7eXz72npydRUVHs3LmTPXv20LZtW+rVq6dRffbx48fq++1jJhMnLRJCsPPiA6bsuMKdJ4kAuDlZMa5pKco7Z18fWJI+VunKdCKeRqhLks7GnOVu/N0s89ka26qTJI/8HpTMVxJ9Xf1s1ihJ2qVQKD7aTkU8PT3ZvHkzRYoUQU8v66NAsWLF0NfX58SJEzg5OQGqnsz++usvjapFdnZ23L//7zvQ/vrrr1y/VT506BBVq1ZVVwMDXrvUJycDBw5k3rx5WUpGPD092bBhA/nz58+xJOjl/UhPT+fixYuv7KnvyJEjODs7M3r0aPW4W7duvcFeqNqCtG7dOkuHFx4eHqSnpxMTE0ONGjWyXdbAwID09Kwv7q5Vqxa+vr5s2rRJnSR5e3uzZ88ewsLC8PX1Vc9bqlQpDh8+zLfffqseFxYWlufe0KZNm4aZmRl169Zl//79lC5dOsd5PTw8WL16dZ7Wm5mXlxejRo3S6NHtzz//pGDBgm/1XVClSpXi2LFjGsfi2LFj6r8tLS1xcHDg2LFj6g4W0tLSOH36NJ6engCULl0aQ0NDoqOjNe6dty2v91aPHj1o3749jo6OFCtWjGrVqqmneXp6cunSJYoXL/7a27ewsKBdu3a0a9eOr7/+mkaNGvH48WN1+7aLFy9mKWH7GMnESYum7rzKsoM3AChgYYTfVyVo4SbbMUmfhoTUBM4/PK+udnf+4XniU+M15lGgwNXaVf2SWXc7dwqZFZLV7iTpHevfvz/Lly+nQ4cODBs2DFtbWyIiIli/fj3Lly/H3NycLl26MGzYMPLly0f+/Pnx9/dHR0dH4/6sU6cOCxYsoEqVKiiVSvz8/DS+NX9Z8eLF+emnn/jjjz9wcXFh1apVnDx5Mtc2KXllZGTE+PHj6d+/v8b4Tp06MWPGDFq0aMGECRNwdHQkOjqaLVu2MGzYMBwdHalTpw5Dhgzh999/p1ixYsyePTtP70IqXrw40dHRrF+/nooVK/L7779n6Rjgv5g8eTJlypTRSGq/+OILOnXqxLfffktgYCAeHh48evSIffv28eWXX9K4cWOKFClCfHw8e/fuxc3NDRMTE0xMTNTtnNasWcMvv/wCqJKpjK67M9o3AQwbNoy2bdvi6elJ3bp1+fXXX9myZctrvYNn5syZpKenU6dOHfbv359tNTj4tze/J0+eYG1trR6fUe3xwYMHJCYmqt/jVLp0aQwMDOjYsSPjx4/Hx8eHUaNG8ddffzFlyhTGjRv3Vv9/+Pr60qVLFypUqED16tVZs2YNly5d0ujtz9fXl2nTpuHq6kqpUqWYNWuWxrVjbm7O0KFDGTx4MEqlkurVqxMXF0dYWBhmZmZ06dLlrcSa13sro2R00qRJWToi8fPzo0qVKvTv35+ePXtiamqq7qRl/vz5OW579uzZODg44O7ujo6ODj///DMFChTQ6KHw0KFDTJw48a3sqzbJxEmLWnkUYs2xW/SoUZTe3kUxMZCnQ/o4CSG4n3Bf3YHDuYfnuPbkGkqhWcXARM+Ecnbl1CVK5ezKYWaQexUTSZLevoIFC3LkyBH8/Pxo2LAhycnJODs706hRI3R0VB3uzpo1iz59+tC0aVMsLCwYPnw4t2/f1miTEhgYSNeuXalZsyYFCxZk7ty5nD59Osft9unTh/DwcNq1a4dCoaBDhw7069ePnTt3vpX96tKlC4GBgVy+fFk9zsTEhIMHD+Ln50fr1q159uwZhQoVom7duuoSqG7dunHu3Dm+/fZb9PT0GDx4cJ7eC9WiRQsGDx7MgAEDSE5OpkmTJowdOzbPL6zNyRdffEG3bt1YtmyZxvjg4GAmTZrE999/z927d7GxscHLy0v90taqVavSp08f2rVrxz///IO/vz8BAQEoFAq8vb3Ztm2burSqXLlyWFpaUrRoUY2SuJYtWzJ37lxmzJjBd999h4uLC8HBwa/9MuHZs2drJE/ZdSv/5ZdfUqFCBTZu3Ejv3r3V43v06KHR41xGSUVUVBRFihTB0tKS3bt3079/fypUqIC1tTVDhgxhyJAhrxXjq7Rr147IyEj8/PxISkqiTZs29O3bV6Pzh++//5779+/j4+ODjo4O3bp1o1WrVsTG/ts+d+LEieTPn5+pU6dy48YNrKys8PT0ZNSoUW8t1rzeWzo6Ovj4+DBlyhSNkjRQXRMHDhxg9OjR1KhRAyEExYoVo127drlu28zMjOnTp/PXX3+hq6tLxYoV2bFjh/qz5OjRo8TGxvL111+/tf3VFoX4L/2afsTi4uKwtLQkNjb2PzfefKvxJKViYSSrIUkfl1RlKtcfX+dszFnOxpwl/GE4Mc+zvnukoGlB9QtmPfJ7UNyqOHo68gsC6eOTlJREVFQULi4u/7kx+8cuISGBQoUKERgYSPfu3bUdjvSJ2LFjB0OHDuXixYvqB23p3erZsyd///0327dvfy/b+9///oeHh8dbTRRfV26f4a+TG8gnGC2TSZP0MYhNjuXcw3Pq9kkXH10kMS1RYx49hR4l85VUJ0rudu7Ym+beSFeSpA/X2bNnuXr1KpUqVSI2NlZdradFixZajkz6lDRu3Ji//vqLu3fvqtvTSe9GbGwsJ0+e1Kiy+a4lJyfj5ubG4MGD38v23jWZOEmSpEEIQfSzaHW1u/CYcCJjszYwNTcwV3fg4J7fnTI2ZT7ahvKSJGVv5syZXLt2DQMDA8qXL8+hQ4ewtbXVdljSJyZz5xTSu9OiRQtOnDhB7969s3SP/q4YGhpqvOvsYycTJ0n6zKWkp3D5n8vqanfnHp7jcdLjLPM5WzhrvGTWxdIFHYWsViFJnyoPD49c2ytJkvRxydz1uPTfyMRJkj4z/yT+Q/jDcM7FnONszFku/XOJVKXm+0r0dfQpa1tWnSi553cnn5HsIl+SJEmSpM+XTJwk6TNxNuYs887M49Tfp7JMy2eUT6PaXWmb0hjoGmghSkmSJEmSpA+TTJwk6RN37fE15p2dx8E7B9XjilsVV3fg4JHfAydzJ/nuJEmSJEmSpFzIxEmSPlHRcdEsCF/AzijVOxx0Fbq0LN6SPm59KGBaQMvRSZIkSZIkfVxk4iRJn5i/E/5myfklbP1rK+kiHYCvinxFP/d+FLEsot3gJEmSJEmSPlIycZKkT8TTpKesuLiCdVfXkZyeDECNQjX4zvM7SuYrqeXoJEmSJEmSPm4ycZKkj1xCagI/Xf6JlZdWkpCaAIBnfk++8/yO8vbltRydJEmSJEnSp0G+hEWSPlLJ6cmsuryKxlsasyh8EQmpCZSwLsHCugsJaRQikyZJkj4aN2/eRKFQEB4e/sbrUigUbNu27Y3X8zr279+PQqHg6dOn73W7b5OPjw8tW7bUdhjv1H+9NmrWrMnatWvffkAfmPd2HwoBKc/h2d+qv/OoYsWKbNmy5Y1jexMycZKkj0yaMo2tf22l6dam/HDyBx4nPcbZwpkZNWewsdlGajrWlD3kSZL0yQsICMDd3T3L+Pv37/PVV1+9/4CkV3qbD+bvy2+//caDBw9o3769etyyZcuoVasWFhYWH33C/KbyfB8q0yDxKTy5BX9fhEfX4Nk9SH2e522NHTuWESNGoFQq3zzw/0hW1ZOkj4RSKNl9azcLzi7gZtxNAPKb5KevW19aFG+Bvo6+dgOUJEn6ABQoIHsNzSw1NRV9/c/7/0NKSgoGBv/t3YTz5s2ja9eu6Oj8W9bw/PlzGjVqRKNGjRg5cuTbCvOTUsDeHtKSIP5vSIqDlAQgU+mSQgcMzYG8f9HbpEkTevbsyR9//KG1L0dkiZMkfeCEEBy5e4T2v7Vn6IGh3Iy7iZWhFUMrDOX3Vr/z9Rdfy6RJkrRACIHy+fP3/iNeo2oLgFKpZPr06RQvXhxDQ0MKFy7M5MmT1dMvXLhAnTp1MDY2xsbGhl69ehEfH6+enlGFa+bMmTg4OGBjY0P//v1JTU0FYOTIkVSpUiXLdsuVK4e/v786hgkTJuDo6IihoSHu7u7s2rUrx5hDQkKwsrLSGLdt2zZ1aXpISAjjx4/n3LlzKBQKFAoFISEhQNYqQm+6fwCrV6+mQoUKmJubU6BAATp27EhMTMwrjrwmhULBjz/+SKtWrTAxMcHV1ZXt27drzHP58mUaN26MmZkZ9vb2fPPNNzx69Eg9vUiRIsyZM0djGXd3dwICAjS2s2TJElq0aIGpqSmTJk0iPT2d7t274+LigrGxMSVKlGDu3LmvFX/GOfnjjz8oVaoUZmZmNGrUiPv372vMFxwcTKlSpTAyMqJkyZIsWrRIPc3FxQUADw8PFAoFtWrV4sKFC+jo6Kj388mTJ+jo6PC///1PvdzUqVPx8vJSDx84cIBKlSphaGiIg4MDI0aMIC0tTT29Vq1aDBgwgCFDhmBra0v9+vWz3acJEyZgb2+fYwnYo0eP2LNnD82bN9cYP2jQIEaMGJHtdZ+Tz+Y+XL4Int5GoaPDtlWLIe4epMRz4cp16rTtg3ExL2y+rEuvcQuIN8gPBiZ52j8AXV1dGjduzLp16/J83N82WeIkSR+w8Jhw5p6Zy6m/TwFgomdClzJd+Lb0t5gZmGk5Okn6vInERK55vv+2hCXOnEZhYpLn+UeOHMny5cuZPXs21atX5/79+1y9ehX495vzKlWqcPLkSWJiYujRowcDBgxQJyIAoaGhODg4EBoaSkREBO3atcPd3Z2ePXvSqVMnpk2bRmRkJMWKFQPg0qVLXLhwgU2bNgEwd+5cAgMDWbp0KR4eHgQFBdG8eXMuXbqEq6vrax+Ddu3acfHiRXbt2sWePXsAsLS0zDLf29g/UJVYTJw4kRIlShATE8PgwYPx8fFhx44drxX3+PHj+eGHH5gxYwbz58+nU6dO3Lp1i3z58nH//n28vb3p2bMns2bNIjExET8/P9q2bcu+ffteazv+/v5MnTqV2bNno6uri1KpxNHRkY0bN2Jra0tYWBi9evXCwcGBtm3b5nm9z58/Z+bMmaxatQodHR06d+7M0KFDWbNmDQDLly/H39+fBQsW4OHhwdmzZ+nZsyempqZ06dKFEydOUKlSJfbs2UOZMmUwMDDA2toaGxsbDhw4QJs2bTh48CA2NjYcPPjvS9v379+Pt7c3AHfv3qVx48b4+Pjw008/cfXqVXr27ImRkZFGArly5Ur69u3LkSNHsnzZIIRg0KBBbNu2jcOHD+d4DR4+fBgTExNKlSqV52OUk0/2Pjx/TnUfbgqGlHgszU3heUayrwBDc56n69Po28Ev9m/Ff74PASpVqsQPP/zw2rG+NeIzExsbKwARGxur7VAkKUdX/7kqBuwZIMqGlBVlQ8oKz588xfQT08U/if9oOzRJ+iwlJiaKy5cvi8TERPW49IQEcblEyff+k56QkOe44+LihKGhoVi+fHm205ctWyasra1FfHy8etzvv/8udHR0xIMHD4QQQnTp0kU4OzuLtLQ09Tz/+9//RLt27dTD5cqVExMmTFAPjxw5UlSsWFE9XLBgQTF58mSNbVesWFH069dPCCFEVFSUAMTZs2eFEEIEBwcLS0tLjfm3bt0qMj+2+Pv7Czc3tyz7BIitW7e+1f172YkTJwQgnj17JoQQIjQ0VADiyZMnOS4DiDFjxqiH4+PjhUKhEDt37hRCCDF27FjRoEEDjWVu374tAHHt2jUhhBDOzs5i9uzZGvO4ubkJf39/je0MGjQoxzgy9OvXT7Rp00Y93KVLF9GiRYsc5w8ODhaAiIiIUI9buHChsLe3Vw87OTmJtWvXaiw3ceJE4eXlJYTIep4ztG7dWgwYMEAIIcSgQYPE999/L2xtbcWlS5dEamqqMDMzUx+nUaNGiRIlSgilUqkRh5mZmUhPTxdCCOHt7S3c3d2z7AMgfv75Z9G5c2dRsmRJcfv27dwOkZg9e7YoWrRojtPzct6F+MTuwy2bVffh0ztC/H1Z+A/pJdxKfyHE3TOqnwcXhXgSrboPN29+q/snhBC//PKL0NHRUZ/rvMruMzzD6+QGssRJkj4gt+NusyB8ATujdiIQ6Cp0aVm8JX3c+lDAVNbbl6QPicLYmBJnTmtlu3l15coVkpOTqVu3bo7T3dzcMDU1VY+rVq0aSqWSa9euYW9vD0CZMmXQ1dVVz+Pg4MCFCxfUw506dSIoKIixY8cihGDdunUMGjQIgLi4OO7du0e1atU0tl2tWjXOnTuX5335L97W/p09e5aAgADCw8N5/PixunF6dHQ0pUuXznM85cqVU/9tamqKubm5usrf6dOnCQ0Nxcwsa22CyMhIvvjiizxvp0KFClnGLVmyhB9//JFbt26RmJhISkpKto36c2NiYqIuzQDVccqI/+HDh9y+fZvu3btrlBCkpaVlWxqYWa1atVi2bBmgqoY3ceJEoqKiOHDgALGxsSQmJqqvnytXruDl5aXRCVK1atWIj4/nzp07FC5cOMdjADB48GAMDQ05duwYtra2ucaVmJiIkZFRrvPkxUd/H6anqtopJceqOncASMhUVVWhA+YFwcgC9Iwg49y8aBf2tvYPwNjYGKVSSXJyMsav8Vn4tsjESZI+ADHPY1hybglb/9pKmlDV025YpCH93fvjYumi5egkScqOQqF4rSpz2vCqBwshRI69cGYe/3LnAgqFQqNnq44dOzJixAjOnDlDYmIit2/f1uiF7OX1vWrbOjo6WapXZW7rkFdvY/8SEhJo0KABDRo0YPXq1djZ2REdHU3Dhg1JSUl5rXhy245SqaRZs2ZMnz49y3IODg5A3o9L5gdUgI0bNzJ48GACAwPx8vLC3NycGTNmcPz48TeOPyOejP1Yvnw5lStX1pgv88NwdmrVqoWvry8RERFcvHiRGjVqEBkZyYEDB3j69Cnly5fH3NwcyP6cZsSQefzLxyBD/fr1WbduHX/88QedOnXKNS5bW1uePHmS6zx58dHdh0JASgI6ybEIZbqqF7wX1NebcT5VomRmD3qGYG7/zvcP4PHjx5iYmGglaQKZOEmSVj1NekrQxSDWXl1LcnoyANUKVeM7j+8obZP3bzElSZKy4+rqirGxMXv37qVHjx5ZppcuXZqVK1eSkJCgftA8cuQIOjo6r1XC4ejoSM2aNVmzZg2JiYnUq1dP/S2yhYUFBQsW5PDhw9SsWVO9TFhYGJUqVcp2fXZ2djx79kwjrpcb8BsYGJCenp5rXG9j/65evcqjR4+YNm0aTk5OAJw6dSpPy74OT09PNm/eTJEiRdDTy/7xzM7OTqMzhri4OKKiol657kOHDlG1alX69eunHhcZGfnmQWdib29PoUKFuHHjRo4JSUbPdi+ft7Jly2JjY8OkSZNwc3PDwsICb29vpk6dypMnT9Ttm0B1Tjdv3qzxMB4WFoa5uTmFChV6ZZzNmzenWbNmdOzYEV1d3SyJRWYeHh48ePCAJ0+eYG1t/cp15+SjuA/TX3QXDvDoL3gEdqa6PItPIOF5IqaWNmBkQXjUQ9U81s4AGBgavZf7MMPFixfx9PR8rWXeJtmrniRpwfPU5yw9t5SvtnxF8KVgktOTcbdzJ7hhMEvqLZFJkyRJb4WRkRF+fn4MHz6cn376icjISI4dO8aKFSsAVdUeIyMjunTpwsWLFwkNDWXgwIF888036geuvOrUqRPr16/n559/pnPnzhrThg0bxvTp09mwYQPXrl1jxIgRhIeH4+vrm+26KleujImJCaNGjSIiIoK1a9dqNCIHVQ9zUVFRhIeH8+jRI5KTk7ON6U33r3DhwhgYGDB//nxu3LjB9u3bmThxYt4Oymvo378/jx8/pkOHDpw4cYIbN27w559/0q1bN/WDaZ06dVi1ahWHDh3i4sWLdOnS5ZWlOQDFixfn1KlT/PHHH1y/fp2xY8dy8uTJt74PAQEBTJ06lblz53L9+nUuXLhAcHAws2bNAiB//vwYGxuza9cu/v77b2JjYwFVyULNmjVZvXo1tWrVAlTVGlNSUti7d696HEC/fv24ffs2AwcO5OrVq/zyyy/4+/szZMgQjS7Dc9OqVStWrVpF165d1R0nZMfDwwM7OzuOHDmiMf7BgweEh4cTEREBqHrEy6jGmZ0P8j68epURw75X3YffNIe/L0DcXdWMQgkKXSp7VVPdh/PWERGry9pfQwlZpfki4Pd1H2Y4dOgQDRo0eK1l3qrXaln1CZCdQ0jalJyWLFZfXi1qrq+p7vih9S+txYHbBzQaukqS9GHJrWHxhy49PV1MmjRJODs7C319fVG4cGExZcoU9fTz58+L2rVrCyMjI5EvXz7Rs2dPdacHQmTfaYCvr6/w9vbWGPfkyRNhaGgoTExMNJbPiGH8+PGiUKFCQl9fX7i5uakb+wuRfacBW7duFcWLFxdGRkaiadOmYtmyZRqdQyQlJYk2bdoIKysrAYjg4GAhhGbnEG9r/9auXSuKFCkiDA0NhZeXl9i+fbtGvHntHCJzXEIIYWlpqY5bCCGuX78uWrVqJaysrISxsbEoWbKkGDRokPr/Q2xsrGjbtq2wsLAQTk5OIiQkJNvOIV7eTlJSkvDx8RGWlpbCyspK9O3bV4wYMUKjc428dA7xqg47hBBizZo1wt3dXRgYGAhra2tRs2ZNsWXLFvX05cuXCycnJ6Gjo6NxjOfPny8A8dtvv6nHtWjRQujq6mZ5Ztu/f7+oWLGiMDAwEAUKFBB+fn4iNTVVPd3b21v4+vpm2YeXj82GDRuEkZGR2PyiE4PsjBgxQrRv315jnL+/v0D1UiKNn8zn8mUfxH2YmiLGjxkpChUsIPT19YRb6S/EztXz1R07RJ3crbqujx8R4sU19yHdh3fu3BH6+vqv7NQjO2+rcwiFEK/5QoiPXFxcHJaWlsTGxmJhYaHtcKTPRJoyjV8jf2XxucXcT1BVs3Ayd2KA+wAauTRCRyELfyXpQ5aUlERUVBQuLi5vpbG4JEkfh7///psyZcpw+vRpnJ2dtR3O6xEC0pIhOe7FS2jjyfISWgNzVVslQwvQ+28vCX5fhg0bRmxsrLojkdeR22f46+QGso2TJL1DQgj2RO9h/tn5RMWq6qHnN85Pb7fetHJtJV9cK0mSJEkfMHt7e1asWEF0dPTHkTgplaoEKTkOkmIh/aUOTHQNwMhSlSgZmKl7vvsY5M+fn6FDh2o1Bpk4SdI7IITg6P2jzDszj0v/XALA0tCSHmV70L5ke4z05DfWkiRJkvQxaNGihbZDyF1aiqqr8IxSJZG5JzqFKkEysvi3u/CP1LBhw7QdgvY7h1i0aJG62Kx8+fIcOnQoT8sdOXIEPT29134HgSS9a+cenqP7n93pvbs3l/65hLGeMb3L9WZn6534lPWRSZMkSZIkSf+dUEJyvKozh5grEHMJYu+oSpmEEnT0wcQGrF2gwJdgWxzM8n/USdOHQqslThs2bGDQoEEsWrSIatWqsXTpUr766isuX76sfoFZdmJjY/n222+pW7cuf//993uMWJJydv3Jdeafnc/+2/sB0NfRp12JdvT4sgc2xjZajU2SJEmSpI9Yeuq/bZWSn4F4qQtwA1NV9TsjS82X0EpvlVY7h6hcuTKenp4sXrxYPa5UqVK0bNmSqVOn5rhc+/btcXV1RVdXl23btmV5t0NuZOcQ0tt2+9ltFoYvZMeNHQgEOgodWhRrQV+3vjiYOWg7PEmS3gLZOYQkSe+VEJD6/EWiFKf6OzMdPVWiZGiu+q0rW9/k5qPvHCIlJYXTp08zYsQIjfENGjQgLCwsx+WCg4OJjIxk9erVTJo06ZXbSU5O1uhTPi4u7r8HLUmZPHz+kKXnl7L5+mbSRBoA9Z3rM8BjAEUti2o5OkmSJEmSPirKNFVpUkaypEzTnK5vDIaWqrZK+iayVEkLtJY4PXr0iPT09CwvvrK3t+fBgwfZLvPXX38xYsQIDh06lONbtV82depUxo8f/8bxSlKG2ORYgi4GsfbKWpLSkwCoVrAaAz0HUsamjJajkyRJkiTpoyAEpCX9myilxGtOV+iqSpQyugvXlT3xapvWy/UUL2XLQogs4wDS09Pp2LEj48eP54svvsjz+keOHMmQIUPUw3FxcTg5Of33gKXP1vPU56y+spqQiyE8S30GgJudG76evlQsUFHL0UmSJEmS9MFTpqsSpKQXveApUzWn6xm9aKtkoWq3JN/z+EHR2tmwtbVFV1c3S+lSTExMllIogGfPnnHq1CkGDBiAnp4eenp6TJgwgXPnzqGnp8e+ffuy3Y6hoSEWFhYaP5L0OlLSU1hzZQ1fbfmK+Wfn8yz1Ga7WrsyvM59VX62SSZMkSdIbunnzJgqF4rXaLOdEoVCwbdu2N17P69i/fz8KhYKnT5++1+2+TT4+PrRs2VLbYbxT//XaqFmzJmvXrv3vG05LgvgY+CcCHlyAxzfg+T8vkiaFKlGydIT8pSF/KbAspCppes9J08d8H3799dfMmjXrnW9HayVOBgYGlC9fnt27d9OqVSv1+N27d2fbX76FhQUXLlzQGLdo0SL27dvHpk2bcHFxeecxS5+XdGU6v934jUXhi7iXcA8ARzNH+nv0p7FLY3Tkt0Cfh5QE1T+52LuAUP0jU+iq6pbr6GYa1sk0rPPScObpimzmzxjWyWF9GcvJ+uySlCEgICDbDqLu37+PtbW1doJ6U0KoflC++C0yjcv8W5nNuBfjs4x7xbIZfyfFqT7v/rnx4vNG58VnTqa/Xx7W+DvTPAqdF9MUGtNu3orGpVhxzp45g7uHx/s+uv/Jb7/9xoMHD2jfvr16XO/evdmzZw/37t3DzMyMqlWrMn36dEqWLKmaIaO78Ixe8NKTNVeqa/BvD3gf2UtoX/ah3Ifjxo2jdu3a9OjR450Wkmi1qt6QIUP45ptvqFChAl5eXixbtozo6Gj69OkDqKrZ3b17l59++gkdHR3Kli2rsXz+/PkxMjLKMl6S3oQQgr3Re5l/dj43Ym8AYGdsRx+3PrRybYW+jqxj/MlJS4EnN+FxpOobwX9e/H58Q/WejA+FIqfEKqdE7RWJ2Oskfv856dNR9f6kq696t4iu3ovf+v+O1zXIeVq28+YwTUf/3zilz1aBAgU0R7yPZCT+xatRnkaD8onmOnPcXjbrfgdSU1PR18/D/y1l2ovOCWLfSRwAPLz34vc1uJddkpXT35mHMydxOf2deT4dUlJSMTA0VG07LQXSkrNuK4fPjXnz5tG1a1d0MiU35cuXp1OnThQuXJjHjx8TEBBAgwYNiLp4Et20hBfdhb/8ElrTF22VLEHP8JP/nMpyH75j5cqVo0iRIqxZs4a+ffu+s+1oNXFq164d//zzDxMmTOD+/fuULVuWHTt24OzsDKiy1ejoaG2GKH1mjt47yrwz87j4z0UALAws6PFlD9qXbI+xnrGWo5PeiDIdYm+/SIoiNZOkp7de+if3EiMrsC6iekAX6ap5lcoXD1oZw+mZhsVLwxnThWr45Wm5bTsz9bxpr5z1s6bzIsHSSMRyS9pySuwyDRvYgE0tVXWbVH3UD1xv9TdZx6vfGCJe+vvFb42/0ZznxTSlMp0Zs+awfEUIt+/cwT5/fnr38GG03zBAcOHiJXyHjuDo8ZOYmBjTpkUzZk2biJmZKQiBT+8BPI2NpXqVygTOX0xKSirtv27BnGkT0NfXZ2TAZEIPhnFs768aMZSrWo9WTRsyfuT3KJXpTJo5n2Uha3n4z2NKfVGMaeOG06huTdUyT26rfj+NhkdmhKzbzKAxk3kacUq9b9t27KaVz0DE35cJWb9V3fFTRrvo4DkT8WnXAoVDObaumEXLRrVV+3flL3zHzeDomQuYGBnRpkkdZvl/j5mpCQA+g/x5GveM6pXcCVy6WrV/LRowZ/xQdcKxevPvzPlxLdcib2FqYkydahWZM34o+W3zqeJOetFjb+JTMHjp/TovKAp5snzGWH7fe5g/9h+lUAE7Av2H0LyBt3qey9dvMHTibA4eO4OpiTENanoxe/xQbG3ygUJBkYqNGNTrGwb17qK+Rtxrt6Rl43oE+PkCChS2xVk8cxI79+5nz4EjDB3Qi3F+g+nl68e+g2E8iHlIYcdC9Ovpg2//3v9eawamoJ8Glk6aieaLv0NWb2DQyPFsWDGfQaMmcPvefapXLk/w3Gk4FLBTJ57B6zbzw8IVREXfpYhjQb7r3oF+XdoCApcqTQHwaNgBAG+v8syfOBy3+u2JOb8H23zWPHkah03Z2rRpXJefl/0AwNT5QWz/8wBHf10JwIGjpxk2aQ7nLl8nn5UlXf7XlEnD+6k7Dqv1dU/KliiGgb4+P236nTIlinJg84+qgxx3B2IuAzBh9jIWhmzkjzULcS9bgpdLzR7985Q9e/Ywe+xAeHhdPa1Xm3rqv4tY2TBpcHfc6rTk5sXjFCvyoh29jt6/iZKhOUoUzJgxg+XLl3P79m3s7e3p3bs3o0ePBuDChQv4+vpy9OhRTExMaNOmDbNmzcLMzEx1nfr48PTpU6pXr05gYCApKSm0b9+eOXPmqO7DkSMJDQ3l2LFjGtdduXLlaNWqFePHj0epVDJp0iSWLVvGw4cPKVWqFNOmTaNRo0bZXrMhISEMGjRIowrqtm3baNWqFUIIQkJCst6HwcH4+PigUCjYunWruvrnm+4fqGqazZ49m9u3b2NpaUmNGjXYtGmTOrbmzZuzbt26TzdxAujXrx/9+vXLdlpISEiuywYEBBAQEPD2g5I+O+cfnmfemXkcf3AcAGM9Y74p/Q0+ZXwwNzDXcnRSngkBzx68VHL0Ikl6fAPSU3JeVt8UbIqCTXHVT75iL/4uBib53n3cGUlVliTsvyZpyhzWlWlajtNfN5ZXTFOmq17eqEyF9LQXv18eTnlpWlruy6SnZG1UnUH5Yr4cJv8nZk5QzROeG0KK4sVpE6S9zW3kkZ7+vw8peTFy8lyWr93KbP/vqV7Jnfsxj7gacRMeR/I8MZFGzVpSxfNLTv7+EzGPHtNj2EQGDHhCyJwXPdKmPCf0wGEcrM0I3biYiKjbtOs7AndXR3p2ak2nJjWZNmsBkRdPqR8aL12L5MLlq2xaMhWeP2LustUELljG0umj8ShTgqANv9C8U08u7duEa9HC//YmlvIcUp6p2oQgIDXh3x3JuH/TkmjXpDYXL3/Drv1h7FmvehekpblZpu6bVYnj88REGnUe8GL/Vv27f2OmEzJnkvrhNzTsFA4F7AndspKIm9G06zUEd7dy9Py2PaAgBX0mjh5OCddixDz6h8GjJ+IzdDI7Nq0CFGDy4iXn5g5gaYVmAvxvacb4OUH8MGUiMwLnMH/REjoNHMutyGvky2fL/QcP8P5fA3r26M6sBctITEzCb8QI2n434d923Lr6YF5A1Q5GfUEYqrZvU1w9yv+HeUydOpXZC5aiq6uL0rwgjkVLsPG777G1tSUsLIxevXrhUOQL2rZt++96dA3A1Db7C8kkH88TE5m5dBWr1q5HR0eHzp07M3TqQtasWQPA8uXL8Z++kAULFuDh4cHZs2fp2bMnpgVL0OXbbzlx7BiVqlRhzx+7KFO6FAYGelhbWWFjY8OBS/dp07IiB4/8ho1NPg6ePAdWziCU7D95EW9vbzB34O69ezT+9jt8Orblp6XzufpXBD19R2BkakHAcF9ACQpdVv78G3192nPktzUIpVK1bwDoIISCQf4/sG1XKIe3BqmuQVAtm6nw7/Cx45gYG1HKpaDmtZhJwvNEgtduxKVwIZyci4K5raoanr6xRqnSSD8/li9fzuzZs6levTr379/n6tWrADx//pxGjRpRpUoVTp48SUxMDD169GDAgAEaz8KhoaE4ODgQGhpKREQE7dq1w93dnZ49e9KpUyemTZtGZGQkxYoVA+DSpUtcuHBBnVzMnTuXwMBAli5dioeHB0FBQTRv3pxLly7h6uqa/XnPRbt27bh48SK7du1iz549AFhaWmaZ723s36lTp/juu+9YtWoVVatW5fHjxxw6dEhjO5UqVWLq1KkkJydjmFHC+JZpPXGSJG3668lfzD87n9DboQDo6+jTtkRbenzZA1vjHP55SNr3/HGm6nSZkqTHN7J255qZrgFYu/ybENkU+zdJMi+gvaoTmauaSHmXkTRmm2xlM5zjtFwSs4xpwlD1MGScD/R1AUFacjrLJka9993uNcIKfYPMY14qsQL1tfws/jlzV6xjwZRRdOnwNQDFirtSvaoXoGDNL7+SmJTCTwsDMTUzARQsmKZDs859mD5+NPb5bUFXH2srSxYETkVXV4+SX3rSZOtu9h4Np2fPnpT1tKFcmVKs/f0gY4cPUq33tyAqerrzhVslQMHMZWvxGzyA9p27ggKme1Yj9Ph55vz0Cwtn/wBPXzypmhdQPSyb2KgSDmuXf/fH7Irqb5viGANmto7oGZpQoHTVf49Dxj1s6Qj5y7BmRRCJyWn8tH4rpmZmqv0zc6JZs2ZMn7dc1RmVsTXW+WxYsGINurq6lKwGTX7Zx97jF+k5WJWMdBvopz7aRYF5VoWoVKkS8TqWqm/MM75cMbMDU6scz51P1650+LYrAFOmz2D+oiWcOHOeRo0asXjZj3h6ejJl6jT1/EFBQTg5OXH9+vXX6lG4Y8eOdOvWTWNc5lezuLi4EBYWxsaNG/9NnPIgNTWVJUuWqB/MBwwYwIQJE9TTJ06cSGBgIK1bt1Zv5/LlyyxdupQuXbpg96LzL5v89hRwLKxermbNmuw/fIw27TqxP+wEXbr4sHLlSi7ffMAXX3xB2PFTDB7qB+YFWPTTfJycCrNgWTAKhYKSlWpzLzYVPz8/xk2drapSp29Mcdcv+GHBiiz7kGbhyLcjAjl16ixHjp7AsVBBzaqVmf6++fhP7O3t0bEtnqVq5aJlKxg+dgIJCc8pWcKV3bv3YlCoRLbH7dmzZ8ydO5cFCxbQpUsXAIoVK0b16tUBWLNmDYmJifz000+YmpoCsGDBAtV1On26utM0a2trFixYoLpOS5akSZMm7N27V3Ufli1LuXLlWLt2LWPHjlWvt2LFiuprZ+bMmfj5+anba02fPp3Q0FDmzJnDwoUL83wdZDA2NsbMzAw9Pb1cq+a9jf2Ljo7G1NSUpk2bYm5ujrOzMx4vtZMrVKgQycnJPHjwQF177W2TiZP0Wbrz7A6Lwhfx243fEAh0FDo0L9acvm59KWhWUNvhSaBqWPs48t9So8xJUuKTnJdT6IBV4ZdKjl78WDqp2sBInwaFQlWVTldP9e3uu5SUBFFRqgf7jLfOJ6cD7z9xosCXYKiXp0T/yokTJCenULfVt2CftROlK3ee4ubugWkRd/W4ao3zo1T24trDZOxLFQNDc8p86Yau3b8lGg7OxVQdNlmpHn47fetDUFAQYyfPRAjBui2/MWjQILAoSFxcHPfuP6BanUZg/m+vudVqeHPu3DlVCYfJiy88jK1USYihKsnB2OrfYA1UVeswfFELQM9Adb8bmGbdcV0D0DPgyrXruLm5YWr+b2PxatWqoVQquXbtmvqBrUyZMujq/vvZ4ODgoNEh1dmzZwkICCA8PJzHjx+jVKqq10ZHR1O6dOkcjn5W5cqVU/9tamqKubk5MTExAJw+fZrQ0FB11aXMIiMjXytxqlChQpZxS5Ys4ccff+TWrVskJiaSkpKCu7t7ntcJYGJiok6aQHWcMuJ/+PAht2/fpnv37vTs2VM9T1paWralEJnVqlWLZcuWAXDgwAEmTpxIVFQUBw4cIDY2lsTERKpVqwbAlStX8PLy0ih1rVatGvHx8dy5c4fChQvneAwABg8ejKGhIceOHcPWNvcvSBNTlRgZm6g6cXhJp259qN+0Nffv32fmzJm07dCRI0eOYJTx+ZDJlStXSE5Opm7dutlu58qVK6rr1PTfa/m/XKedOnVS3Ydjx6ruw3XrVPchqtfx3Lt3T30cM2/n3LlzuR6HN/U29q9+/fo4OztTtGhRGjVqRKNGjWjVqhUmJibq+Y2NVf8Hnj9//s72RSZO0mfl4fOHLDu/jE1/bSLtRZWO+s71GeA+gKJWRbUc3WcoLRkeR2UqNYpQ9ej0TwTEZ/8ibDXzgpqlRhlJknUR1QOVJL1jegY69Jrr/eoZ38F281o6mvEgkZOc3p0ImtUBX+5cQKFQqJMHUJVwjBgxgjNnzpCYmMjt27c1eiF7eX2v2raOjg5C3V5LJTX19etFvo39S0hIoEGDBjRo0IDVq1djZ2dHdHQ0DRs2JCUll+q/2chtO0qlUv0N/MscHByAvB+XzA+oABs3bmTw4MEEBgbi5eWFubk5M2bM4Pjx428cf0Y8GfuxfPlyKleurDFf5ofh7NSqVQtfX18iIiK4ePEiNWrUIDIykgMHDvD06VPKly+PubkqYc7unGbEkHn8y8cgQ/369Vm3bh1//PEHnTp1yjUuW1tbnjzJ/os6S0tLLC0tcXV1pUqVKlhbW7N161Y6dOiQZV55H775/pmbm3PmzBn279/Pn3/+ybhx4wgICODkyZNYWVkB8PjxYwDs7OxeO8a8komT9FmITY4l+GIwa66sISk9CQAvBy98PX0pY1tGy9F94tLTIDb634Qoc5IUeyf3jhEy6u3ny5wgFYN8RbP/llmS3iOFQoG+4Yddgunq6oqxsTF79+6lR48eWaaXLl2alStXkpCQoH7QPHLkCDo6Oq9VwuHo6EjNmjXVVXLq1aun/hbZwsKCggULcvjwYWrWrKleJiwsjEqVKmW7Pjs7O549e6YR18vdHRsYGJCenn1HDG9z/65evcqjR4+YNm0aTk6qNlynTp3K07Kvw9PTk82bN1OkSBF1Jwcvs7Oz4/79++rhuLg4oqJeXep56NAhqlatqtGmPDIy8s2DzsTe3p5ChQpx48aNHBMSAwPVl1ovn7eyZctiY2PDpEmTcHNzw8LCAm9vb6ZOncqTJ09U7ZteKF26NJs3b9Z4GA8LC8Pc3JxChQq9Ms7mzZvTrFkzOnbsiK6ubpbEIjMPDw8ePHjAkydPXtm1thCC5OTkbKfJ+/Dt7J+enh716tWjXr16+Pv7Y2Vlxb59+9RVQy9evIijo+MrSxLfhEycpE/a89TnrL26lqCLQTxLeQZAOdty+Hr6Uskh+w8K6T8QAuLuZe2U4Z8IVTffOTXiBzAwz77kyKYoGL+/d0BI0qfIyMgIPz8/hg8fjoGBAdWqVePhw4dcunSJ7t2706lTJ/z9/enSpQsBAQE8fPiQgQMH8s0332T7MvrcdOrUiYCAAFJSUpg9e7bGtGHDhuHv70+xYsVwd3cnODiY8PBwdacCL6tcuTImJiaMGjWKgQMHcuLEiSwdRhUpUoSoqCjCw8NxdHTE3Nw8S4Pwt7F/hQsXxsDAgPnz59OnTx8uXrzIxIkT835g8qh///4sX76cDh06MGzYMGxtbYmIiGD9+vUsX74cXV1d6tSpQ0hICM2aNcPa2pqxY8e+sjQHoHjx4vz000/88ccfuLi4sGrVKk6ePPnW34EZEBDAd999h4WFBV999RXJycmcOnWKJ0+eMGTIEPLnz4+xsTG7du3C0dERIyMjLC0tUSgU1KxZk9WrVzN48GBAVa0xJSWFvXv34uvrq95Gv379mDNnDgMHDmTAgAFcu3YNf39/hgwZotFleG5atWrFqlWr+Oabb9DT0+Prr7/Odj4PDw/s7Ow4cuQITZuqegS8ceMGGzZsoEGDBtjZ2XH37l2mT5+OsbExjRs3znY98j588/377bffuHHjBjVr1sTa2podO3agVCopUeLfdmWHDh2iQYMGeVrffyY+M7GxsQIQsbGx2g5FeodS0lLE2itrhfd6b1E2pKwoG1JWtNzWUuy7tU8olUpth/dxUiqFiH8oxK1jQpxZLcSe8UJs+EaIRVWFmFRACH+LnH8m2AmxsIoQ6zoK8ec4IU6vFOLmESGe/a1aryR94BITE8Xly5dFYmKitkN5benp6WLSpEnC2dlZ6Ovri8KFC4spU6aop58/f17Url1bGBkZiXz58omePXuKZ8+eqad36dJFtGjRQmOdvr6+wtvbW2PckydPhKGhoTAxMdFYPiOG8ePHi0KFCgl9fX3h5uYmdu7cqZ4eFRUlAHH27Fn1uK1bt4rixYsLIyMj0bRpU7Fs2TKR+bElKSlJtGnTRlhZWQlABAcHCyFULfu3bt36Vvdv7dq1okiRIsLQ0FB4eXmJ7du3a8QbGhoqAPHkyRORk5fjEkIIS0tLddxCCHH9+nXRqlUrYWVlJYyNjUXJkiXFoEGD1P+3YmNjRdu2bYWFhYVwcnISISEhws3NTfj7++e6naSkJOHj4yMsLS2FlZWV6Nu3rxgxYoRwc3PL9ThkFhwcLCwtLTXGbd26Vbz8KLlmzRrh7u4uDAwMhLW1tahZs6bYsmWLevry5cuFk5OT0NHR0TjG8+fPF4D47bff1ONatGghdHV1szyz7d+/X1SsWFEYGBiIAgUKCD8/P5Gamqqe7u3tLXx9fbPsw8vHZsOGDcLIyEhs3rw5x/0eMWKEaN++vXr47t274quvvhL58+cX+vr6wtHRUXTs2FFcvXo1x3UIIe/DN92/Q4cOCW9vb2FtbS2MjY1FuXLlxIYNG9TzJiYmCgsLC3H06NEsxz5jek6f4a+TGyhe7NxnIy4uDktLS2JjY9/pm4Ul7UhXpvN71O8sCl/E3XjVi0sLmRWiv3t/Grs0Rld2DPBqSXFZO2XIqGKXlMuLERW6qvZFGlXqXvxtUeijfjO6JCUlJREVFYWLi0u2jb8lSfo0/f3335QpU4bTp0+/s57apDe3cOFCfvnlF/78889sp+f2Gf46uYGsqid9EoQQ7Lu9jwVnFxDxNAIAW2Nb+pTrQ2vX1ujr5uGt6Z+T1ERVpwwabY5etEFKiMl9WUsnVRujjGp1GYmSVWHVO0YkSZIk6RNhb2/PihUriI6OlonTB0xfX5/58+e/8+3IxEn66B27f4x5Z+Zx4ZGqy0oLAwu6le1Gx1IdMdZ7x10Uf0yS42H/VLj8i6pTBnIpbDbNn/U9RzbFIZ/Lu+/2WZIkSZI+IC1atNB2CNIr9OrV671sRyZO0kfrwsMLzD07l+P3Vd2pGusZ07lUZ3zK+mBhIKtharhxALYPhKe3/h1naKlZrS5z9TojefwkSZIkSZIyk4mT9NF5+PwhU09MZfet3QDo6ejR9ou29CzXE1vjd9cF5UcpKQ52j4PTwaphSydoNA0KV1F19Z3Hd8FIkiRJkiR97mTiJH1UdkXtYtLxScQmx6Kj0KFp0ab0c+9HIbNXv7vhsxOxB7b7Qtwd1XCF7lB/PBiaazcuSZIkSZKkj5BMnKSPwpOkJ0w6Nok/b6l6SymVrxQTq02kRL4Sr1jyM5T4FP4cDWdXq4ati0Dz+eBSM7elJEmSJEmSpFzIxEn64IVGhxJwNIDHSY/RVejSq1wvepbrib6O7MEti2u74LdB8Ow+oIDKfaDuWDAw1XZkkiRJkiRJHzWZOEkfrLiUOKafmM72yO0AFLcqzqTqkyhjU0bLkX2Anj+GXSPg/AbVcL5i0GIhOHtpNy5JkiRJkqRPhEycpA9S2N0wxoaNJeZ5DAoU+JT1ob97fwx1DbUd2ofnyq/w2xDV+5cUOuDVH2qPlt2GS5IkSZIkvUU62g5AkjJ7nvqciUcn0ntPb2Kex1DYvDA/ffUTQ8oPkUnTyxIewc8+sKGzKmmyLQHdd0ODSTJpkiRJTQhBr169yJcvHwqFgvDwcG2H9Nnz8fGhZcuW2g5Da27evPna12KtWrUYNGjQO4tJkvJCJk7SB+Pkg5O03t6ajdc3AtCxZEd+bvYz7vndtRvYh0YIuLgZFlaCS1tBoQvVh0Dvg+BYQdvRSZL0gdm1axchISH89ttv3L9/n7Jly2o7pDxr1qwZ9erVy3ba0aNHUSgUnDlzRj1u8+bN1KlTB2tra0xMTChRogTdunXj7NmzGsumpKQwY8YMPD09MTU1xdLSEjc3N8aMGcO9e/fU8x08eJBmzZpRsGBBFAoF27ZtyzaWK1eu0Lx5cywtLTE3N6dKlSpER0e/+QGQJOmDIhMnSeuS0pKYfmI63f/ozt34uxQ0LciPDX5kZOWRmOibaDu8D8uzv1UlTJu6wfN/IH8Z6LkX6vmDvpG2o5Mk6QMUGRmJg4MDVatWpUCBAujpZa2ln5KSooXIXq179+7s27ePW7duZZkWFBSEu7s7np6eAPj5+dGuXTvc3d3Zvn07ly5dYtmyZRQrVoxRo0apl0tOTqZ+/fpMmTIFHx8fDh48yOnTp/nhhx/4559/mD9/vnrehIQE3NzcWLBgQY4xRkZGUr16dUqWLMn+/fs5d+4cY8eOxchIfiZL0idHfGZiY2MFIGJjY7UdiiSEOBdzTjTd0lSUDSkryoaUFf5H/MWz5GfaDuvDo1QKEb5eiGnOQvhbCDE+nxD7JguRmqztyCTps5CYmCguX74sEhMT1eOUSqVISUx87z9KpTLPcXfp0kUA6h9nZ2chhBDe3t6if//+YvDgwcLGxkbUrFlTCCHE/v37RcWKFYWBgYEoUKCA8PPzE6mpqUIIIaKiojTWlfHj7e2t3t6RI0dEjRo1hJGRkXB0dBQDBw4U8fHx6unOzs5i8uTJomvXrsLMzEw4OTmJpUuX5hh/amqqsLe3FwEBARrjExIShLm5uZg/f74QQoijR48KQMydOzfb9WQ+ZlOnThU6OjrizJkzr5w3M0Bs3bo1y/h27dqJzp0757gP2enSpYto0aKFCAgIEHZ2dsLc3Fz06tVLJCf/+5m+c+dOUa1aNWFpaSny5csnmjRpIiIiItTTk5OTRf/+/UWBAgWEoaGhcHZ2FlOmTFFPf/r0qejZs6d6/bVr1xbh4eE5xpRxfjds2CCqV68ujIyMRIUKFcS1a9fEiRMnRPny5YWpqalo2LChiImJUS+Xnp4uxo8fLwoVKiQMDAyEm5ub2Llzp8a6jx8/Ltzd3YWhoaEoX7682LJliwDE2bNn1fNcunRJfPXVV8LU1FTkz59fdO7cWTx8+FA93dvbW/j6+r7WcZakDNl9hmd4ndxAdg4haUVKegpLzi1hxcUVKIUSO2M7AqoGUNNRvmsoi7h78NtguL5LNVygnKrHPIdy2o1Lkj5zacnJzOvy9Xvf7ncrN6Gfx9KMuXPnUqxYMZYtW8bJkyfR1dVVT1u5ciV9+/blyJEjCCG4e/cujRs3xsfHh59++omrV6/Ss2dPjIyMCAgIwMnJifv376uXf/DgAfXq1aNmTdXn9oULF2jYsCETJ05kxYoVPHz4kAEDBjBgwACCg4PVywUGBjJx4kRGjRrFpk2b6Nu3LzVr1qRkyZJZ4tfT0+Pbb78lJCSEcePGoVAoAPj5559JSUmhU6dOAKxbtw4zMzP69euX7XHIWC5j3vr16+Ph4fHKeV9FqVTy+++/M3z4cBo2bMjZs2dxcXFh5MiRr2zDtHfvXoyMjAgNDeXmzZt07doVW1tbJk+eDKhKu4YMGcKXX35JQkIC48aNo1WrVoSHh6Ojo8O8efPYvn07GzdupHDhwty+fZvbt28DqnZtTZo0IV++fOzYsQNLS0uWLl1K3bp1uX79Ovny5csxLn9/f+bMmUPhwoXp1q0bHTp0wMLCgrlz52JiYkLbtm0ZN24cixcvBlTXWGBgIEuXLsXDw4OgoCCaN2/OpUuXcHV1JSEhgaZNm1KnTh1Wr15NVFQUvr6+Gtu8f/8+3t7e9OzZk1mzZpGYmIifnx9t27Zl3759eT4fkvSuyap60nt39fFVOvzegeUXlqMUSpoUbcLWFltl0vQyIVQvsV1YRZU06ehDnTHQc59MmiRJypOMNje6uroUKFAAOzs79bTixYvzww8/UKJECUqWLMmiRYtwcnJiwYIFlCxZkpYtWzJ+/HgCAwNRKpXqdRQoUAArKyv69OmDl5cXAQEBAMyYMYOOHTsyaNAgXF1dqVq1KvPmzeOnn34iKSlJvd3GjRvTr18/ihcvjp+fH7a2tuzfvz/HfejWrRs3b97UmCcoKIjWrVtjbW0NwPXr1ylatKhGNcRZs2ZhZmam/omNjVXPW6KE5svTW7VqpZ6vatWqeT6+MTExxMfHM23aNBo1asSff/5Jq1ataN26NQcOHMh1WQMDA4KCgihTpgxNmjRhwoQJzJs3D6VSCUCbNm1o3bo1rq6uuLu7s2LFCi5cuMDly5cBiI6OxtXVlerVq+Ps7Ez16tXp0KEDAKGhoVy4cIGff/6ZChUq4OrqysyZM7GysmLTpk25xjV06FAaNmxIqVKl8PX15cyZM4wdO5Zq1arh4eFB9+7dCQ0NVc8/c+ZM/Pz8aN++PSVKlGD69Om4u7szZ84cANasWUN6erp6X5s2bcqwYcM0trl48WI8PT2ZMmUKJUuWVCdgoaGhXL9+Pc/nQ5LeNVniJL03aco0VlxYwZJzS0gTaVgbWjPWayz1netrO7QPz9Pb8KsvRO5VDRf0hJaLIH8p7cYlSZKanqEh363M/SH0XW33bahQQbMzmStXruDl5aVR4lKtWjXi4+O5c+cOhQsXVo/v3r07z549Y/fu3ejoqL6DPX36NBEREaxZs0Y9nxACpVJJVFQUpUqpPr/Klfv3ix+FQkGBAgWIiYnJMc6SJUtStWpVgoKCqF27NpGRkRw6dIg///xTY76XS4q6detG8+bNOX78OJ07d0YIkeO8ixYtIiEhgXnz5nHw4MEcY3lZRpLTokULBg8eDIC7uzthYWEsWbIEb2/vHJd1c3PDxOTfdrxeXl7Ex8dz+/ZtnJ2diYyMZOzYsRw7doxHjx6ptxUdHU3ZsmXx8fGhfv36lChRgkaNGtG0aVMaNGgAqM5FfHw8NjY2GttMTEwkMjIy133KfH7s7e0B+PLLLzXGZZyvuLg47t27R7Vq1TTWUa1aNc6dOweorqvs9jWz06dPExoaipmZWZZ4IiMj+eKLL3KNWZLeF5k4Se/Fjac3GH14NBf/uQhA3cJ1GVtlLDbGNq9Y8jMjBJwOhj/HQcoz0DWE2qPAawDoyttVkj4kCoUiz1XmPkSmpqYaw0KILAlFRrKRefykSZPYtWsXJ06cwNzcXD1eqVTSu3dvvvvuuyzbypx06evra0xTKBTqpCAn3bt3Z8CAASxcuJDg4GCcnZ2pW7euerqrqyuHDx8mNTVVvX4rKyusrKy4c+eOxrpcXV25evWqxjgHBweAXKuwZcfW1hY9PT1Kly6tMb5UqVIcPnz4tdaVIeNYN2vWDCcnJ5YvX07BggVRKpWULVtW3ZGHp6cnUVFR7Ny5kz179tC2bVvq1avHpk2bUCqVODg4ZFuSZ2Vllev2M5+fjFheHvfy+cruuskYlzlhzYlSqaRZs2ZMnz49y7SMcyNJHwL5JCa9U+nKdFZfWc28M/NIUaZgbmDOqMqjaOLS5LXqkX8WntyE7QMh6sW3nU6VVW2ZbF21GpYkSZ+H0qVLs3nzZo2H3rCwMMzNzSlUqBCg6u57woQJ7Ny5k2LFimks7+npyaVLlyhevPhbj61t27b4+vqydu1aVq5cSc+ePTX+h3To0IH58+ezaNGiLO1nXtahQwfGjBnD2bNnc2znlFcGBgZUrFiRa9euaYy/fv06zs7OuS577tw5EhMTMTZWvXfv2LFjmJmZ4ejoyD///MOVK1dYunQpNWrUAMg2EbOwsKBdu3a0a9eOr7/+mkaNGvH48WM8PT158OABenp6FClS5I32MTcWFhYULFiQw4cPq9u6geq6qVSpEqC6rlatWpVlXzPz9PRk8+bNFClSJNteHyXpQyHbOEnvTHRcNF3/6MrMUzNJUaZQvVB1tjbfStOiTWXSlJlSCceXwaKqqqRJzxgaToWuO2XSJEnSe9OvXz9u377NwIEDuXr1Kr/88gv+/v4MGTIEHR0dLl68yLfffoufnx9lypThwYMHPHjwgMePHwOq7sCPHj1K//79CQ8P56+//mL79u0MHDjwjWMzMzOjXbt2jBo1inv37uHj46Mx3cvLi++//57vv/+eIUOGcPjwYW7dusWxY8dYsWIFCoVCXaVw8ODBeHl5UadOHebOncuZM2eIiorijz/+YOfOnRodaMTHxxMeHq5+UWtUVBTh4eEa72gaNmwYGzZsYPny5URERLBgwQJ+/fXXHDuqyJCSkkL37t25fPkyO3fuxN/fnwEDBqCjo4O1tTU2NjYsW7aMiIgI9u3bx5AhQzSWnz17NuvXr+fq1atcv36dn3/+Wd3+rF69enh5edGyZUv++OMPbt68SVhYGGPGjOHUqVNvcCayGjZsGNOnT2fDhg1cu3aNESNGEB4erk5gO3bsiI6Ojnpfd+zYwcyZMzXW0b9/fx4/fkyHDh04ceIEN27c4M8//6Rbt26kp6e/1Xgl6Y28xZ7+PgqyO/J3L12ZLtZdWScqrq4oyoaUFZVWVxKbrm16rS50PxuPIoRY0UjVxbi/hRBBX6nGSZL0QcmtK9sP3ezZs9XdkGfIqWvn3LojDw4OfmV35CdOnBD169cXZmZmwtTUVJQrV05MnjxZPd3Z2VnMnj1bY5tubm7C39//lfsRFhYmANGgQYMc59mwYYOoVauWsLS0FPr6+sLR0VF07NhRHDt2TGO+pKQkMW3aNOHm5iaMjY2FoaGhKFmypBg8eLCIjo5WzxcaGprtPnfp0kVjfStWrBDFixcXRkZGws3NTWzbti3XfcnojnzcuHHCxsZGmJmZiR49eoikpCT1PLt37xalSpUShoaGoly5cmL//v0aXaIvW7ZMuLu7C1NTU2FhYSHq1q2r0cV6XFycGDhwoChYsKDQ19cXTk5OolOnThr7l1lGd+SZuwjP2P8nT56oxwUHBwtLS0v1cObuyPX19bPtjvzo0aPCzc1NGBgYCHd3d7F58+Ys27p+/bpo1aqVsLKyEsbGxqJkyZJi0KBB6mcH2R259CbeVnfkCiHyUPn0ExIXF4elpSWxsbFYWFhoO5xPzv34+4wLG8ex+6pi+EoFKjGh2gQKmRXScmQfGGU6HFsM+yZBWiLom0L98VChO+jIgmBJ+tAkJSURFRWFi4uLfLGpJEnSRya3z/DXyQ1kRVLprRBCsC1iGz+c/IH41HiMdI0YVH4QHUp2QEchEwEND6/DL/3hzgnVsIs3NJ8H1kW0GpYkSZIkSZKUM5k4SW/s4fOHjD86ngN3VO+sKGdXjsnVJlPEsoh2A/vQpKfB0fkQOhXSk8HAHBpMhPI+INt8SZIkSZIkfdBk4iS9kV1Ru5h0fBKxybHo6+gzwGMAXUp3QVdH99ULf07+vqwqZbp3RjVcvB40mwuWjtqNS5IkSZIkScoTmThJ/8mTpCdMOjaJP2+pXkBYKl8pJlefjKu17AVOQ3oqHJ4DB6aDMhUMLaHRVHDvKEuZJEmSJEmSPiIycZJe277ofYw/Op7HSY/RU+jRq1wvepTrgb6O/qsX/pzcPw+/9IMHF1TDX3wFTWeDhXyZnyRJkiRJ0sdGJk5SnsWlxDH9xHS2R24HoLhVcSZVn0QZmzJajuwDk5YCB2fA4VmgTANja/jqB/jyf7KUSZIkSZIk6SMlEycpT8LuhjE2bCwxz2PQUejQpUwX+rv3x1DXUNuhfVjunlG1ZYq5rBou1QwaB4K5vXbjkiRJkiRJkt6ITJykXCWkJhB4KpCfr/8MQGHzwkyuPhn3/O7aDexDk5oEB6bBkXkg0sHEBhrPhDKtZCmTJEmSJEnSJ0AmTlKOTj44ydgjY7kbfxeAjiU74uvpi4m+iZYj+8DcPqEqZXp0XTVcpjU0ngGmttqNS5IkSZIkSXpr5JtJpSyS0pKYfmI63f/ozt34uxQ0LciPDX5kZOWRMmnKLOU5/DEaVjRQJU2m+aHdavhfsEyaJEn6YAgh6NWrF/ny5UOhUBAeHp6n5RQKBdu2bQPg5s2br7Xs+1CrVi0GDRr0VtcZEBCAu7t7rvP4+PjQsmXLt7rdT8G7OB8fk/3796NQKHj69GmelylSpAhz5sx5ZzFJb59MnCQN5x+e53+//o/VV1YjELRxbcPm5pup7FBZ26F9WG6FwZJqcHQBIKBce+h/XNWmSZIk6QOya9cuQkJC+O2337h//z5ly5bVShxvO+HYsmULEydOfGvre1++/PJLevToke20devWoa+vz99//w2okt7ly5fj5eWFhYUFZmZmlClTBl9fXyIiIjSWjYuLY+zYsZQpUwZjY2NsbGyoWLEiP/zwA0+ePFHPt2XLFho2bIitrW2uyfDRo0epU6cOpqamWFlZUatWLRITE9/OQZCkj5RMnCQAUtJTmHtmLt/s/IabcTexM7ZjUd1FBFQNwMzATNvhfThSEmDHcAhuDI9vgLkDdNwIrZeCST5tRydJkpRFZGQkDg4OVK1alQIFCqCn92HX0k9NTc3TfPny5cPc3PwdR/P2de/enY0bN/L8+fMs04KCgmjatCn29vYIIejYsSPfffcdjRs35s8//+T8+fPMmzcPY2NjJk2apF7u8ePHVKlSheDgYIYOHcrx48c5cuQI/v7+hIeHs3btWvW8CQkJVKtWjWnTpuUY49GjR2nUqBENGjTgxIkTnDx5kgEDBqCjIx8bpc+c+MzExsYKQMTGxmo7lA/GlX+uiFa/tBJlQ8qKsiFlhd9BP/E06am2w/rw3DggxOwvhfC3UP1s6y/E8yfajkqSpPcgMTFRXL58WSQmJqrHKZVKkZ6c9t5/lEplnuPu0qWLANQ/zs7OQgghnJ2dxezZszXmdXNzE/7+/uphQGzdulUIIURUVJQAxNmzZ4VSqRTFihUTM2bM0Fj+woULQqFQiIiIiCxx+Pv7a8QBiNDQUPV6N2zYILy9vYWhoaEICgoSjx49Eu3btxeFChUSxsbGomzZsmLt2rUa6/T29ha+vr7qYWdnZzF58mTRtWtXYWZmJpycnMTSpUs1lhk+fLhwdXUVxsbGwsXFRYwZM0akpKRoxOnm5iaWLFkiHB0dhbGxsfj666/FkydPNI5pixYt1MNKpVJMnz5duLi4CCMjI1GuXDnx888/53BGhHj06JEwMDAQISEhGuNv3boldHR0xK+//iqEEGLdunUCEL/88ku268l8HfTu3VuYmpqKO3fuvHLeDJnP6csqV64sxowZk+M+ZMfb21v0799f9O/fX1haWop8+fKJ0aNHa2x71apVonz58sLMzEzY29uLDh06iL///ls9/fHjx6Jjx47C1tZWGBkZieLFi4ugoCD19Dt37oi2bdsKKysrkS9fPtG8eXMRFRWVY0yhoaECELt27RLu7u7CyMhI1K5dW/z9999ix44domTJksLc3Fy0b99eJCQkqJdLSkoSAwcOFHZ2dsLQ0FBUq1ZNnDhxQmPdv//+u3B1dRVGRkaiVq1aIjg4WAAa18qRI0dEjRo1hJGRkXB0dBQDBw4U8fHx6unZ3YfSu5HdZ3iG18kNtP6106JFi5gxYwb379+nTJkyzJkzhxo1amQ77+HDh/Hz8+Pq1as8f/4cZ2dnevfuzeDBg99z1J+GNGUaKy6sYMm5JaSJNPIZ5WNslbHUc66n7dA+LMnPYPc4OBWkGrZ0gmZzoXhd7cYlSZJWiVQl98aFvfftFpxQFYWBbp7mnTt3LsWKFWPZsmWcPHkSXd28LZcbhUJBt27d1KUbGYKCgqhRowbFihXLsszQoUO5cuUKcXFxBAcHA6oSo3v37gHg5+dHYGAgwcHBGBoakpSURPny5fHz88PCwoLff/+db775hqJFi1K5cs5VxwMDA5k4cSKjRo1i06ZN9O3bl5o1a1KyZEkAzM3NCQkJoWDBgly4cIGePXtibm7O8OHD1euIiIhg48aN/Prrr8TFxdG9e3f69+/PmjVrst3mmDFj2LJlC4sXL8bV1ZWDBw/SuXNn7Ozs8Pb2zjK/jY0NLVq0IDg4mC5duqjHBwcHY29vz1dffQWoqu2VKFGC5s2b53geAJRKJRs2bKBz584UKlQo13nzIiYmhuPHj9OpUyeqVq1KZGQkJUuWZPLkyVSvXj3XZVeuXEn37t05fvw4p06dolevXjg7O9OzZ08AUlJSmDhxIiVKlCAmJobBgwfj4+PDjh07ABg7diyXL19m586d2NraEhERoa4e+Pz5c2rXrk2NGjU4ePAgenp6TJo0iUaNGnH+/HkMDAxyjCsgIIAFCxZgYmJC27Ztadu2LYaGhqxdu5b4+HhatWrF/Pnz8fPzA2D48OFs3ryZlStX4uzszA8//EDDhg2JiIggX7583L59m9atW9OnTx/69u3LqVOn+P777zW2eeHCBRo2bMjEiRNZsWIFDx8+ZMCAAQwYMEB9D0gfH60mThs2bGDQoEEsWrSIatWqsXTpUr766isuX75M4cKFs8xvamrKgAEDKFeuHKamphw+fJjevXtjampKr169tLAHH6/Ip5GMPjyaS/9cAqBe4XqMqTIGG2MbLUf2gYnYC7/6Quxt1XCFblBvPBhZaDcuSZKkPLC0tMTc3BxdXV0KFCjw1tbbtWtXxo0bx4kTJ6hUqRKpqamsXr2aGTNmZDu/mZkZxsbGJCcnZxvHoEGDaN26tca4zEnZwIED2bVrFz///HOuiVPjxo3p168foErGZs+ezf79+9WJ05gxY9TzFilShO+//54NGzZoJE5JSUmsXLkSR0dHAObPn0+TJk0IDAzMEntCQgKzZs1i3759eHl5AVC0aFEOHz7M0qVLs02cALp160bjxo25ceMGRYsWRQhBSEgIPj4+6uT2+vXrlChRIstx+vHHHwGwsrLizp07PHz4kKdPn2aZt3z58ly7dg2AZs2asW7duhyPW2Y3btwAVMnGzJkzcXd356effqJu3bpcvHgRV1fXHJd1cnJi9uzZKBQKSpQowYULF5g9e7Y6cerWrZt63qJFizJv3jwqVapEfHw8ZmZmREdH4+HhQYUKFQDVOcqwfv16dHR0+PHHH9WJYHBwMFZWVuzfv58GDRrkGNekSZOoVq0aoKoqOXLkSCIjIylatCgAX3/9NaGhofj5+ZGQkMDixYsJCQlRJ7HLly9n9+7drFixgmHDhrF48WKKFi2aZV+nT5+u3uaMGTPo2LGjusMMV1dX5s2bh7e3N4sXL8bIyChP50P6sGg1cZo1axbdu3dXN5KcM2cOf/zxB4sXL2bq1KlZ5vfw8MDDw0M9XKRIEbZs2cKhQ4dk4pRH6cp0Vl9Zzbwz80hRpmBuYM6oyqNo4tLktb6R+uQlPoU/R8PZ1aphK2doPh+KZv9PUJKkz49CX4eCE6pqZbva5uDgQJMmTQgKCqJSpUr89ttvJCUl8b///e8/rS/jQTlDeno606ZNY8OGDdy9e5fk5GSSk5MxNTXNdT3lypVT/61QKChQoAAxMTHqcZs2bWLOnDlEREQQHx9PWloaFhaaX4QVLlxYnTQBeHl5oVQquXbtWpbE6fLlyyQlJVG/fn2N8SkpKRrPKy9r0KABjo6OBAcHM3HiRPbt28fNmzfp2rWrxnwv/18ePXo0AwYMYMuWLUyZMiXXebdu3UpKSgp+fn6v1amDUqkEoHfv3up4PDw82Lt3L0FBQdk+n2WoUqWKRhxeXl4EBgaSnp6Orq4uZ8+eJSAggPDwcB4/fqzeVnR0NKVLl6Zv3760adOGM2fO0KBBA1q2bEnVqqp77PTp00RERGRp15aUlERkZGSu+5T5urC3t8fExESdNGWMO3HiBKBqE5iamqpOtAD09fWpVKkSV65cAeDKlSvZ7mtmGfFmLqkUQqBUKomKiqJUqVK5xix9mLSWOKWkpHD69GlGjBihMb5BgwaEheWt6sPZs2cJCwvTaCD5sowP2wxxcXH/LeBPQHRcNGOOjOFszFkAqheqToBXAPam9lqO7ANz/Q/4dRA8U1UhoVJvqDsODGUnGZIk/UuhUOS5ytyHRkdHByGExri8dsqQoUePHnzzzTfMnj2b4OBg2rVrh4nJf3tlxcsJUWBgILNnz2bOnDl8+eWXmJqaMmjQIFJSUnJdj76+vsawQqFQP5wfO3aM9u3bM378eBo2bIilpSXr168nMDAw13VmPBxn9+Vixrp///33LNXkDA0Nc1ynjo4OPj4+hISEMH78eIKDg6lZs6ZGaY6rqytXr17VWM7Ozg47Ozvy58+vMc7KyirLvBk1d8zNzV+ri2wHBwcASpcurTG+VKlSREdH53k9L0tISKBBgwY0aNCA1atXY2dnR3R0NA0bNlSf16+++opbt27x+++/s2fPHurWrUv//v2ZOXMmSqWS8uXLZ1tl0s7OLtdtZ74uFApFrtdJxn3x8vkWQqjHvXzvZEepVNK7d2++++67LNOyq1UlfRy09rXVo0ePSE9Px95e86Hd3t6eBw8e5Lqso6MjhoaGVKhQgf79++fYrSfA1KlTsbS0VP84OTm9lfg/JkqhZP3V9Xz969ecjTmLiZ4J46uOZ1HdRTJpyuz5Y9jSG9a2VSVN+YpC153Q+AeZNEmS9Emxs7Pj/v376uG4uDiioqJeax2NGzfG1NSUxYsXs3PnTo1qWNkxMDAgPT09T+s+dOgQLVq0oHPnzri5uVG0aFH++uuv14rvZUeOHMHZ2ZnRo0dToUIFXF1duXXrVpb5oqOj1W2vQNXDnI6ODl988UWWeUuXLo2hoSHR0dEUL15c4+dVzxtdu3blzp07bNmyhS1bttC9e3eN6R06dODatWv88ssvua5HR0eHtm3bsnr1au7evZvrvHlRpEgRChYsqK7ml+H69es4OzvnuuyxY8eyDLu6uqKrq8vVq1d59OgR06ZNo0aNGpQsWVKjNDCDnZ0dPj4+rF69mjlz5rBs2TIAPD09+euvv8ifP3+WY21pafmGe/2v4sWLY2BgwOHDh9XjUlNTOXXqlLqUqHTp0tnua2aenp5cunQpS6wZ65c+Tlov788to8/JoUOHOHXqFEuWLGHOnDm51tsdOXIksbGx6p/bt2+/lbg/Fvfj79N7d28mH59MYloilQpUYkuLLbR2bS2r5mV25TdYVAXOrwcU4DUA+hwB5/dfDUeSJOldq1OnDqtWreLQoUNcvHiRLl26vHbHEbq6uvj4+DBy5EiKFy+eparSy4oUKcL58+e5du0ajx49yrWEq3jx4uzevZuwsDCuXLlC7969X/ml6qsUL16c6Oho1q9fT2RkJPPmzWPr1q1Z5jMyMqJLly6cO3eOQ4cO8d1339G2bdts22aZm5szdOhQBg8ezMqVK4mMjOTs2bMsXLiQlStX5hqPi4sLderUoVevXujr6/P1119rTG/fvj1ff/017du3Z8KECRw/fpybN29y4MABNmzYoHG+pkyZQqFChahcuTJBQUGcP3+eyMhItm7dytGjRzXmffz4MeHh4Vy+fBmAa9euER4erj6+CoWCYcOGMW/ePDZt2kRERARjx47l6tWrWZK7l92+fZshQ4Zw7do11q1bx/z58/H19QVUpSwGBgbMnz+fGzdusH379izv4Ro3bhy//PILERERXLp0id9++02drHTq1AlbW1tatGjBoUOHiIqK4sCBA/j6+nLnzp1c43odpqam9O3bl2HDhrFr1y4uX75Mz549ef78uXr/+/TpQ2RkpHpf165dS0hIiMZ6/Pz8OHr0KP379yc8PJy//vqL7du3M3DgwLcWq/T+aa2qnq2tLbq6ulk+CGNiYrKUQr3MxcUFUL1E7u+//yYgIIAOHTpkO6+hoWGuxeWfKiEE2yK28cPJH4hPjcdI14hB5QfRoWQHdBRaz5c/HAmPYMcwuLRFNWz7BbRYBE4VtRuXJEnSOzRy5Ehu3LhB06ZNsbS0ZOLEia9d4gSqhvZTpkx5ZWkTQM+ePdm/fz8VKlQgPj6e0NBQjcb/mY0dO5aoqCgaNmyIiYkJvXr1omXLlsTGxr52jBlatGjB4MGDGTBgAMnJyTRp0oSxY8cSEBCgMV/x4sVp3bo1jRs35vHjxzRu3JhFixbluN6JEyeSP39+pk6dyo0bN7CyssLT05NRo0a9Mqbu3buzd+9eevXqlaWao0KhYMOGDSxfvpzg4GB++OEHUlNTcXR0pG7dusyaNUs9r42NDSdOnGD69OnMmDGDqKgodHR0cHV1pV27duoOCgC2b9+u0Zaqffv2APj7+6uPxaBBg0hKSmLw4ME8fvwYNzc3du/enW2PiZl9++23JCYmUqlSJXR1dRk4cKC6DbqdnR0hISGMGjWKefPm4enpycyZMzV6DTQwMGDkyJHcvHkTY2NjatSowfr16wEwMTHh4MGD+Pn50bp1a549e0ahQoWoW7dulnZqb2ratGkolUq++eYbnj17RoUKFfjjjz+wtrYGVEng5s2bGTx4MIsWLaJSpUpZ7oNy5cpx4MABRo8eTY0aNRBCUKxYMdq1a/dWY5XeL4XIS0XNd6Ry5cqUL19e4wOpdOnStGjRItfGh5lldPN48+bNPM0fFxeHpaUlsbGxb/1G+1A8fP6Q8UfHc+DOAQDc7NyYXH0yzha5F7F/VoSAS1tVSdPzR6DQgWq+4D0C9GVPN5IkaUpKSiIqKgoXFxfZG1YmR44coVatWty5c+eVX3pKkiRpS26f4a+TG2i1V70hQ4bwzTffUKFCBby8vFi2bBnR0dH06dMHUH0jdvfuXX766ScAFi5cSOHChdXdih4+fJiZM2fKYs9MdkXtYtLxScQmx6Kvo88AjwF0Kd0FXZ2PswHzOxEfA78PgSu/qobzl4YWC6GQp3bjkiRJ+kgkJydz+/Ztxo4dS9u2bWXSJEnSZ0GriVO7du34559/mDBhAvfv36ds2bLs2LFD3fjw/v37Gj24KJVKRo4cSVRUFHp6ehQrVoxp06bRu3dvbe3CB+NJ0hMmHZvEn7f+BKBUvlJMrj4ZV+uc37fw2RECLvwMO4dD4hPQ0YPqQ6DmUND7/KpzSpIk/Vfr1q2je/fuuLu7s2rVKm2HI0mS9F5otaqeNnyKVfX2Re9j/NHxPE56jJ5Cj17letGjXA/0dfRfvfDnIu4+/DYYru9UDRf4UtWWyaFc7stJkiQhq+pJkiR9zD6JqnrSm4lLiWP6ielsj9wOQHGr4kyuPpnSNqVfseRnRAgIXwO7RkFyLOjog/dwqD4YdGViKUmSJEmSJOWNTJw+UkfuHmFc2Dhinsego9DBp4wP/d37Y6Ar3w2gFnsHfvWFiD2q4YIeqlIme5lYSpIkSZIkSa9HJk4fmYTUBAJPBfLz9Z8BcLZwZlK1Sbjnd9duYB8SIeB0CPw5FlKega4h1B4JXgNBV17ykiRJkiRJ0uuTT5EfkZMPTjL2yFjuxqveDN6pVCd8PX0x1jPWcmQfkCe3YPtAiFJ1xY5jRVUpk13WN75LkiRJkiRJUl7JxOkjkJSWxNwzc1lzZQ0CQUHTgkysNpFKDpW0HdqHQ6mEUytgtz+kJoCeMdQdC5X7gOyKXZIkSZIkSXpDMnH6wJ1/eJ7Rh0dzM+4mAG1c2zC0wlDMDMy0G9iH5J9I2P4d3DqsGi5cFVosAJvc33AuSZIkSZIkSXmlo+0ApOylpKcw98xcvtn5DTfjbpLfOD+L6i4ioGqATJoyKNPh6EJYXE2VNOmbwlczwOd3mTRJkiRpkUKhYNu2bdoOQ83Hx4eWLVu+1XWGhIRgZWWV6zwBAQG4u7u/1e1+Ct7F+fiY3Lx5E4VCQXh4eJ6XqVWrFoMGDXpnMUl5IxOnD9DVx1dp/3t7frzwI0qhpGnRpmxpsYUajjW0HZr2paVAfAzcOQVBjeCPUZCWCC41oV8YVO4FOvKyliRJeh/eVWLwttc7d+5cQkJC3tr63pdmzZpRr169bKcdPXoUhULBmTNn1OM2b95MnTp1sLa2xsTEhBIlStCtWzfOnj2rsWxKSgozZszA09MTU1NTLC0tcXNzY8yYMdy7d08938GDB2nWrBkFCxbMNRm+cuUKzZs3x9LSEnNzc6pUqUJ0dPSbHwBJ+sDIqnofkFRlKisurGDpuaWkiTTyGeVjbJWx1HPO/kPzo6VUQnIcJD6BpKeq34lPcxiO1RxOTdBcl4E5NJgA5buCQvHed0WSJOlzJIQgPT1d22GQmpqKvv6r38lnaWn5HqJ5+7p3707r1q25desWzs7OGtOCgoJwd3fH09MTAD8/PwIDA/nuu+8YP348jo6OREdHc/jwYUaNGsXOnaoXwCcnJ9OgQQPOnz/P+PHjqVatGpaWlkRGRrJt2zbmz5/P1KlTAUhISMDNzY2uXbvSpk2bbGOMjIykevXqdO/enfHjx2NpacmVK1fki6KlT5P4zMTGxgpAxMbGajsUDRFPIkS7X9uJsiFlRdmQsmLQvkHi0fNH2g4rdynPhYi9K8SDS0JEHRbiym9CnFklxJH5QuyZIMRvQ4T4uasQP7USYmktIea6CzHNWYgAKyH8Ld7sZ4qTEOs6CvEkWttHQZKkz0BiYqK4fPmySExMVI9TKpUiOTn5vf8olcrXit3b21v0799f9O/fX1haWop8+fKJ0aNHa6xn1apVonz58sLMzEzY29uLDh06iL///ls9PTQ0VABi165donz58kJfX18EBQUJQOMnODhYCCEEILZu3SqEEKJ27dqif//+GjE9evRIGBgYiL1792aJNzg4ONf1Ll68WDRv3lyYmJiIcePGibS0NNGtWzdRpEgRYWRkJL744gsxZ84cjXV26dJFtGjRQuOYDBw4UAwbNkxYW1sLe3t74e/vr7FMYGCgKFu2rDAxMRGOjo6ib9++4tmzZxpxWlpaiq1btwpXV1dhaGgo6tWrJ6Kj//2/5O/vL9zc3DTWGxQUJEqWLCkMDQ1FiRIlxMKFC7M9b0IIkZqaKuzt7UVAQIDG+ISEBGFubi7mz58vhBDi6NGjAhBz587Ndj2Zz/XUqVOFjo6OOHPmzCvnzSzzOc2sXbt2onPnzjnuQ3YyzkdAQICws7MT5ubmolevXiI5OVk9z86dO0W1atXU12yTJk1ERESEenpycrLo37+/KFCggDA0NBTOzs5iypQp6ulPnz4VPXv2VK+/du3aIjw8PMeYoqKiBCA2bNggqlevLoyMjESFChXEtWvXxIkTJ0T58uWFqampaNiwoYiJiVEvl56eLsaPHy8KFSokDAwMhJubm9i5c6fGuo8fPy7c3d2FoaGhKF++vNiyZYsAxNmzZ9XzXLp0SXz11VfC1NRU5M+fX3Tu3Fk8fPhQPd3b21v4+vq+1nGW/pXdZ3iG18kNZImTlqUr01l9ZTXzzswjRZmCuYE5oyuPprFLYxTvowQlPU1VqvPKkp9shtOS3mzbesZgbA3GVqrfRlaZhq1eGs403chS9pQnSZLWpaamMmXKlPe+3VGjRmFg8HovO1+5ciXdu3fn+PHjnDp1il69euHs7EzPnj0BVdWtiRMnUqJECWJiYhg8eDA+Pj7s2LFDYz3Dhw9n5syZFC1aFCMjI77//nt27drFnj2qF41nV7LTo0cPBgwYQGBgIIaGhgCsWbOGggULUrt27Szzt2vXjosXL+a4Xn9/f6ZOncrs2bPR1dVFqVTi6OjIxo0bsbW1JSwsjF69euHg4EDbtm1zPSZDhgzh+PHjHD16FB8fH6pVq0b9+vUB0NHRYd68eRQpUoSoqCj69evH8OHDWbRokXodz58/Z/LkyaxcuRIDAwP69etH+/btOXLkSLbbXL58Of7+/ixYsAAPDw/Onj1Lz549MTU1pUuXLlnm19PT49tvvyUkJIRx48apnwt+/vlnUlJS6NSpEwDr1q3DzMyMfv36ZbvdzM8T69ato379+nh4eLxy3ldRKpX8/vvvDB8+nIYNG3L27FlcXFwYOXLkK9sw7d27FyMjI0JDQ7l58yZdu3bF1taWyZMnA6rSriFDhvDll1+SkJDAuHHjaNWqFeHh4epzs337djZu3EjhwoW5ffs2t2/fBlQlok2aNCFfvnzs2LEDS0tLli5dSt26dbl+/Tr58uXLMS5/f3/mzJlD4cKF6datGx06dMDCwoK5c+diYmJC27ZtGTduHIsXLwZU1UADAwNZunQpHh4eBAUF0bx5cy5duoSrqysJCQk0bdqUOnXqsHr1aqKiovD19dXY5v379/H29qZnz57MmjWLxMRE/Pz8aNu2Lfv27cvz+ZDePZk4aVF0XDRjjozhbIyq7nH1QtUZX3U8+U3yv96KhICU+NdLejKGk+PebCcUOtkkPXkc1pfF+JIkSe+Dk5MTs2fPRqFQUKJECS5cuMDs2bPViVO3bt3U8xYtWpR58+ZRqVIl4uPjMTP7t0OiCRMmqBMLADMzM/T09ChQoECO227Tpg0DBw7kl19+UScywcHB+Pj4ZPuQbmxsnOt6O3bsqBEvwPjx49V/u7i4EBYWxsaNG3NNnMqVK4e/vz8Arq6uLFiwgL1796r3L3NDfBcXFyZOnEjfvn01EqfU1FQWLFhA5cqVAVUyVqpUKU6cOEGlSllfGTJx4kQCAwNp3bq1er2XL19m6dKl2SZOoDo3M2bMYP/+/epEMygoiNatW2NtbQ3A9evXKVq0KHp6/z7WzZo1i3HjxqmH7969i6WlJdevX6dWrVoa22jVqhW7d+9WH5ewsLAcj1tmMTExxMfHM23aNCZNmsT06dPZtWsXrVu3JjQ0FG9v7xyXNTAwICgoCBMTE8qUKcOECRMYNmwYEydOREdHJ0vVwBUrVpA/f34uX75M2bJliY6OxtXVlerVq6NQKDSqMoaGhnLhwgViYmLUyfrMmTPZtm0bmzZtolevXjnGNXToUBo2bAiAr68vHTp0YO/evVSrVg1QVZ/M3F5u5syZ+Pn50b59ewCmT59OaGgoc+bMYeHChaxZs4b09HSNfb1z5w59+/ZVr2Px4sV4enpqfBETFBSEk5MT169f54sv5LsoPxQycdKijdc2cjbmLKb6pgyvOJxWRZqgSI6Fh9fyngRljFOmvVkwBuavLunJbpyhuWxbJEnSZ0lfX59Ro0ZpZbuvq0qVKhpJipeXF4GBgaSnp6Orq8vZs2cJCAggPDycx48fo1QqAYiOjqZ06dLq5SpUqPDa2zY0NKRz584EBQXRtm1bwsPDOXfu3H/udS+7GJYsWcKPP/7IrVu3SExMJCUl5ZWdS5QrV05j2MHBgZiYGPVwaGgoU6ZM4fLly8TFxZGWlkZSUhIJCQmYmpoCqhKhzPGULFkSKysrrly5kiVxevjwIbdv36Z79+7qhBUgLS0t1zZYJUuWpGrVqgQFBVG7dm0iIyM5dOgQf/75p8Z8nc/luQAAEztJREFULyeh3bp1o3nz5hw/fpzOnTsjhMhx3kWLFpGQkMC8efM4ePBgjrG8LOM6adGiBYMHDwbA3d2dsLAwlixZkmvi5ObmhomJiXrYy8uL+Ph4bt++jbOzM5GRkYwdO5Zjx47x6NEjjWuybNmy+Pj4UL9+fUqUKEGjRo1o2rQpDRo0AOD06dPEx8djY2Ojsc3ExEQiIyNz3afM14W9vT0AX375pca4jOskLi6Oe/fuqZOqDNWqVePcuXOAquOM7PY1s9OnTxMaGqrxJUWGyMhImTh9QGTipEX99QsSm6ZPnyfPKLRxAKR2fbMV6hrknuTkOGwJuq//j1iSJOlzplAoXrvK3IcoISGBBg0a0KBBA1avXo2dnR3R0dE0bNiQlJQUjXkzEobX1aNHD9zd3blz5w5BQUHUrVs3S2cHefVyDBs3bmTw4MEEBgbi5eWFubk5M2bM4Pjx47mu5+UEVKFQqB/Ob926RePGjenTpw8TJ04kX758HD58mO7du5OamppluZdlNy5j3cuXL1eXUGXQ1c29+nn37t0ZMGAACxcuJDg4GGdnZ+rWraue7urqyuHDhzU6y7CyssLKyoo7d+5orMvV1ZWrV69qjHNwcADItQpbdmxtbdHT09NIrgFKlSrF4cOHX2tdGTKOXbNmzXBycmL58uUULFgQpVJJ2bJl1dekp6cnUVFR7Ny5kz179tC2bVvq1avHpk2bUCqVODg4sH///izrf1UX8pmvi4xYXh6XcS5fni+DEEI9LnPCmhOlUkmzZs2YPn16lmkZ50b6MMjESYuM05KZePvlbz4UqkTmdaq8ZQzrm8jSH0mSJCmLY8eOZRl2dXVFV1eXq1ev8ujRI6ZNm4aTkxMAp06dytN6DQwM8tS73pdffkmFChVYvnw5a9euZf78+W9lvQCHDh2iatWqGu17XlWq8CqnTp0iLS2NwMBAdF684mLjxo1Z5ktLS+PUqVPq0qVr167x9OlTSpYsmWVee3t7ChUqxI0bN9Rtk/Kqbdu2+Pr6snbtWlauXEnPnj01HtY7dOjA/PnzWbRoUZb2My/r0KEDY8aM4ezZszm2c8orAwMDKlasyLVr1zTGX79+/ZWJ8blz50hMTMTY2BhQXZNmZmY4Ojryzz//cOXKFZYuXUqNGqpXsWSXiFlYWNCuXTvatWvH119/TaNGjXj8+DGenp48ePAAPT09ihQp8kb7mBsLCwsKFizI4cOHqVmzpnp8WFiY+pooXbo0q1atyrKvmXl6erJ582aKFCmiUd1S+vDIs6NNrvWh8xbNRMjQQnZ8IEmSJL1Vt2/fZsiQIfTu3ZszZ84wf/58AgMDAShcuDAGBgbMnz+fPn36cPHiRSZOnJin9WZ0nBAeHo6joyPm5ubqNiUvy+gkwsTEhFatWr219RYvXpyffvqJP/74AxcXF1atWsXJkydxcXHJ0z5kp1ixYqSlpTF//nyaNWvGkSNHWLJkSZb59PX1GThwIPPmzUNfX58BAwZQpUqVbNs3ger9VN999x0WFhZ89dVXJCcnc+rUKZ48ecKQIUNyjMfMzIx27doxatQoYmNj8fHx0Zju5eXF999/z/fff8+tW7do3bo1Tk5O3L9/nxUrVqBQKNQJ4ODBg/n999+pU6cOAQEB1KhRA2tra65fv87OnTs1Sr/i4+OJiIhQD2eck3z58lG4cGEAhg0bRrt27ahZsya1a9dm165d/Prrr9mW9mSWkpJC9+7dGTNmDLdu3cLf358BAwago6ODtbU1NjY2LFu2DAcHB6KjoxkxYoTG8rNnz8bBwQF3d3d0dHT4+eefKVCgAFZWVtSrVw8vLy9atmzJ9OnTKVGiBPfu3WPHjh20bNnyP1U5zcmwYcPw9/enWLFiuLu7ExwcTHh4OGvWrAFUbfJGjx6t3tebN28yc+ZMjXX079+f5cuX06FDB4YNG4atrS0RERGsX7+e5cuXv7JEUnqP3nZ3fx+6D7U7ckmSJOnDlVtXth86b29v0a9fP9GnTx9hYWEhrK2txYgRIzS6nV67dq0oUqSIMDQ0FF5eXmL79u0a3SVndEf+5MkTjXUnJSWJNm3aCCsrqxy7I8/w7NkzYWJiIvr16/fKmF9nvUlJScLHx0dYWloKKysr0bdvXzFixAiNbsCz64785a6dW7RoIbp06aIenjVrlnBwcBDGxsaiYcOG4qefftI4BhndkW/evFkULVpUGBgYiDp16oibN2+q15Fdd+Rr1qwR7u7uwsDAQFhbW4uaNWuKLVu2vPKYhIWFCUA0aNAgx3k2bNggatWqJSwtLYW+vr5wdHQUHTt2FMeOHctyzKZNmybc3NyEsbGxMDQ0FCVLlhSDBw/W6E4947y//JP5OAkhxIoVK0Tx4sWFkZGRcHNzE9u2bct1XzLOx7hx44SNjY0wMzMTPXr0EElJSep5du/eLUqVKiUMDQ1FuXLlxP79+zXO/7Jly4S7u7swNTUVFhYWom7duhpdrMfFxYmBAweKggULCn19feHk5CQ6deqksX+ZZXRHnrmL8Oyu+4zzniFzd+T6+vrZdkd+9OhR4ebmJgwMDIS7u7vYvHlzlm1dv35dtGrVSlhZWQljY2NRsmRJMWjQIPV9KrsjfzNvqztyhRB5qHz5CYmLi8PS0pLY2FgsLCy0HY4kSZL0EUhKSiIqKgoXF5eP7sWetWrVwt3dnTlz5mg1jtu3b1OkSBFOnjypfmmrJEnS+5DbZ/jr5Aayqp4kSZIkSe9Mamoq9+/fZ8SIEVSpUkUmTZIkfbR0tB2AJEmSJEmfriNHjuDs7Mzp06ezbSckSZL0sZAlTpIkSZL0CXtVI/13rVatWnnqklmSJOlDJ0ucJEmSJEmSJEmSXkEmTpIkSZKUR7LkRJIk6ePztj67ZeIkSZIkSa+gr68PwPPnz7UciSRJkvS6UlJSAN74nViyjZMkSZIkvYKuri5WVlbExMQAYGJigkKh0HJUkiRJ0qsolUoePnyIiYkJenpvlvrIxEmSJEmS8qBAgQIA6uRJkiRJ+jjo6OhQuHDhN/7CSyZOkiRJkpQHCoUCBwcH8ufPT2pqqrbDkSRJkvLIwMAAHZ03b6EkEydJkiRJeg26urpvXE9ekiRJ+vjIziEkSZIkSZIkSZJeQSZOkiRJkiRJkiRJryATJ0mSJEmSJEmSpFf47No4ZbwAKy4uTsuRSJIkSZIkSZKkTRk5QV5ekvvZJU7Pnj0DwMnJScuRSJIkSZIkSZL0IXj27BmWlpa5zqMQeUmvPiFKpZJ79+5hbm7+Qby8MC4uDicnJ27fvo2FhYW2w5E+cfJ6k943ec1J75O83qT3TV5zHz8hBM+ePaNgwYKv7LL8sytx0tHRwdHRUdthZGFhYSFvOOm9kdeb9L7Ja056n+T1Jr1v8pr7uL2qpCmD7BxCkiRJkiRJkiTpFWTiJEmSJEmSJEmS9AoycdIyQ0ND/P39MTQ01HYo0mdAXm/S+yavOel9kteb9L7Ja+7z8tl1DiFJkiRJkiRJkvS6ZImTJEmSJEmSJEnSK8jESZIkSZIkSZIk6RVk4iRJkiRJkiRJkvQKMnGSJEmSJEmSJEl6BZk4adGiRYtwcXHByMiI8uXLc+jQIW2HJH2ipk6dSsWKFTE3Nyd//vy0bNmSa9euaTss6TMxdepUFAoFgwYN0nYo0ifs7t27dO7cGRsbG0xMTHB3d+f06dPaDkv6BKWlpTFmzBhcXFwwNjamaNGiTJgwAaVSqe3QpHdMJk5asmHDBgYNGsTo0aM5e/YsNWrU4KuvviI6OlrboUmfoAMHDtC/f3+OHTvG7t27SUtLo0GDBiQkJGg7NOkTd/LkSZYtW0a5cuW0HYr0CXvy5AnVqlVDX1+fnTt3cvnyZQIDA7GystJ2aNInaPr06SxZsoQFCxZw5coVfvjhB2bMmMH8+fO1HZr0jsnuyLWkcuXKeHp6snjxYvW4UqVK0bJlS6ZOnarFyKTPwcOHD8mfPz8HDhygZs2a2g5H+kTFx8fj6enJokWLmDRpEu7u7syZM0fbYUmfoBEjRnDkyBFZc0N6L5o2bYq9vT0rVqxQj2vTpg0mJiasWrVKi5FJ75oscdKClJQUTp8+TYMGDTTGN2jQgLCwMC1FJX1OYmNjAciXL5+WI5E+Zf3796dJkybUq1dP26FIn7jt27dToUIF/ve//5E/f348PDxYvny5tsOSPlHVq1dn7969XL9+HYBz585x+PBhGjdurOXIpHdNT9sBfI4ePXpEeno69vb2GuPt7e158OCBlqKSPhdCCIYMGUL16tUpW7astsORPlHr16/nzJkznDx5UtuhSJ+BGzdusHjxYoYMGcKoUaM4ceIE3333HYaGhnz77bfaDk/6xPj5+REbG0vJkiXR1dUlPT2dyZMn06FDB22HJr1jMnHSIoVCoTEshMgyTpLetgEDBnD+/HkOHz6s7VCkT9Tt27fx9fXlzz//xMjISNvhSJ8BpVJJhQoVmDJlCgAeHh5cunSJxYsXy8RJeus2bNjA6tWrWbt2LWXKlCE8PJxBgwZRsGBBunTp8v/27iYkqjUA4/hztJzGYQhzSKeiEvoc+4A0aLRF5WYMhMKQxMQpSIZ0iKSwIMvoC1roJhwwyk1GIGUNIYXVQhDCiKZmYR+rCiymaGNKLnLu4sLA4L333C5XT57+PzhwfM98PGc3D+95X62Oh2lEcbKAx+NRZmbmlNmlRCIxZRYK+D+Fw2FFo1ENDAxoyZIlVseBTT179kyJREJFRUWpsR8/fmhgYECXL1/WxMSEMjMzLUwIu/F6vfL5fGlja9eu1a1btyxKBDs7duyYjh8/rr1790qS1q9fr3fv3unixYsUJ5tjjZMFsrKyVFRUpP7+/rTx/v5+lZSUWJQKdpZMJtXY2Kjbt2/r8ePHKigosDoSbKysrEzxeFyxWCx1FBcXq6amRrFYjNKE/11paemUf7Hw5s0bLVu2zKJEsLPx8XFlZKT/hM7MzGQ78t8AM04WaWpqUm1trYqLi+X3+9XZ2an3798rFApZHQ021NDQoBs3buju3btyu92p2c758+fL6XRanA5243a7p6yfc7lcys3NZV0dpsWRI0dUUlKiCxcuqKqqSkNDQ+rs7FRnZ6fV0WBDFRUVOn/+vJYuXarCwkI9f/5cbW1tOnDggNXRMM3YjtxCHR0dunTpkj5+/Kh169apvb2draExLf5u7VxXV5eCweDMhsFvadu2bWxHjml17949nThxQm/fvlVBQYGampp08OBBq2PBhkZHR9XS0qLe3l4lEgktWrRI1dXVOnXqlLKysqyOh2lEcQIAAAAAE6xxAgAAAAATFCcAAAAAMEFxAgAAAAATFCcAAAAAMEFxAgAAAAATFCcAAAAAMEFxAgAAAAATFCcAAAAAMEFxAgDgJxiGoTt37lgdAwAwwyhOAIBZIxgMyjCMKUcgELA6GgDA5uZYHQAAgJ8RCATU1dWVNuZwOCxKAwD4XTDjBACYVRwOh/Lz89OOnJwcSX8+RheJRFReXi6n06mCggL19PSkvT8ej2vHjh1yOp3Kzc1VfX29vn37lvaaa9euqbCwUA6HQ16vV42NjWnXv3z5ot27dys7O1srV65UNBqd3psGAFiO4gQAsJWWlhZVVlbqxYsX2rdvn6qrqzU8PCxJGh8fVyAQUE5Ojp4+faqenh49fPgwrRhFIhE1NDSovr5e8Xhc0WhUK1asSPuOM2fOqKqqSi9fvtTOnTtVU1Ojr1+/zuh9AgBmlpFMJpNWhwAA4N8IBoO6fv265s2blzbe3NyslpYWGYahUCikSCSSurZlyxZt2rRJHR0dunLlipqbm/Xhwwe5XC5JUl9fnyoqKjQyMqK8vDwtXrxY+/fv17lz5/4yg2EYOnnypM6ePStJGhsbk9vtVl9fH2utAMDGWOMEAJhVtm/fnlaMJGnBggWpc7/fn3bN7/crFotJkoaHh7Vx48ZUaZKk0tJSTU5O6vXr1zIMQyMjIyorK/vHDBs2bEidu1wuud1uJRKJ/3pLAIBZgOIEAJhVXC7XlEfnzBiGIUlKJpOp8796jdPp/FefN3fu3CnvnZyc/KlMAIDZhTVOAABbefLkyZS/16xZI0ny+XyKxWIaGxtLXR8cHFRGRoZWrVolt9ut5cuX69GjRzOaGQDw62PGCQAwq0xMTOjTp09pY3PmzJHH45Ek9fT0qLi4WFu3blV3d7eGhoZ09epVSVJNTY1Onz6turo6tba26vPnzwqHw6qtrVVeXp4kqbW1VaFQSAsXLlR5eblGR0c1ODiocDg8szcKAPilUJwAALPK/fv35fV608ZWr16tV69eSfpzx7ubN2/q0KFDys/PV3d3t3w+nyQpOztbDx480OHDh7V582ZlZ2ersrJSbW1tqc+qq6vT9+/f1d7erqNHj8rj8WjPnj0zd4MAgF8Su+oBAGzDMAz19vZq165dVkcBANgMa5wAAAAAwATFCQAAAABMsMYJAGAbPH0OAJguzDgBAAAAgAmKEwAAAACYoDgBAAAAgAmKEwAAAACYoDgBAAAAgAmKEwAAAACYoDgBAAAAgAmKEwAAAACY+ANX/iR7DQ6suQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHUCAYAAAANwniNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIDElEQVR4nOzdd3gU9drG8e+mF9IgJBAISei9BJAmgoCIWEBUEFFp6kFFQdSjHkUUPeIriCgKikqw0RSwHCtKFaz0Jh1CCT0kAVJ35/1jkyVLOiSZlPtzXbkyOzO780yyCbn5NYthGAYiIiIiIiKSJxezCxARERERESnrFJxEREREREQKoOAkIiIiIiJSAAUnERERERGRAig4iYiIiIiIFEDBSUREREREpAAKTiIiIiIiIgVQcBIRERERESmAgpOIiIiIiEgBFJxERMqhW2+9FW9vb86ePZvnOUOGDMHd3Z3jx48X+nUtFgsvvPCC4/GKFSuwWCysWLGiwOcOGzaMyMjIQl8ruxkzZjBnzpwc+w8cOIDFYsn1WGkaN24cFouFm266ydQ6RETEPApOIiLl0MiRI0lJSWHu3Lm5Hk9ISGDJkiXcdNNNhIaGXvZ1oqOj+e2334iOjr7s1yiMvIJTzZo1+e2337jxxhtL9Pr5SU9P59NPPwXghx9+4MiRI6bVIiIi5lFwEhEph2644QbCwsKYPXt2rsfnzZtHcnIyI0eOvKLr+Pv707FjR/z9/a/odS6Xp6cnHTt2pHr16qZcH+Crr77i5MmT3HjjjVitVj766CPTainIhQsXzC5BRKTCUnASESmHXF1dGTp0KOvWrWPLli05jsfExFCzZk1uuOEGTp48yUMPPUTTpk2pUqUKISEh9OjRg9WrVxd4nby66s2ZM4dGjRrh6elJkyZN+Pjjj3N9/osvvkiHDh2oWrUq/v7+REdH8+GHH2IYhuOcyMhItm3bxsqVK7FYLFgsFkeXv7y66v3666/07NkTPz8/fHx86Ny5M99++22OGi0WC8uXL+fBBx8kODiYatWqMWDAAI4ePVrgvWf58MMP8fDwICYmhvDwcGJiYpzqz/LPP/8wePBgQkND8fT0pE6dOtx7772kpqY6zjly5AgPPPAA4eHheHh4EBYWxu233+7oTplV84EDB5xeO7fvQ/fu3WnevDmrVq2ic+fO+Pj4MGLECAAWLFhA7969qVmzJt7e3jRp0oSnn36a8+fP56j7jz/+4Oabb6ZatWp4eXlRr149xo4dC8Dq1auxWCzMmzcvx/M+/vhjLBYLf/31V6G/liIi5ZmCk4hIOTVixAgsFkuOVqft27fz559/MnToUFxdXTlz5gwAEyZM4NtvvyUmJoa6devSvXv3Qo1dutScOXMYPnw4TZo0YdGiRTz33HO89NJLLFu2LMe5Bw4c4F//+hcLFy5k8eLFDBgwgEceeYSXXnrJcc6SJUuoW7cubdq04bfffuO3335jyZIleV5/5cqV9OjRg4SEBD788EPmzZuHn58fN998MwsWLMhx/n333Ye7uztz587ltddeY8WKFdx9992FutfDhw/z008/0a9fP6pXr87QoUPZs2cPq1atcjpv06ZNtG/fnt9//52JEyfy/fffM2nSJFJTU0lLSwPsoal9+/YsWbKEcePG8f333zNt2jQCAgKIj48vVD2XiouL4+677+auu+7iu+++46GHHgJg9+7d9O3blw8//JAffviBsWPHsnDhQm6++Wan5//444907dqV2NhYpk6dyvfff89zzz3nCHJdu3alTZs2vPPOOzmu/fbbb9O+fXvat29/WbWLiJQ7hoiIlFvdunUzgoODjbS0NMe+xx9/3ACMXbt25fqcjIwMIz093ejZs6dx6623Oh0DjAkTJjgeL1++3ACM5cuXG4ZhGFar1QgLCzOio6MNm83mOO/AgQOGu7u7ERERkWetVqvVSE9PNyZOnGhUq1bN6fnNmjUzunXrluM5+/fvNwAjJibGsa9jx45GSEiIkZSU5HRPzZs3N2rXru143ZiYGAMwHnroIafXfO211wzAiIuLy7PWLBMnTjQA44cffjAMwzD27dtnWCwW45577nE6r0ePHkZgYKBx4sSJPF9rxIgRhru7u7F9+/Y8z8mqef/+/U77L/0+GIb9ew8Yv/zyS773YLPZjPT0dGPlypUGYGzatMlxrF69eka9evWM5OTkAmvasGGDY9+ff/5pAMZHH32U77VFRCoStTiJiJRjI0eO5NSpU3z99dcAZGRk8Omnn9K1a1caNGjgOO/dd98lOjoaLy8v3NzccHd355dffmHHjh1Fut7OnTs5evQod911FxaLxbE/IiKCzp075zh/2bJl9OrVi4CAAFxdXXF3d+f555/n9OnTnDhxosj3e/78ef744w9uv/12qlSp4tjv6urKPffcw+HDh9m5c6fTc2655Ranxy1btgTg4MGD+V7LMAxH97zrrrsOgKioKLp3786iRYtITEwE7OOKVq5cycCBA/Mdi/X9999z7bXX0qRJk8LfcAGCgoLo0aNHjv379u3jrrvuokaNGo6ve7du3QAc3/Ndu3axd+9eRo4ciZeXV57XGDx4MCEhIU6tTtOnT6d69eoMGjSo2O5FRKSsU3ASESnHbr/9dgICAoiJiQHgu+++4/jx406TQkydOpUHH3yQDh06sGjRIn7//Xf++usv+vTpQ3JycpGud/r0aQBq1KiR49il+/7880969+4NwPvvv8+aNWv466+/ePbZZwGKfG2A+Ph4DMOgZs2aOY6FhYU51ZilWrVqTo89PT0Ldf1ly5axf/9+7rjjDhITEzl79ixnz55l4MCBXLhwwTHuJz4+HqvVSu3atfN9vZMnTxZ4TlHl9nU4d+4cXbt25Y8//uDll19mxYoV/PXXXyxevBi4eN8nT54EKLAmT09P/vWvfzF37lzOnj3LyZMnWbhwIffdd5/jaykiUhm4mV2AiIhcPm9vbwYPHsz7779PXFwcs2fPxs/PjzvuuMNxzqeffkr37t2ZOXOm03OTkpKKfL2sEHLs2LEcxy7dN3/+fNzd3fnf//7n1KLx5ZdfFvm6WYKCgnBxcSEuLi7HsawJH4KDgy/79bP78MMPAXvwnDp1aq7H//Wvf1G1alVcXV05fPhwvq9XvXr1As/J+jpln1AC4NSpU7men73VL8uyZcs4evQoK1ascLQyATnW/MpqHSuoJoAHH3yQV199ldmzZ5OSkkJGRgajRo0q8HkiIhWJWpxERMq5kSNHYrVamTx5Mt999x133nknPj4+juMWiyVHy8DmzZv57bffinytRo0aUbNmTebNm+c0s9zBgwdZu3at07kWiwU3NzdcXV0d+5KTk/nkk09yvK6np2ehWqB8fX3p0KEDixcvdjrfZrPx6aefUrt2bRo2bFjk+7pUfHw8S5YsoUuXLixfvjzHx5AhQ/jrr7/YunUr3t7edOvWjc8//zzPgAP2KeSXL1+eoythdlmzCW7evNlpf1ZXzMLIClOXfs/fe+89p8cNGzakXr16zJ49O0dQu1TNmjW54447mDFjBu+++y4333wzderUKXRNIiIVgYKTiEg5165dO1q2bMm0adNIT0/PsXbTTTfdxE8//cSECRNYtmwZM2fO5PrrrycqKqrI13JxceGll15i3bp13HrrrXz77bd89tln9OrVK0dXvRtvvJFz585x1113sXTpUubPn0/Xrl1z7d7VokULNm3axIIFC/jrr79ynWI9y6RJkzh9+jTXXnstX3zxBV9//TV9+/Zl69atTJkyJddWmKL67LPPSElJ4dFHH6V79+45Pp566inAuVUqPT2dDh068P7777N8+XLmz5/PXXfd5WjZmzhxIsHBwVxzzTW8+eabLFu2jMWLF/PAAw/wzz//ANC+fXsaNWrEE088wbx58/jhhx/417/+xa+//lro2jt37kxQUBCjRo1iyZIl/O9//2Pw4MFs2rQpx7nvvPMOBw8epGPHjnz88cesWLGCjz/+mCFDhuQ4d8yYMezdu5dDhw4xevToIn9NRUTKPZMnpxARkWLw5ptvGoDRtGnTHMdSU1ONJ554wqhVq5bh5eVlREdHG19++aUxdOjQHLPgUcCselk++OADo0GDBoaHh4fRsGFDY/bs2bm+3uzZs41GjRoZnp6eRt26dY1JkyYZH374YY6Z4w4cOGD07t3b8PPzMwDH6+Q2q55hGMbq1auNHj16GL6+voa3t7fRsWNH45tvvnE6J2s2uL/++stpf173lF3r1q2NkJAQIzU1Nc9zOnbsaAQHBzvO2b59u3HHHXcY1apVMzw8PIw6deoYw4YNM1JSUhzPOXTokDFixAijRo0ahru7uxEWFmYMHDjQOH78uOOcXbt2Gb179zb8/f2N6tWrG4888ojx7bff5jqrXrNmzXKtbe3atUanTp0MHx8fo3r16sZ9991nrF+/Ptev5W+//WbccMMNRkBAgOHp6WnUq1fPeOyxx3J93cjISKNJkyZ5fk1ERCoyi2HksoqfiIiISDabN2+mVatWvPPOO471okREKhMFJxEREcnT3r17OXjwIP/5z3+IjY1lz549TmPoREQqC41xEhERkTy99NJLXHfddZw7d47PP/9coUlEKi21OImIiIiIiBRALU4iIiIiIiIFUHASEREREREpgIKTiIiIiIhIAdzMLqC02Ww2jh49ip+fX7EskigiIiIiIuWTYRgkJSURFhaGi0v+bUqVLjgdPXqU8PBws8sQEREREZEy4tChQ9SuXTvfcypdcPLz8wPsXxx/f3+TqxEREREREbMkJiYSHh7uyAj5qXTBKat7nr+/v4KTiIiIiIgUagiPJocQEREREREpgIKTiIiIiIhIARScRERERERECqDgJCIiIiIiUgAFJxERERERkQIoOImIiIiIiBRAwUlERERERKQACk4iIiIiIiIFUHASEREREREpgIKTiIiIiIhIARScRERERERECqDgJCIiIiIiUgAFJxERERERkQK4mV2AiIiIiIiUL+lWG+dTMziXmsH5VGvmZ/vjrG37Y2se+zN49+62NAj1M/tWCk3BSURERESkgjMMg+R0qyPonM8WZM45bVsd4SYplwCUdX5qhu2KazqbnF4Md1Z6FJxERERERMqgDKvN3pqTluEUdM6nZpCUkrmd5tzaczEIOQed86kZ2Izir9HDzYUqnm74erri6+GWue1GFS83qnhkbnu64pu538/LDd/M/Y1qlJ/WJlBwEhEREREpFoZhkJphc4QaR9BJy9ZlLaWA/dlCUkr6lbfq5MYRdDwzg45HtlCTtd8ReuwhyCkAZQtIHm6VZ8oEBScRERERqdSyWnaSUtPtrTUp9m5qWWHG+bH9nKRsxxwhKc2KtQSaddxdLRdbcjI/ZwWZvPe745vLcR93V1xcLMVeY2Wg4CQiIiIi5VJqhtURbrIHmXOplwSdS4PQJWEoOd1a7LX5eNhbZ/wcgcbVKdz4XRJ0Lt1fJdvzPN1ci72+UmdNh/iDcGYvnN4Dp/dCj+fAp6rZlRWagpOIiIiIlBrDMEhJt9lbd3Jp0UlKSb8k+OTSApS5nWYt3q5sHm4u+GWNz8kML35eF7urVfF0v/g4+5gdz+z77GN9KmWrjs0GiYcvBqPTey8GpfiDYFwSUFvdCT5XmVPrZVBwEhEREZEC2WxG5picondlc3qcmlHs3dl8PFwd4cY5+LhfEnzcnIKP/Xz3zDE8FaRlp6QZBpw7fjEcndmbLSTtA2tq3s9194Gq9aBa5odPtdKruxgoOImIiIhUMqkZVo6eTeFIfDJHzl7g6NkUElPSnVp0Lg0+51IzirUGFwuZQcbd0VJTxcvdHnxyCzpOj92dWoVcK2PrTkm7cCYzEO1x7l53Zh+kncv7ea4eEBR1MRxVrQfV6tu3/WqCpfx+rxScRERERCqY86kZHDmbzJH4ZA6fTeZw/IXMkGTfdyIpn1aBAri7WhxhJ9dWnqzHnm5UyTzP79JjXm54u7tiKcd/RFcIqUk5W42yglJyfN7Ps7hAYERmOKrv3IoUEA4uFbPlTsFJREREpBwxDIOE5HQOZwahw/HJjpajrMdnLxS8sKi3uyu1grypHeRNWKA3QT7ujpac/Fp91J2tnElPhjP7s4WjPfZWo9N77F3u8uNfK2erUbX69tDk5lE69ZchCk4iIiIiZYhhGJw8l2pvLcrWSnQkW8vR+bSCZ4Hz93KjdpAPtYK8qRVoD0i1g7ypFWjfF+TjrhafisKaDmdjs03KsOdiUEo4DOQzpsy3erZgVPdiC1LVuuDhU2q3UB4oOImIiIiUogyrjWOJKU5d5xwtR2ftH2kZBc8WF1zF095iFOjtaDmqlbldK9AbPy/3UrgbKTWOGesuaTU6vRfOHgRbPmPQPAMudqW7tGudV0Dp3UM5p+AkIiIiUowunXghq+XocGZIOpaYUuCsci4WqOHvla216GLLUdZnL3d1matwHDPWXdJqdHovxO+HjJS8n+uYsa5uzq51PtXK9aQMZYWCk4iIiEgRFMfEC+6uFsICL3ahy+o+l/W4RoAX7q4upXA3YoqsGeuyz1aX1YqU34x1Lu5QNSqz1aiuczgq5zPWlQcKTiIiIiKZSmLiheytRPZxRj5Ur+JZORdIrUxSz2ULRvucp/UucMa6Ope0GmVO0BAQDq76890s+sqLiIhIpZE18cLFQFR8Ey9k71KniRcqifQUexe63LrWnTuW/3P9wnIZd1QfgiLAzbN06pciUXASERGRCqOkJl5whCNNvFC5GAacPwXxB+wBKf6A/eNM5nbS0fyf7xOcLRhl61pXtS54+JZ8/VKsFJxERESk3MgKRoezJlyIv+D0OS5BEy9IEWWkQcKhzDCULRxlfeQ35gjA0z/32eqq1gPvwBIvX0qPgpOIiIiUGRlWG8eTUjl85gKHLjMYaeIFcWIY9jFFWaHozCXhKPEIGPm1QlrsC8EGRULVSPvnoKiLn32qalKGSkLBSUREREqN1WbYW4zOXMjZanT2AnFnU8goIBh5uLo4Jl7Immwh++KuIX6aeKHSsabbF3rNtUvdQUhNyP/57j6XBKJI++x1QZH2CRncvUr4BqQ8UHASERGRYlMcwcjd1eLoQpcViMKr+mhGusouJeGS1qJs22cPgVHApB5+NS+GoksDkm91tRpJgRScREREpNCsNoPjjjFG9kB06MyVB6OL22oxqrRsVnu3uRzd6TK385vCG8DV07mlKHtACqwDHj4lW79UeApOIiIi4pBbMLr4OZmjZ5MLFYzCMscThWcLRApGQmqSvetcbjPUnY0FWwFrZPlWz707XVAkVKkBLhq7JiVHwUlERKQSsdoMTiSlcOhM8QSj2oGZgajqxXAU4ueFq4JR5WSzQVJc7t3pzuyHC6fyf76Lu30do9y60wVGgGeVEr4BkbwpOImIiFQgWcHIEYjOJDu60WUFo3Rr/sHIzcVycfKFshSMbFb71NCp5+wtF6lJkJp4cTvtHKQng6s7uHpkfvbMtu0Bbh6Zj/M67pnt+Z5qwchN2gU4ezCPLnUHwZqa//O9q+benS4oEvzDwEVTwUvZpOAkIiJSjhRXMHK0GF3SjS68ajEHI8OAjFTnkJOWR/BxBKJLwlD27dJmcb0YtNw8nEOWq6dzSHPzzPt4kQJbIQKdY9uj+MOdYcC5E7l3p4s/AOeO5f98Fzf7THS5dacLigSvgOKtV6SUmB6cZsyYweTJk4mLi6NZs2ZMmzaNrl275nrusGHD+Oijj3Lsb9q0Kdu2bSvpUkVEREqczWZwIik1Rze6Q/HFE4xqB3kT6l+IYGSz5hNyctnndN4l5xY0bqWoXNzsi456+uX8cPO2X8+aZp+iOiP14rY1zd4akrWdkZa5L+t4KtgynK9lWCEj2f5RQEOKaVzc8gl0BQS+rGMWF0g8ejEgZSTnf03PgMw1jXIZb+RfG1xN/xNTpNiZ+q5esGABY8eOZcaMGXTp0oX33nuPG264ge3bt1OnTp0c57/55pu8+uqrjscZGRm0atWKO+64ozTLFhERuWyGYXDyXGqeY4yOxCeTZs1vMU57MKoZ6OXoRueYqjvQm9r+FkI90nFNP5cZXhIh9Yg9xJxMhMN5hZxL9qWfL/6b96iSM+h4VMklBOWyL/t5bp4lN3W0zXYxeOUWrLKHsIxsIcx6ybn5BTan1y7M8Ute69JwZ8uwfxRnPrW4QEDtvKfv9g4qxouJlA8WwzDy/2+rEtShQweio6OZOXOmY1+TJk3o378/kyZNKvD5X375JQMGDGD//v1EREQU6pqJiYkEBASQkJCAv7//ZdcuIiKSG8MwOHM+zamV6HD8BaeglJqRdzDyIJ36rnE08T1PuK+NMO90animE+yeRpBbCv4uKXjbLuByafhJy/x86R/VV8rFHbz88wk4fvmHnOz7NF6oeNis2UJWMQU6Wwb41bgYkgLC7a1RIhVcUbKBaS1OaWlprFu3jqefftppf+/evVm7dm2hXuPDDz+kV69e+Yam1NRUUlMvtq0nJiZeXsEiIiLYg1FCcnqOQHQoW8vRhbT8F+J0sUBtfw+i/eNp7XmURpYj1M44QPCFvXglHsBiWCEN+0cBS9fkyePSbmy5hByPPIKP5yWtO1K2uLjaP9y9zK5EpFIxLTidOnUKq9VKaGio0/7Q0FCOHStg0CEQFxfH999/z9y5c/M9b9KkSbz44otXVKuIiFQuSSnpuQaiQ2cucCQ+maTUglt1Qv09CQ/yITzQk6Y+Z2nsepg6GQcJvrAP77O7cDm9G06m5f5kzwD7gp1eBYWcPIKPu69ad0REipnpI/csl/RRNgwjx77czJkzh8DAQPr375/vec888wzjxo1zPE5MTCQ8PPyyahURkYrhfGoGR87ag1BWIMretS4hueDBIsFVPJ3GF4UHelPP8yx1rAcJvrAX99O74MR22LcL0i/k/iLuPlC9MYQ0sX9Uz/zsH1ZyY3hEROSymBacgoODcXV1zdG6dOLEiRytUJcyDIPZs2dzzz334OGRf/9bT09PPD3VzUBEpDJJSbfmGGN0OFsL0pnzebT0ZFPV18MxK1141qx0VX0ID/Silvs5vON3wsnN9nB0+B/Y8I99koXcuHpCcMOLASnrI6COWoZERMoJ04KTh4cHbdu2ZenSpdx6662O/UuXLqVfv375PnflypXs2bOHkSNHlnSZIiJSBqVmWDl6NiXPMUYnkwqeN9rfy+3ibHRBPoQ71jHyoVaQN1U83eDCGTixA06st3/+5x97UErOY+CRixtUq+/cehTSxD7YXtMzi4iUa6b+Fh83bhz33HMP7dq1o1OnTsyaNYvY2FhGjRoF2LvZHTlyhI8//tjpeR9++CEdOnSgefPmZpQtIiIlLN1qIy4rGGWbqjurS93xpBQKmhPW18M1MxhdMmV3ZkAK8Ha/eHJKIpzMDEUbMj+f/AfOHc/j1S1QtW62LnaNIaSpPTRpJjIRkQrJ1OA0aNAgTp8+zcSJE4mLi6N58+Z89913jlny4uLiiI2NdXpOQkICixYt4s033zSjZBERKQZWm8GxxJRcxxgdiU8mLiEZWwHByNvd9WJXuqxxRkE+ma1G3gR4u+ccM5t2Hk7uhJ2Z4ejEP/aWpMTDeV8ooE7OLnbBDcHd+8q/ECIiUm6Yuo6TGbSOk4hI6UjNsLL9aCIHTp/n8JmL440OxV8g7mwKGQUkIw83F0frUPZxRlkhqZqvR96TCWWkwqnd9lB0ckdmd7vtEH8QyOO6fjVzdrGr3sg+S52IiFRI5WIdJxERqVhOJKWw/mA862PPsu5gPFsOJ5BmzXuhV3dXC2GBOQNRVkgKruKJi0sBM8tZ0+HMvmytR5ld7E7vBSOPtZR8qtm71WXvYhfSGLyDruDuRUSkolNwEhGRIsuw2th5PIn1B+NZdzCedbHxHDqTnOO8qr4eNAyt4tSFLutziJ8XrgUFoyw2K8QfuDgOKauL3endYM1nLaSQJvZQ5AhKTaBK9cu/cRERqbQUnEREpEAJF9JZfyjeEZQ2HjrLhTTnFh2LBRqF+tE2IojoOkG0jQgioppPodbmczAMSDics4vdyV2QkTOYAfbFXkMaZ+tilxmU/GpqLSQRESk2Ck4iIuLEZjPYd+q8IyStj41n94lzOc7z83SjdZ1A2kbYQ1Lr8ED8vNxzecVcGIZ9xrpLu9id+AfSknJ/jqsnVG9oD0XZu9hpLSQRESkFCk4iIpXchbQMNh466xiftD42nrMX0nOcFxXs62hJahsRRP2QKoXranf+dLbWox0XW5PyXQupwcWWo6yQFBSptZBERMQ0+hdIRKQSMQyDw/HJrI/N7HYXG8+OuCSsl8xw5+nmQqvwzNakOkG0qRNItSqehbtIcjzsXQ57foG9yyDpaO7nWVzsC8OGNLnYehTSFKrW01pIIiJS5ig4iYhUYKkZVrYdTbw4icPBeE4kpeY4LyzAi+hsY5Oa1PTHw62Q3d9sNojbaA9Ke5bC4b/AuGQ2vcA6ObvYaS0kEREpRxScREQqEPuU4PbudusOxrPlSAJpGc4hxs3FQrMwf6Izu9xF1wkiLLCIAeb8aXtr0p6l9sB04ZTz8eqNoX4vqN8Tal8FnlWu8M5ERETMpeAkIlJOZZ8SPGvtpNgzF3KcV9XXw2lsUotaAXh7uBbtYjYrHFmfGZR+tm9nX0jWowrU7X4xLAXWuaJ7ExERKWsUnEREyomE5HQ2ZBubtDH2LOfzmBI8OnNsUnREEJFFnRI8S9Jx2PsL7F5qb11KOet8PLSFPSQ1uM7eqqRxSSIiUoEpOImIlEGGYZ8SfN3Bi2snFTQleHSdIFrXCcS/sFOCX8qabh+ftDuzVenYZufjXgFQ91p7UKrXE/xrXt51REREyiEFJxGRMuBCWgabDiU4xiblNSV4ZDUfx9ikthFBNAjxK9yU4HlJOGIPSXt+hn0rITXB+XjN1vagVL8X1Gqn6cBFRKTS0r+AIiKlzDAMjpxNdrQmrY89y/a4xNynBK8d6AhKbeoEElzYKcHzkpEGsb9dDEsntjsf965q735Xv5e9ValK9Su7noiISAWh4CQiUsKyTwme1aJ0PDHnlOA1/L1oG2kfm1TkKcHzE3/QuVUp/Xy2gxao3Q7qZ7YqhbUGlyJOHCEiIlIJKDiJiBSzk0mpFxeYPRjP5gKmBM+a8a7IU4LnJT0FDq65GJZO7XI+7htycfa7ej3Ap2rxXFdERKQCU3ASEbkCVpvBzmNJrMsWlPKeEjzQMdtdy9qBRZ8SPD+n914MSvtXQ0byxWMWVwjvcHEGvNAW4FIMLVkiIiKViIKTiEgRFHZK8IYhfk6TOFz2lOB5STsPB369OANe/H7n435hF4NSVDfwDiy+a4uIiFRCCk4iInkwDIP9WVOCZ45N2nU855TgVTzdaFMn0NHl7oqmBM+7GHuXu6ygdHAtWLONk3Jxh4hOmV3wroOQJvYEJyIiIsVCwUlEJFNKupUtRxJYdzCevw/Yw9KZ82k5zsuaEjwrKDUMvcIpwfOSmmSfzGHPz7DnF0iIdT4eUAcaZAalqK7g6Vf8NYiIiAig4CQildiJpBTHuKS/D8az9UgC6VbnKcE93FxoVTvAEZKiI4KufErwvBgGHN8Ge5bag1Lsb2DLuHjc1RMiu1ycAS+4gVqVRERESomCk4hUClabwe4TSfaWpMyglNskDsFVPGmXNTYpMohmYf54upXg9NzJZ2Hf8outSklxzser1svsftcLIq8GD5+Sq0VERETypOAkIhXSudQMNh06y98H4vn74Bk2xp4lKTXD6RyLBRqF+jkmcGgXUZXwqt7FO4nDpWw2OLbJHpR2/wyH/wIj2+QSbt4QdY19Uof6PaFq3ZKrRURERApNwUlEyj3DMDhyNpl1md3u1h2MZ0dcIjbnXnf4eLjSpk4gbSOq0jYiiDYlMYlDbs6ftrcq7V4Ke3+B8yedjwc3uhiU6nQGd6+Sr0lERESKRMFJRMqddKuN7UcT+ftgVre7MxxPTM1xXq1Ab3tLUqR9IofGNfxwcy2F9YtsVji64eIMeEfWAdlSnEcVqNvdHpTq94LAOiVfk4iIiFwRBScRKfPOXkhjfax9prt1B+PZdPgsKek2p3PcXCw0C/N3tCa1jQiiRkApttycO2Efo7TnZ9i7DJLPOB8PbX5xrFJ4B3DzKL3aRERE5IopOIlImWIYBvsy105ad8C+yOyeEznXTgrwdncEpLYRQbSqHYi3RwlO4nApa4Z9fNKen+2z4MVtcj7uGQD1rr0Ylvxrll5tIiIiUuwUnETEVCnpVjYfTsgcm3SGdQfjib+QnuO8utV9aVvH3u2ubUQQdYOr4FISayflJ/FoZlD6GfaugNQE5+M1W9tDUoProFY7cNWvWBERkYpC/6qLSKk6kZjiWDdp3cF4th3NuXaSp5sLrWoHEh0RRLvMtZOq+prQtS092b6W0t5lsGcZnNjmfNy76sVxSvV6QJWQ0q9RRERESoWCk4iUGKvNYOexJNbFxrPuwBnWxcZz6ExyjvOq+2VbOykiiGZhAXi4lcIkDpfKWoB27zL7LHgH10JGSrYTLFC7XWb3u+sgrDW4lGL3QBERETGNgpOIFJtzqRlsiL04JfiG2LOcy2XtpMY1/GkbEUi7zIkcageV8NpJ+Uk6DvtWXAxL5447H/evZR+rVPdae6uST1VTyhQRERFzKTiJyGUxDIPD8RfXTvr7YDw7j+VcO6mKpxtt6gQSnTk+qXV4IH6lsXZSXrJ3v9u7HI5vdT7u7gORV9tDUr0eENzQnvZERESkUlNwEpFCScuwsT0ukb8PnHFMDX4iKefaSbWDvLN1u6tKoxp+uJb2JA7ZZe9+t3eZPTRd2v2uZquLQSn8KnDzNK1cERERKZsUnEQkV/HnM9dOymxR2nToLKkZzmsnubtaaBYW4DQteKh/Ka6dlJek4/Zud3uX2bvh5dX9rl4PiOoOvtVMKFJERETKEwUnEcEwDPaePM/6g/H8nTkl+N6T53OcF+RjXzvJPttdVVrWDsDLvQxMjpCebJ/IYd/yfLrfdb0YltT9TkRERIpIwUmkEkpOs7L58Fn+PhjP+oP2RWbP5rJ2Ur3qvo4JHNpGBlE32Ne8SRyyu7T73cG1YM3ebVDd70RERKR4KTiJVBKnz6Uy789Ylu44wbYjCWTYclk7KTzQMT4puk4QQWasnZQXdb8TEREREyk4iVRw248mErNmP19tOkpatjFKIX6etIu0T+DQNiKIpjX9zVk7KS+F7n7Xwx6Y1P1ORERESpCCk0gFZLUZLN1+nJg1+/lj/xnH/la1AxjSIYJO9aqZu3ZSbtT9TkRERMowBSeRCiQhOZ2Ffx3io98OcDg+GQBXFws3NK/B8C5RRNcJLFthKXv3u73L4fwJ5+PqficiIiJlhIKTSAWw9+Q55qw5wKL1h7mQZgXsM+ANvqoO93SKoGaAt8kVZsrqfpc1Tinf7nc9ILiBut+JiIhImaDgJFJO2WwGq3afJGbNAVbuOunY3yjUj+FdIunfppb5U4Ubhj0c7V2ed/e7sNb2kFT3WnW/ExERkTJLwUmknDmfmsHi9YeJWXuAfZlrLVks0LNxKCO6RNKpXjVzu+Op+52IiIhUQApOIuXEoTMX+Pi3A8z/6xBJKRkA+Hm6cUe7cIZ2jiCimq85han7nYiIiFQCCk4iZZhhGPyx/wyzf93PzzuOk7X0UmQ1H4Z1juT2duFU8SzlH2N1vxMREZFKSMFJpAxKSbfy9cajxKw9wI64RMf+rg2CGd4lku4NQ3BxKcVWm6Rj9tYkdb8TERGRSkrBSaQMOZ6Ywie/HWTun7GcOZ8GgJe7CwOiazO8cyQNQv1Kp5Ds3e/2LocT25yPu/tC5NXqficiIiKVhoKTSBmwITaemDUH+G5LHBmZ/fHCAry4t3Mkd7YPJ9DHo2QLcHS/y1p89re8u9/V6wG1rwK3Eq5JREREpAxRcBIxSbrVxndb4ohZc4CNh8469l8VWZVhXSLp3TQUN1eXkisg6Zi9NWnf8ny63/Wwd8GL6q7udyIiIlKpKTiJlLLT51KZ92csn/x+kOOJ9lYdD1cXbm4VxvAukTSvFVByFz++HTZ+pu53IiIiIkWk4CRSSnbEJRKzZj9fbjxKWoYNgOp+ntzdIYK7OtShul8JzjxnGPD7DFg6AWzpmTvV/U5ERESksBScREqQ1Wbw847jxKzZz+/7zjj2t6wdwPAukdzYIgwPtxLsjgdw7iR89RDs/sn+uP510Hqwut+JiIiIFIGCk0gJSEhO5/O/D/HRbwc4dCYZAFcXC32a12BEl0ii6wRhKY1ucHuXw5J/wbnj4OoJfV6BdiPVBU9ERESkiBScRIrRvpPnmLP2AF+sO8yFNCsAgT7uDL6qDvd0jCAs0Lt0CrGmw/L/wq/TAAOqN4bbZ0Nos9K5voiIiEgFo+AkcoUMw2DV7lPErNnPip0nHfsbhlZheJco+reuhbeHa+kVFH8AvhgJR/62P247DK6fBB4+pVeDiIiISAWj4CRymS6kZbBo/RHmrNnP3pPnAXsPuJ6NQxjeJYrO9aqVTne87LYugm/GQmoieAbALW9Cs1tLtwYRERGRCkjBSaSIDsdf4OPfDjL/z1gSUzIAqOLpxh3tajO0UySRwb6lX1Taefj+37DhU/vj8A5w2wcQWKf0axERERGpgBScRArBMAz+3H+GmDUH+Gn7MWyGfX9kNR+Gdo7k9ra18fNyN6e4uM3wxQg4vRuwwDVPQLenwVU/3iIiIiLFRX9ZieQjJd3KN5uOErPmANvjEh37r64fzPAukVzbKAQXF5NmqDMM+HMW/PQcWNPAryYMmAVR15hTj4iIiEgFpuAkkovjiSl89vtBPvsjltPn0wDwcndhQHRthnWOpGGon7kFXjgDXz0MO7+zP254A/R7R+syiYiIiJQQBSeRbDYeOkvMmv18uzmOjMz+eGEBXtzbOZI724cT6ONhcoXA/tWw+AFIOgquHtD7ZbjqAa3NJCIiIlKCFJyk0ku32vh+6zHmrNnP+tizjv3tI4MY3iWK3k1DcXN1Ma/ALNYMWPkqrJoCGFCtgX1tppotza5MREREpMJTcJJK68z5NOb9Gcsnvx3kWGIKAB6uLtzUqibDO0fRonaAyRVmczYWFt0Ph363P25zN9zwGniYMIOfiIiISCWk4CSVzj/HEon59QBfbjxCaoYNgOAqntzdsQ5DOkRQ3c/T5Aovsf0r+PoRSEkAT3+46Q1ocbvZVYmIiIhUKqb3P5oxYwZRUVF4eXnRtm1bVq9ene/5qampPPvss0RERODp6Um9evWYPXt2KVUr5ZXVZvDTtmMMnvU7faatZsHfh0jNsNGiVgBTB7ZizdPXMrZXw7IVmtIu2BezXXivPTTVagf/WqXQJCIiImICU1ucFixYwNixY5kxYwZdunThvffe44YbbmD79u3UqZP7wp0DBw7k+PHjfPjhh9SvX58TJ06QkZFRypVLeZGYks7Cvw7x8W8HiT1zAQBXFwt9mtVgeJdI2kYEYSmLkyoc325fm+nkDvvjLmOhx3PgatJaUSIiIiKVnMUwDMOsi3fo0IHo6Ghmzpzp2NekSRP69+/PpEmTcpz/ww8/cOedd7Jv3z6qVq1aqGukpqaSmprqeJyYmEh4eDgJCQn4+/tf+U1ImbTv5Dk+WnuAL9Yd5nyaFYAAb3cGX1WHezpFUCvQ2+QK82AY8Pds+PE/kJECVULh1nehXg+zKxMRERGpcBITEwkICChUNjCtxSktLY1169bx9NNPO+3v3bs3a9euzfU5X3/9Ne3ateO1117jk08+wdfXl1tuuYWXXnoJb+/c/xCeNGkSL774YrHXL2WPYRis3n2KmDX7Wb7zpGN/w9AqDOscxa1tauHt4WpihQW4cAa+eRR2fGN/XL8X9H8XqlQ3ty4RERERMS84nTp1CqvVSmhoqNP+0NBQjh07lutz9u3bx6+//oqXlxdLlizh1KlTPPTQQ5w5cybPcU7PPPMM48aNczzOanGSiuNCWgaL1x9hztoD7DlxDrAvadSjUQjDu0TRpX61stkdL7uDa+2z5iUeBhd36PUCdHwIXEwfhigiIiIilIFZ9S79g9YwjDz/yLXZbFgsFj777DMCAuxTRU+dOpXbb7+dd955J9dWJ09PTzw9y9CAfyk2h+Mv8MlvB5n3ZyyJKfZxblU83bi9bW2GdY4kMrgcTNVts9rXZVr5Khg2qFrXvjZTWBuzKxMRERGRbEwLTsHBwbi6uuZoXTpx4kSOVqgsNWvWpFatWo7QBPYxUYZhcPjwYRo0aFCiNUvZkJZh45nFW1iy4TC2zBF6EdV8GNopkjva1cbPq5xMoJBwBBbfDwfX2B+3vBNunAKefubWJSIiIiI5mNYPyMPDg7Zt27J06VKn/UuXLqVz5865PqdLly4cPXqUc+fOOfbt2rULFxcXateuXaL1Stkx6fsdLFpvD01d6lfjg3vbsezx7oy4Oqr8hKZ/voV3u9hDk0cVuPU9GPCeQpOIiIhIGWXqAIpx48bxwQcfMHv2bHbs2MFjjz1GbGwso0aNAuzjk+69917H+XfddRfVqlVj+PDhbN++nVWrVvHkk08yYsSIPCeHkIrluy1xxKw5AMC7d7fls/s60qtpKK4uZXwMU5b0FPjuSZh/FyTHQ83W9rWZWt1pdmUiIiIikg9TxzgNGjSI06dPM3HiROLi4mjevDnfffcdERERAMTFxREbG+s4v0qVKixdupRHHnmEdu3aUa1aNQYOHMjLL79s1i1IKdp/6jz//mIzAP/qVpc+zWuYXFERndwJnw+HE9vsjzuNhp4TwM3D3LpEREREpECmruNkhqLM1S5lR0q6lf7vrOGfY0lcFVmVufd3wM21nMw4Zxiw/mP4/inISAbf6vZpxhv0MrsyERERkUqtXKzjJFIUE77axj/Hkgiu4sH0u9qUn9CUfBb+Nxa2LbE/rnutfTyTX+4ToIiIiIhI2aTgJGXe538fYsHfh3CxwJt3tiHU38vskgrn0J+waCScjQUXN+gxHjo/qrWZRERERMohBScp0/45lsj4r7YC8FivhnSpH2xyRYVgs8Kvb8DyV8CwQmCEfW2m2u3MrkxERERELpOCk5RZSSnpPPTpelLSbXRrWJ2Hr61vdkkFS4yDJQ/A/lX2x81vh5umgldA/s8TERERkTJNwUnKJMMweHrxFvadOk/NAC/eGNQal7I+5fiuH+HLB+HCaXD3gb5ToPVdYCnjdYuIiIhIgRScpEz6+LeDfLs5DjcXC2/fFU1V3zI8ZXdGKvz8Avw+w/64Rgu4PQaCG5haloiIiIgUHwUnKXM2xMbz8rfbAXimbxPaRgSZXFE+Tu2BL4bDMfv6UnR4EK57Edw8za1LRERERIqVgpOUKfHn0xg9dwPpVoMbmtdgRJdIs0vKnWHAxrnw3ZOQfh68q0L/mdCoj9mViYiIiEgJUHCSMsNmMxi3cCNHziYTWc2H/7u9JZayOD4oJRG+HQdbPrc/juwKA94H/5rm1iUiIiIiJUbBScqMmSv3snznSTzdXJgxpC3+Xu5ml5TT4XWwaATEHwCLK1z7H7j6MXBxNbsyERERESlBCk5SJvy29zSv/7QTgIn9mtE0zN/kii5hs8Hat2DZS2DLgIA6cNsHUKeD2ZWJiIiISClQcBLTnUhM4ZF5G7AZcFt0bQa2Cze7JGdJx+HLUbB3mf1x0/5w85vgHWhmVSIiIiJSihScxFQZVhuPzNvAqXOpNK7hx8v9m5etcU17foYlo+D8SXDzhhteheihWptJREREpJJRcBJTTV26iz/2n8HXw5V3hkTj7VFGxgplpMGyibB2uv1xSDO4fTaENDa3LhERERExhYKTmGbZP8eZsWIvAP93e0vqVa9ickWZTu+FRSPh6Ab74/b3Qe+Xwd3b3LpERERExDQKTmKKw/EXeGzBJgCGdorgppZhJleUafNC+N9jkHYOvAKh3zvQ5CazqxIRERERkyk4SalLzbDy8GfrSUhOp1XtAP5zYxOzS4LUc/DdE7Bpnv1xRBcYMAsCaptbl4iIiIiUCQpOUupe+XYHmw4nEODtzjtDovF0M3lc09GN8MUIOLMXLC7Q7Sm45kmtzSQiIiIiDgpOUqq+2XSUj347CMAbg1pRO8jHvGIMA36fAUsngC0d/GvDbe9DRGfzahIRERGRMknBSUrN3pPneHrRZgAe6l6PHo1DzSvm3En46iHY/ZP9ceOb4Jbp4FPVvJpEREREpMxScJJSkZxm5aFP13M+zUqHqKqMu66hecXsWwGLH4Bzx8HVE/q8Au1Gam0mEREREcmTgpOUOMMweO7Lrew8nkRwFU+mD26Dm6tL6RdiTYflr8CvbwAGVG9sX5sptFnp1yIiIiIi5YqCk5S4hX8fYtH6w7hYYPrgNoT4e5V+EfEHYNF9cPgv++O2w+H6V8DDxDFWIiIiIlJuKDhJidp+NJHnv9oGwOO9G9GpXrXSL2LrIvhmLKQmglcA3PwWNOtf+nWIiIiISLml4CQlJjElnYc+W0dqho1rG1XnwW71SreAtPPw/VOw4RP74/AOcNsHEFindOsQERERkXJPwUlKhGEYPPXFZg6cvkCtQG+mDmyNi0spTr5wbIt9baZTuwALXPMEdHsaXPWWFxEREZGi01+RUiJi1hzg+63HcHe18M6QaIJ8PUrnwoYBf74PPz0H1lTwqwkDZkHUNaVzfRERERGpkBScpNitOxjPK9/tAODZvk1oHR5YOhe+cAa+ehh2fmd/3PAG6PcO+JowrkpEREREKhQFJylWZ86nMXruejJsBje2rMnQzpGlc+H9q+1rMyUdBVcP6P0yXPWA1mYSERERkWKh4CTFxmYzGLtgI3EJKdQN9uX/bmuJpaSDizUDVv4frJoMGFCtgX1tppotS/a6IiIiIlKpKDhJsXln+R5W7TqJl7sLM+6OpopnCb+9zsbCovvh0O/2x23uhhteAw/fkr2uiIiIiFQ6Ck5SLNbsOcUbP+8C4KV+zWlcw79kL7jjf/DVQ5CSAJ7+cNMb0OL2kr2miIiIiFRaCk5yxY4npjBm/gZsBgxsV5s72oWX7AVP74WF94JhhVrt7GszVY0q2WuKiIiISKWm4CRXJMNq45G5Gzh1Lo3GNfyY2K95yV9042f20BTZFe5ZAq7uJX9NEREREanUXMwuQMq3yT/t5M8DZ6ji6cbMu9vi5e5ashe0WWHjPPt2+5EKTSIiIiJSKhSc5LIt3X6c91buA2Dy7S2JCi6FSRn2LbdPOe4dBI36lvz1RERERES4jOAUGRnJxIkTiY2NLYl6pJw4dOYCjy/cCMDwLpHc0KJm6Vx4w2f2zy3uADfP0rmmiIiIiFR6RQ5Ojz/+OF999RV169bluuuuY/78+aSmppZEbVJGpaRbeeiz9SSmZNCmTiDP3NCkdC6cHA//fGvfbj2kdK4pIiIiIsJlBKdHHnmEdevWsW7dOpo2bcqjjz5KzZo1GT16NOvXry+JGqWMefnb7Ww5kkCgjztv3xWNh1sp9fjc8gVYUyG0OdRsVTrXFBERERHhCsY4tWrVijfffJMjR44wYcIEPvjgA9q3b0+rVq2YPXs2hmEUZ51SRny18Qif/h6LxQLTBrWmVqB36V18Y2Y3vdZDwGIpveuKiIiISKV32dORp6ens2TJEmJiYli6dCkdO3Zk5MiRHD16lGeffZaff/6ZuXPnFmetYrI9J5J4ZvEWAEZfW5/ujUJK7+LHt8HRDeDiBi0Hlt51RURERES4jOC0fv16YmJimDdvHq6urtxzzz288cYbNG7c2HFO7969ueaaa4q1UDHXhbQMHvx0PRfSrHSuV42xvRqWbgFZk0I07AO+waV7bRERERGp9IocnNq3b891113HzJkz6d+/P+7uOdfRadq0KXfeeWexFCjmMwyDZ5dsZfeJc4T4efLmnW1wdSnFrnLWdNi8wL7d5u7Su66IiIiISKYiB6d9+/YRERGR7zm+vr7ExMRcdlFStsz78xBLNhzB1cXC9MFtqO5XytOA7/oRLpwC3xCof13pXltEREREhMuYHOLEiRP88ccfOfb/8ccf/P3338VSlJQdW48k8MI32wB48vpGdKhbrfSLyJoUotUgcL3sYXkiIiIiIpetyMHp4Ycf5tChQzn2HzlyhIcffrhYipKyISE5nYc+W09aho1eTUJ4oGvd0i/i3Al7ixNAa3XTExERERFzFDk4bd++nejo6Bz727Rpw/bt24ulKDGfYRg8+fkmYs9coHaQN6/f0RqX0hzXlGXzAjCsUKsthDQu+HwRERERkRJQ5ODk6enJ8ePHc+yPi4vDzU3dqCqKD1bv56ftx/FwdWHGkGgCfHJOAlLiDOPibHqth5T+9UVEREREMhU5OF133XU888wzJCQkOPadPXuW//znP1x3nQbuVwR/HzjDqz/8A8D4m5rQsnagOYUcXQ8nd4CbFzS/zZwaRERERES4jFn1Xn/9da655hoiIiJo06YNABs3biQ0NJRPPvmk2AuU0nX6XCqj527AajO4pVUYd3fMfwbFEpXV2tT4JvAONK8OEREREan0ihycatWqxebNm/nss8/YtGkT3t7eDB8+nMGDB+e6ppOUH1abwdgFGzmWmEK96r5MGtACi8WEcU0A6Smw9Qv7dht10xMRERERc13WoCRfX18eeOCB4q5FTDZ92W5W7z6Ft7srM+9ui6+niWPW/vkfpCSAf22I6mZeHSIiIiIiXGZwAvvserGxsaSlpTntv+WWW664KCl9q3ad5M1fdgPw31ub0zDUz9yCstZuaj0YXFzNrUVEREREKr0iB6d9+/Zx6623smXLFiwWC4ZhADi6dFmt1uKtUEpcXEIyYxdsxDBg8FXhDIiubW5BCYdh73L7duu7zK1FRERERITLmFVvzJgxREVFcfz4cXx8fNi2bRurVq2iXbt2rFixogRKlJKUbrUxeu4GzpxPo2lNfybc3MzskmDTPMCAiC5Q1YRFd0VERERELlHkFqfffvuNZcuWUb16dVxcXHBxceHqq69m0qRJPProo2zYsKEk6pQS8toP/7DuYDx+Xm7MvDsaL3eTu8UZBmyca9/W2k0iIiIiUkYUucXJarVSpUoVAIKDgzl69CgAERER7Ny5s3irkxL1w9ZjvL96PwCTb29FRDVfkysCYn+DM/vA3Rea9jO7GhERERER4DJanJo3b87mzZupW7cuHTp04LXXXsPDw4NZs2ZRt666VZUXB0+f58nPNwFw39VR9Glew+SKMmWt3dTsVvCsYm4tIiIiIiKZihycnnvuOc6fPw/Ayy+/zE033UTXrl2pVq0aCxYsKPYCpfilpFt56LP1JKVm0DYiiKduaGx2SXap52DbEvu21m4SERERkTKkyMHp+uuvd2zXrVuX7du3c+bMGYKCgsxbLFWK5MVvtrPtaCJVfT14+642uLsWucdmydj+FaSft08IUaeT2dWIiIiIiDgU6S/mjIwM3Nzc2Lp1q9P+qlWrKjSVE0s2HGben7FYLDBtUGtqBnibXdJFjrWb7gK9n0RERESkDClScHJzcyMiIkJrNZVTu44n8Z/F9tD7aI8GXNOwuskVZXNmHxxcA1ig1WCzqxERERERcVLkPlrPPfcczzzzDGfOnCmWAmbMmEFUVBReXl60bduW1atX53nuihUrsFgsOT7++eefYqmlIjufmsGDn64jOd3K1fWDebRnA7NLcpY1BXm9ayHA5AV4RUREREQuUeQxTm+99RZ79uwhLCyMiIgIfH2dp7Bev359oV9rwYIFjB07lhkzZtClSxfee+89brjhBrZv306dOnXyfN7OnTvx9/d3PK5evQy1nJRBhmHwzOIt7D15nlB/T6bd2RpXlzLUFc5mhY3z7Ntau0lEREREyqAiB6f+/fsX28WnTp3KyJEjue+++wCYNm0aP/74IzNnzmTSpEl5Pi8kJITAwMBiq6Oi+/SPWL7edBRXFwtv3xVNcBVPs0tytn8lJB4GrwBofJPZ1YiIiIiI5FDk4DRhwoRiuXBaWhrr1q3j6aefdtrfu3dv1q5dm+9z27RpQ0pKCk2bNuW5557j2muvzfPc1NRUUlNTHY8TExOvrPByZvPhs7z0zXYAnu7TmPaRVU2uKBdZazc1vx3cvcytRUREREQkF6bNQ33q1CmsViuhoaFO+0NDQzl27Fiuz6lZsyazZs1i0aJFLF68mEaNGtGzZ09WrVqV53UmTZpEQECA4yM8PLxY76MsS7iQzkOfrSfNaqN301Du6xpldkk5JZ+Ff/5n39baTSIiIiJSRhW5xcnFxSXfqceLOuPepa9lGEaer9+oUSMaNWrkeNypUycOHTrElClTuOaaa3J9zjPPPMO4ceMcjxMTEytFeLLZDB7/fCOH45OpU9WHyXe0KptTxm9dBBkpUL0JhEWbXY2IiIiISK6KHJyWLFni9Dg9PZ0NGzbw0Ucf8eKLLxb6dYKDg3F1dc3RunTixIkcrVD56dixI59++mmexz09PfH0LGNjekrBrNX7+HnHCTzcXJgxJJoAb3ezS8pd1tpNbe7W2k0iIiIiUmYVOTj169cvx77bb7+dZs2asWDBAkaOHFmo1/Hw8KBt27YsXbqUW2+91bF/6dKluV4jLxs2bKBmzZqFPr8y+GPfaSb/uBOACTc3pXmtAJMrysOJf+DIOnBxg5aDzK5GRERERCRPRQ5OeenQoQP3339/kZ4zbtw47rnnHtq1a0enTp2YNWsWsbGxjBo1CrB3szty5Agff/wxYJ91LzIykmbNmpGWlsann37KokWLWLRoUXHdRrl3MimVR+ZtwGoz6N86jLuuyntad9NtzGwpbHA9VNGU8iIiIiJSdhVLcEpOTmb69OnUrl20hUsHDRrE6dOnmThxInFxcTRv3pzvvvuOiIgIAOLi4oiNjXWcn5aWxhNPPMGRI0fw9vamWbNmfPvtt/Tt27c4bqPcs9oMxszfwImkVBqEVOG/t7Yom+OaAKzpsGmBfVuTQoiIiIhIGWcxDMMoyhOCgoKc/hg3DIOkpCR8fHz49NNPueWWW4q9yOKUmJhIQEAACQkJTovoVgRTf9rJW8v24OPhyteju1A/xM/skvK283uYdyf4VodxO8C1jI7BEhEREZEKqyjZoMgtTm+88YZTcHJxcaF69ep06NCBoKCgolcrxWLFzhO8tWwPAJMGtCjboQlgQ2Y3vZaDFJpEREREpMwrcnAaNmxYCZQhV+Lo2WQeW7ARgCEd6tCvdS1zCyrI+VOw6wf7dmt10xMRERGRsq/IC+DGxMTw+eef59j/+eef89FHHxVLUVJ4aRk2Hp67nvgL6TSv5c/4m5qaXVLBNi8EWwaEtYHQclCviIiIiFR6RQ5Or776KsHBwTn2h4SE8MorrxRLUVJ4r37/Dxtiz+Lv5cbMIW3xcnc1u6T8GcbFtZvU2iQiIiIi5USRg9PBgweJiorKsT8iIsJpBjwped9viWP2mv0AvD6wNeFVfUyuqBDiNsHxreDqCS1uN7saEREREZFCKXJwCgkJYfPmzTn2b9q0iWrVqhVLUVKw/afO8+QX9u/Dv66py3VNQ02uqJCyWpsa3wjemkxERERERMqHIgenO++8k0cffZTly5djtVqxWq0sW7aMMWPGcOedd5ZEjXKJlHQrD366jnOpGbSPDOKJ6xuZXVLhZKTClszxcVq7SURERETKkSLPqvfyyy9z8OBBevbsiZub/ek2m417771XY5xKyYSvtvHPsSSq+XowfXA07q5Fzr/m2PkdJMeDfy2oe63Z1YiIiIiIFFqRg5OHhwcLFizg5ZdfZuPGjXh7e9OiRQsiIiJKoj65xBfrDrPg70NYLPDW4DbUCPAyu6TC25DZTa/VneBSxiexEBERERHJpsjBKUuDBg1o0KBBcdYiBfjnWCLPfbkFgMd6NaRL/ZyzG5ZZiUdh7y/2bc2mJyIiIiLlTJH7eN1+++28+uqrOfZPnjyZO+64o1iKkpySUtJ56NP1pKTbuKZhdUZfW9/skopm0zwwbFCnE1SrZ3Y1IiIiIiJFUuTgtHLlSm688cYc+/v06cOqVauKpShxZhgGTy/ewr5T56kZ4MW0Qa1xcbGYXVbhGcbFbnpqbRIRERGRcqjIwencuXN4eHjk2O/u7k5iYmKxFCXOPv7tIN9ujsPNxcLbd0VT1Tfn179MO/QHnNkL7j7QrL/Z1YiIiIiIFFmRg1Pz5s1ZsGBBjv3z58+nadOmxVKUXLTx0Fle/nY7AE/f0Ji2EeVw7aMNn9o/N+0Pnn6mliIiIiIicjmKPDnE+PHjue2229i7dy89evQA4JdffmHu3Ll88cUXxV5gZRZ/Po2HP1tPutWgT7MajLw6yuySii7tPGxbYt/W2k0iIiIiUk4VOTjdcsstfPnll7zyyit88cUXeHt706pVK5YtW4a/v39J1Fgp2WwG4xZu5MjZZCKr+fDaHS2xWMrRuKYs27+GtHMQFAkRXcyuRkRERETkslzWdOQ33nijY4KIs2fP8tlnnzF27Fg2bdqE1Wot1gIrq5kr97J850k83Fx4Z0g0/l7uZpd0eTZmmxSiPAY/EREREREuY4xTlmXLlnH33XcTFhbG22+/Td++ffn777+Ls7ZK67e9p3n9p50ATLylGc3CAkyu6DKd2Q8HVgMWaDXY7GpERERERC5bkVqcDh8+zJw5c5g9ezbnz59n4MCBpKens2jRIk0MUUxOJKXwyLwN2AwYEF2LQe3DzS7p8m2aZ/9ctxsEluP7EBEREZFKr9AtTn379qVp06Zs376d6dOnc/ToUaZPn16StVU6GVYbj87bwKlzqTQK9ePl/s3L57gmAJsNNmYGp9Z3m1uLiIiIiMgVKnSL008//cSjjz7Kgw8+SIMGDUqypkpr6tJd/L7vDL4ersy4Oxofj8saglY2HFgFCbHgGQBNbjK7GhERERGRK1LoFqfVq1eTlJREu3bt6NChA2+//TYnT54sydoqlWX/HGfGir0AvHpbS+pVr2JyRVdoQ+akEM0HgLu3ubWIiIiIiFyhQgenTp068f777xMXF8e//vUv5s+fT61atbDZbCxdupSkpKSSrLNCOxx/gccWbALg3k4R3NwqzOSKrlBKAuz42r7dRt30RERERKT8K/Ksej4+PowYMYJff/2VLVu28Pjjj/Pqq68SEhLCLbfcUhI1VmhpGTYenruBhOR0WtUO4Nkbm5hd0pXbuhgyUiC4EdRqa3Y1IiIiIiJX7LKnIwdo1KgRr732GocPH2bevHnFVVOl8sp3O9h06CwB3u68fVc0nm6uZpd05bLWbmqjtZtEREREpGK4ouCUxdXVlf79+/P1118Xx8tVGt9sOsqctQcAeGNQK8Kr+phbUHE4uRMO/wUWV2h5p9nViIiIiIgUi3I8bVv5l5xmxcPVhZFdo+jRONTscopHVmtTg+vAr4Lck4iIiIhUegpOJhrYPpzWdQKpG+xrdinFw5oBm+bbt1sPMbcWEREREZFipOBksoahfmaXUHz2/gLnjoNPNWjYx+xqRERERESKTbGMcRIBYMOn9s8tBoKbh7m1iIiIiIgUIwUnKR7nT8PO7+3bbdRNT0REREQqFgUnKR5bPgdbOtRoCTVamF2NiIiIiEixUnCS4rExs5tem7vNrUNEREREpAQoOMmVi9sMx7aAqwe0uMPsakREREREip2Ck1y5rLWbGt0APlXNrUVEREREpAQoOMmVyUiDzQvt263VTU9EREREKiYFJ7kyu76H5DNQpQbU62F2NSIiIiIiJULBSa7Mhsxueq0Hg6vWUxYRERGRiknBSS5f0jHYs9S+rW56IiIiIlKBKTjJ5ds0HwwbhHeA4PpmVyMiIiIiUmIUnOTyGMbF2fRaDzG3FhERERGREqbgJJfn8N9wahe4eUOzW82uRkRERESkRCk4yeXZ+Kn9c9N+4OVvbi0iIiIiIiVMwUmKLu0CbF1s326jbnoiIiIiUvEpOEnR/fM/SE2EwDoQcbXZ1YiIiIiIlDgFJym6DZnd9FoPARe9hURERESk4tNfvVI0Z2Nh/yr7dqvB5tYiIiIiIlJKFJykaDbOAwyIugaCIsyuRkRERESkVCg4SeHZbNnWbrrb3FpEREREREqRgpMU3sE1cPYgePpDk5vNrkZEREREpNQoOEnhZbU2NbsVPHzMrUVEREREpBQpOEnhpCbB9q/s223UTU9EREREKhcFJymcbUsg/QJUawC125tdjYiIiIhIqVJwksLJWrupzRCwWMytRURERESklCk4ScFO7YZDf4DFBVreaXY1IiIiIiKlTsFJCpY1KUT9XuBf09xaRERERERMoOAk+bNZYdN8+3brIebWIiIiIiJiEgUnyd/eZZAUB95B0OgGs6sRERERETGFgpPkL2tSiBYDwc3T3FpEREREREyi4CR5u3AGdn5n326jbnoiIiIiUnkpOEnetnwB1jQIbQE1W5ldjYiIiIiIaRScJG8bs63dJCIiIiJSiZkenGbMmEFUVBReXl60bduW1atXF+p5a9aswc3NjdatW5dsgZXVsa0Qtwlc3O3jm0REREREKjFTg9OCBQsYO3Yszz77LBs2bKBr167ccMMNxMbG5vu8hIQE7r33Xnr27FlKlVZCWWs3NeoDvtXMrUVERERExGSmBqepU6cycuRI7rvvPpo0acK0adMIDw9n5syZ+T7vX//6F3fddRedOnUqpUormYw02LzAvt36bnNrEREREREpA0wLTmlpaaxbt47evXs77e/duzdr167N83kxMTHs3buXCRMmFOo6qampJCYmOn1IAXb/CBdOQ5VQqN/L7GpERERERExnWnA6deoUVquV0NBQp/2hoaEcO3Ys1+fs3r2bp59+ms8++ww3N7dCXWfSpEkEBAQ4PsLDw6+49gpvQ2Y3vZaDwLVwX2cRERERkYrM9MkhLBaL02PDMHLsA7Bardx11128+OKLNGzYsNCv/8wzz5CQkOD4OHTo0BXXXKElHYfdP9m326ibnoiIiIgIgGnNCcHBwbi6uuZoXTpx4kSOViiApKQk/v77bzZs2MDo0aMBsNlsGIaBm5sbP/30Ez169MjxPE9PTzw9PUvmJiqizQvAsEKtdlC9kdnViIiIiIiUCaa1OHl4eNC2bVuWLl3qtH/p0qV07tw5x/n+/v5s2bKFjRs3Oj5GjRpFo0aN2LhxIx06dCit0isuw7g4m57WbhIRERERcTB1AMu4ceO45557aNeuHZ06dWLWrFnExsYyatQowN7N7siRI3z88ce4uLjQvHlzp+eHhITg5eWVY79cpiPr4eQ/4OYFzW8zuxoRERERkTLD1OA0aNAgTp8+zcSJE4mLi6N58+Z89913REREABAXF1fgmk5SjDZ+av/c5GbwCjC3FhERERGRMsRiGIZhdhGlKTExkYCAABISEvD39ze7nLIjPRmmNILUBLjnS6h3rdkViYiIiIiUqKJkA9Nn1ZMy4p9v7aEpIByiupldjYiIiIhImaLgJHYbMrvptRoMLnpbiIiIiIhkp7+QBc4egn0r7Nut7zK1FBERERGRskjBSWDTfMCAiKuhapTZ1YiIiIiIlDkKTpWd1m4SERERESmQglNld3AtxO8HjyrQtJ/Z1YiIiIiIlEkKTpVdVmtTs/7g4WtqKSIiIiIiZZWCU2WWeg62fWnfbnOPqaWIiIiIiJRlCk6V2fYvIf08VKsP4R3MrkZEREREpMxScKrMNmR202t9F1gs5tYiIiIiIlKGKThVVqf3QuxasLjYF70VEREREZE8KThVVhvn2j/X6wH+YebWIiIiIiJSxik4VUY2K2yaZ99urbWbREREREQKouBUGe1bAYlHwCsQGvU1uxoRERERkTJPwakyylq7qcUd4O5lbi0iIiIiIuWAglNlkxwPO/5n326jbnoiIiIiIoWh4FTZbF0E1lQIaQY1W5tdjYiIiIhIuaDgVNlkrd3UZojWbhIRERERKSQFp8rkxA44uh5c3KDlILOrEREREREpNxScKpMNn9o/N+wDvsHm1iIiIiIiUo4oOFUW1nTYvMC+rbWbRERERESKRMGpsti9FM6fBN/q0OA6s6sRERERESlXFJwqi6y1m1oOAld3c2sRERERESlnFJwqg3MnYdcP9u02d5tbi4iIiIhIOaTgVBlsXgC2DAiLhpAmZlcjIiIiIlLuKDhVdIZxsZteG00KISIiIiJyORScKrqjG+DEdnD1hOa3mV2NiIiIiEi5pOBU0WW1NjW5CbyDzK1FRERERKScUnCqyNJTYMvn9m2t3SQiIiIictkUnCqynd9CSgL414K63c2uRkRERESk3FJwqsg2ZHbTazUYXFzNrUVEREREpBxTcKqoEo7A3mX27dZ3mVuLiIiIiEg5p+BUUW2aBxhQpzNUq2d2NSIiIiIi5ZqCU0WktZtERERERIqVglNFFPs7nNkH7r7QtL/Z1YiIiIiIlHsKThXRxk/tn5v1B88qppYiIiIiIlIRKDhVNGnnYduX9m2t3SQiIiIiUiwUnCqa7V9B2jkIioKIzmZXIyIiIiJSISg4VTRZaze1HgIWi7m1iIiIiIhUEApOFcmZ/XDwV8ACrQebXY2IiIiISIWh4FSRbJxr/1y3OwTUNrUUEREREZGKRMGporDZMhe9BdrcbW4tIiIiIiIVjIJTRbF/JSQcAs8AaHyj2dWIiIiIiFQoCk4VxcbMSSFa3Abu3ubWIiIiIiJSwSg4VQTJZ2HHN/bt1uqmJyIiIiJS3BScKoJtiyEjBao3hlrRZlcjIiIiIlLhKDhVBFq7SURERESkRCk4lXcnd8KRv8HiCi0HmV2NiIiIiEiFpOBU3m341P65QW/wCzW3FhERERGRCkrBqTyzZsDmBfZtrd0kIiIiIlJiFJzKsz0/w7nj4BMMDa83uxoRERERkQpLwak825jZTa/lIHB1N7cWEREREZEKTMGpvDp/Gnb+YN9uM8TcWkREREREKjgFp/Jqy0KwpUPN1hDazOxqREREREQqNAWn8ipr7SZNCiEiIiIiUuIUnMqjuE1wfAu4ekDz28yuRkRERESkwlNwKo+yWpsa3wg+Vc2tRURERESkEnAzuwApooxU+/gmgNbqpiciUllZrVbS09PNLkNEpMzz8PDAxeXK24sUnMqbnd9Dcjz4hUG9a82uRkRESplhGBw7doyzZ8+aXYqISLng4uJCVFQUHh4eV/Q6Ck7lzcbMbnqt7gQXV3NrERGRUpcVmkJCQvDx8cFisZhdkohImWWz2Th69ChxcXHUqVPnin5nKjiVJ4lxsOdn+3Zrrd0kIlLZWK1WR2iqVq2a2eWIiJQL1atX5+jRo2RkZODu7n7Zr6PJIcqTzfPBsEF4Rwiub3Y1IiJSyrLGNPn4+JhciYhI+ZHVRc9qtV7R6yg4lReGkW3tJrU2iYhUZuqeJyJSeMX1O9P04DRjxgyioqLw8vKibdu2rF69Os9zf/31V7p06UK1atXw9vamcePGvPHGG6VYrYkO/wWnd4O7DzS71exqREREREQqFVOD04IFCxg7dizPPvssGzZsoGvXrtxwww3Exsbmer6vry+jR49m1apV7Nixg+eee47nnnuOWbNmlXLlJtjwqf1z037g6WduLSIiIuXIgQMHsFgsbNy40exSTPPCCy/QunVrs8socStWrMBisRR51snTp08TEhLCgQMHruj6FouFL7/88orqmzNnDoGBgflep7S+nwXdT1nRvn17Fi9eXOLXMTU4TZ06lZEjR3LffffRpEkTpk2bRnh4ODNnzsz1/DZt2jB48GCaNWtGZGQkd999N9dff32+rVSpqakkJiY6fZQ7aRdga+abQZNCiIiIlBlz5szBYrHQp08fp/1nz57FYrGwYsUKcworoqxwGRISQlJSktOx1q1b88ILLxT6tQrzh39ZM2nSJG6++WYiIyMBe5Dq06cPYWFheHp6Eh4ezujRo6/478jOnTsTFxdHQEBAMVQtWcaPH8/TTz+NzWYr0euYFpzS0tJYt24dvXv3dtrfu3dv1q5dW6jX2LBhA2vXrqVbt255njNp0iQCAgIcH+Hh4VdUtyl2fA1pSRAYARFdzK5GRETkiqWlpZldQpHkV6+bmxu//PILy5cvL8WK7Ir765iUlMSUKVOK9TVLy+UuCJ2cnMyHH37Ifffd59jn4uJCv379+Prrr9m1axdz5szh559/ZtSoUVdUo4eHBzVq1NA4xSIozHv8xhtvJCEhgR9//LFEazEtOJ06dQqr1UpoaKjT/tDQUI4dO5bvc2vXro2npyft2rXj4YcfdnqjX+qZZ54hISHB8XHo0KFiqb9UZXXTaz0EimHVYxERqTgMw+BCWoYpH4ZhFLrO7t27M3r0aMaNG0dwcDDXXXcdANu3b6dv375UqVKF0NBQ7rnnHk6dOuV4XlJSEkOGDMHX15eaNWvyxhtv0L17d8aOHes4J7fuRIGBgcyZMyfXWqxWKyNHjiQqKgpvb28aNWrEm2++6XTOsGHD6N+/P5MmTSIsLIyGDRvmeW++vr4MHz6cp59+Ot+vwZEjRxg0aBBBQUFUq1aNfv36OXUNu/S+APr378+wYcMcjyMjI3n55ZcZNmwYAQEB3H///QA89dRTNGzYEB8fH+rWrcv48eMvK0g88sgjTJ06lRMnTuR5TlpaGv/+97+pVasWvr6+dOjQwdGytmLFCoYPH05CQgIWiwWLxcILL7zA9OnTadGiheM1vvzySywWC++8845j3/XXX88zzzzjeDxz5kzq1auHh4cHjRo14pNPPnGqw2Kx8O6779KvXz98fX15+eWXc9SanJzMjTfeSMeOHTlz5kyu9/P999/j5uZGp06dHPuCgoJ48MEHadeuHREREfTs2ZOHHnoo315OWU6dOsWtt96Kj48PDRo04Ouvv3Ycy62r3pw5c6hTpw4+Pj7ceuutnD59Osdrvvrqq4SGhuLn58fIkSNJSUnJcU5MTAxNmjTBy8uLxo0bM2PGDMexrBbFxYsXc+211+Lj40OrVq347bffCryf7PJ7nx04cAAXFxf+/vtvp+dMnz6diIgIx++Lgn7m8/pd8cILL1CnTh08PT0JCwvj0UcfdTzH1dWVvn37Mm/evCLdT1GZvo7TpYnbMIwCU/jq1as5d+4cv//+O08//TT169dn8ODBuZ7r6emJp6dnsdVb6uIPwIHVgAVa536PIiJSeSWnW2n6fMn+L2tetk+8Hh+Pwv8p8dFHH/Hggw+yZs0aDMMgLi6Obt26cf/99zN16lSSk5N56qmnGDhwIMuWLQNg3LhxrFmzhq+//prQ0FCef/551q9ff0XjO2w2G7Vr12bhwoUEBwezdu1aHnjgAWrWrMnAgQMd5/3yyy/4+/uzdOnSAkPiCy+8QP369fniiy+4/fbbcxy/cOEC1157LV27dmXVqlW4ubnx8ssv06dPHzZv3uyYLrkwJk+ezPjx43nuuecc+/z8/JgzZw5hYWFs2bKF+++/Hz8/P/79738X+nUBBg8ezNKlS5k4cSJvv/12rucMHz6cAwcOMH/+fMLCwliyZAl9+vRhy5YtdO7cmWnTpvH888+zc+dOAKpUqcL+/fsZM2YMp06dIjg4mJUrVzo+P/zww2RkZLB27Voee+wxAJYsWcKYMWOYNm0avXr14n//+x/Dhw+ndu3aXHvttY5aJkyYwKRJk3jjjTdwdXVl//79jmMJCQncdNNNeHl58csvv+Dr65vr/axatYp27drl+3U5evQoixcvzreXU5YXX3yR1157jcmTJzN9+nSGDBnCwYMHqVq1ao5z//jjD0aMGMErr7zCgAED+OGHH5gwYYLTOQsXLmTChAm88847dO3alU8++YS33nqLunXrOs55//33mTBhAm+//TZt2rRhw4YN3H///fj6+jJ06FDHec8++yxTpkyhQYMGPPvsswwePJg9e/bg5la4n+P83meRkZH06tWLmJgYp69nTEwMw4YNw2KxFOpnHnL+rvjiiy944403mD9/Ps2aNePYsWNs2rTJqbarrrqK1157rVD3cblMC07BwcG4urrmaF06ceJEjlaoS0VFRQHQokULjh8/zgsvvJBncCr3NmYm56hrILCOubWIiIhcgfr16zv9YfP8888THR3NK6+84tg3e/ZswsPD2bVrFzVr1uSjjz5i7ty59OzZE7D/ERYWFnZFdbi7u/Piiy86HkdFRbF27VoWLlzoFJx8fX354IMPChVqwsLCGDNmDM8++yz9+/fPcXz+/Pm4uLjwwQcfOP6DOCYmhsDAQFasWJFj6EJ+evTowRNPPOG0L3uIioyM5PHHH2fBggVFDk4Wi4VXX32Vm2++mccee4x69eo5Hd+7dy/z5s3j8OHDju/DE088wQ8//EBMTAyvvPIKAQEBWCwWatSo4Xhe8+bNqVatGitXruS2225jxYoVPP74447Zkf/66y9SUlK4+uqrAZgyZQrDhg3joYceAuwB+vfff2fKlClOwemuu+5ixIgRjsdZwen48eMMGjSIevXqMW/evHy/hwcOHMjzPTV48GC++uorkpOTufnmm/nggw8K/BoOGzbM8XfpK6+8wvTp0/nzzz9zjIMDePPNN7n++usdrZUNGzZk7dq1/PDDD45zpk2bxogRIxw9rF5++WV+/vlnp1anl156iddff50BAwYA9vf09u3bee+995yC0xNPPMGNN94I2ANes2bN2LNnD40bNy7wvqDg99l9993HqFGjmDp1Kp6enmzatImNGzc6Jm6YOXNmvj/zWS27l/6u+O6776hRowa9evXC3d2dOnXqcNVVVznVVqtWLWJjY7HZbLiUUA8t04KTh4cHbdu2ZenSpdx668XptZcuXUq/fv0K/TqGYZCamloSJZrPZoONc+3bbe42txYRESmTvN1d2T7xetOuXRSX/q/+unXrWL58OVWqVMlx7t69e0lOTiY9Pd3pD6SAgAAaNWp0eQVn8+677/LBBx9w8OBBkpOTSUtLy9GK1aJFiyK1BD311FO89957zJ492ymAgf1e9+zZg5+f88y4KSkp7N27t0i159Y68sUXXzBt2jT27NnDuXPnyMjIwN/fv0ivm+X666/n6quvZvz48cydO9fp2Pr16zEMI0fXxdTUVKpVq5bna1osFq655hpWrFhBz5492bZtG6NGjWLKlCns2LGDFStWEB0d7Xgv7NixgwceeMDpNbp06ZKjS2VeLUW9evWiffv2LFy4EFfX/N+nycnJeHl55XrsjTfeYMKECezcuZP//Oc/jBs3zqkLXG5atmzp2Pb19cXPzy/Pro87duxw+jsYoFOnTk7BaceOHTnGVnXq1Mkxpu7kyZMcOnSIkSNHOrpuAmRkZOSYhCJ7bTVr1gTsjRaFDU4Fvc/69+/P6NGjWbJkCXfeeSezZ8/m2muvdUy6UdDPfNb76tLv6x133MG0adOoW7cuffr0oW/fvtx8881OLWXe3t7YbDZSU1Px9vYu1P0Ulald9caNG8c999xDu3bt6NSpE7NmzSI2Ntbx5njmmWc4cuQIH3/8MQDvvPMOderUcXxzf/31V6ZMmcIjjzxi2j2UqAOrISEWPP2h8U1mVyMiImWQxWIpUnc5M13aVcpms3HzzTfzf//3fznOrVmzJrt37wZy79afncViybEvv/E9Cxcu5LHHHuP111+nU6dO+Pn5MXnyZP7444986y1IYGAgzzzzDC+++CI33eT877bNZqNt27Z89tlnOZ5XvXp1wD4hQWHu49K6fv/9d+68805efPFFrr/+egICApg/fz6vv/56kerP7tVXX6VTp048+eSTOe7D1dWVdevW5Qgkuf0xnF337t2ZNWsWq1evplWrVgQGBnLNNdewcuVKVqxYQffu3Z3OL8xwjry+RzfeeCOLFi1i+/btTmOrchMcHEx8fHyux2rUqEGNGjVo3Lgx1apVo2vXrowfP94ROnLj7u6e4z7ymu2tKOME85L12u+//z4dOnRwOnbp9yh7bVlfy8LORFeY95mHhwf33HMPMTExDBgwgLlz5zJt2jSnWvP7mc9y6fc1PDycnTt3snTpUn7++WceeughJk+ezMqVKx33dObMGXx8fEosNIHJwWnQoEGcPn2aiRMnEhcXR/Pmzfnuu++IiIgAIC4uzmlNJ5vNxjPPPMP+/ftxc3OjXr16vPrqq/zrX/8y6xZK1sbMX67NB4CHj7m1iIiIFLPo6GgWLVpEZGRkrmMs6tWrh7u7O3/++adjVtzExER2797tNNakevXqxMXFOR7v3r2bCxcu5Hnd1atX07lzZ0c3MKDIrT55eeSRR3jrrbdytIxER0ezYMECQkJC8mwJuvQ+rFYrW7dudeqalps1a9YQERHBs88+69h38ODBK7gL+3iRAQMG5Jjwok2bNlitVk6cOEHXrl1zfa6HhwdWqzXH/u7duzNmzBi++OILR0jq1q0bP//8M2vXrmXMmDGOc5s0acKvv/7Kvffe69i3du1amjRpUqj6X331VapUqULPnj1ZsWIFTZs2zfPcNm3a8Omnnxb4mlkhpzh7OjVt2pTff//dad+lj5s0acLvv//u9LXIfk5oaCi1atVi3759DBlScsvWFPZ9dt9999G8eXNmzJhBenq6o/sgFPwznx9vb29uueUWbrnlFh5++GEaN27Mli1biI6OBmDr1q2O7ZJi+n9RPfTQQ06/uLK7dDacRx55pOK2Ll0qJQG2Z87C0lrd9EREpOJ5+OGHef/99xk8eDBPPvkkwcHB7Nmzh/nz5/P+++/j5+fH0KFDefLJJ6latSohISFMmDABFxcXp5aHHj168Pbbb9OxY0dsNhtPPfVUjv/1z65+/fp8/PHH/Pjjj0RFRfHJJ5/w119/OcZQXwkvLy9efPFFHn74Yaf9Q4YMYfLkyfTr14+JEydSu3ZtYmNjWbx4MU8++SS1a9emR48ejBs3jm+//ZZ69erxxhtvFGoh1/r16xMbG8v8+fNp37493377LUuWLLnie/nvf/9Ls2bNnP7AbdiwIUOGDOHee+/l9ddfp02bNpw6dYply5bRokUL+vbtS2RkJOfOneOXX36hVatW+Pj44OPj4xjn9Nlnn/HVV18B9jD1+OOPAzjGNwE8+eSTDBw4kOjoaHr27Mk333zD4sWL+fnnnwtd/5QpU7BarfTo0YMVK1bk2R0taza/+Ph4goKCAPuYmuPHj9O+fXuqVKnC9u3b+fe//02XLl0c3c6Kw6OPPkrnzp157bXX6N+/Pz/99JNTNz2AMWPGMHToUNq1a8fVV1/NZ599xrZt25wmh3jhhRd49NFH8ff354YbbiA1NZW///6b+Ph4xo0bVyy1FvZ91qRJEzp27MhTTz3FiBEjnFqACvqZz6tb5Zw5c7BarXTo0AEfHx8++eQTvL29HY0tYP8PkaKMFbwcmtu6rNq2BDKSIbgh1M5/phcREZHyKCwsjDVr1mC1Wrn++utp3rw5Y8aMISAgwDG4e+rUqXTq1ImbbrqJXr160aVLF8eUy1lef/11wsPDueaaa7jrrrt44okn8PHJu6fGqFGjGDBgAIMGDaJDhw6cPn06z//EvRxDhw51+qMWwMfHh1WrVlGnTh0GDBhAkyZNGDFiBMnJyY4WqBEjRjB06FDuvfdeunXrRlRUVIGtTQD9+vXjscceY/To0bRu3Zq1a9cyfvz4K76Phg0bMmLEiBxTX8fExHDvvffy+OOP06hRI2655Rb++OMPR6tg586dGTVqFIMGDaJ69eqOQf4Wi8XRUpjVWtWyZUsCAgJo06ZNjrEyb775JpMnT6ZZs2a89957xMTE5OjOV5A33niDgQMH0qNHD3bt2pXrOS1atKBdu3YsXLjQsc/b25v333+fq6++miZNmjB27Fhuuukm/ve//xXp+gXp2LEjH3zwAdOnT6d169b89NNPThMwgL2H1vPPP89TTz1F27ZtOXjwIA8++KDTOffddx8ffPABc+bMoUWLFnTr1o05c+YUy38GZCnK+2zkyJGkpaU5TdwBhfuZz01gYCDvv/8+Xbp0oWXLlvzyyy988803jnF1R44cYe3atQwfPrzY7jc3FqM4OleWI4mJiQQEBJCQkHDZgyZLxQfXweE/odeLcPVYs6sREZEyICUlhf379xMVFZXnYPaK7vz589SqVYvXX3+dkSNHml2OVBDfffcdTzzxBFu3bi2xGdkqk//+97/Mnz+fLVu2lMr1nnzySRISEpg1a1aux/P73VmUbGB6Vz3Jxcld9tBkcYVWd5pdjYiIiGk2bNjAP//8w1VXXUVCQgITJ04EKNIMvCIF6du3L7t37+bIkSOOljMpunPnzrFjxw6mT5/OSy+9VGrXDQkJyTFFf0lQcCqLsiaFqN8L/Grkf66IiEgFN2XKFHbu3OlYymT16tUEBwebXZZUMNknp5DLM3r0aObNm0f//v1zdNMrSZfO/lhSFJzKGmsGbJpv325TcjOjiIiIlAdt2rRh3bp1ZpchIoUwZ86cHJO7VSTqxFnW7F0G546Bd1VoeIPZ1YiIiIiICApOZc/GzHUEWg4Et8KvVi4iIiIiIiVHwaksuXAGdn5v326tbnoiIiIiImWFglNZsuVzsKZBjRZQs6XZ1YiIiIiISCYFp7JkQ2Y3vdZ3m1uHiIiIiIg4UXAqK45tgWObwcUdWtxhdjUiIiIiIpKNglNZsSFz7aZGN4BvNXNrERERqUAOHDiAxWJh48aNZpdimhdeeIHWrVubXUaJW7FiBRaLhbNnzxbpeadPnyYkJIQDBw5c0fUtFgtffvnlFdU3Z84cAgMD871OaX0/C7qfsqJ9+/YsXry4xK+j4FQWZKTBloX27TbqpiciIlJezJkzB4vFQp8+fZz2nz17FovFwooVK8wprIiywmVISAhJSUlOx1q3bs0LL7xQ6NcqzB/+Zc2kSZO4+eabiYyMdOyzWCw5Pt59990ruk7nzp2Ji4sjICDgCiuW7MaPH8/TTz+NzWYr0esoOJUFu36AC6ehSg2o19PsakREREpcWlqa2SUUSX71urm58csvv7B8+fJSrMiuuL+OSUlJTJkypVhfs7Skp6df1vOSk5P58MMPue+++3Ici4mJIS4uzvExdOjQK6rRw8ODGjVqYLFYruh1KpPCvMdvvPFGEhIS+PHHH0u0FgWnsmBjZje9VoPA1c3cWkREpHwxDEg7b86HYRS6zO7duzN69GjGjRtHcHAw1113HQDbt2+nb9++VKlShdDQUO655x5OnTrleF5SUhJDhgzB19eXmjVr8sYbb9C9e3fGjh3rOCe37kSBgYHMmTMn11qsVisjR44kKioKb29vGjVqxJtvvul0zrBhw+jfvz+TJk0iLCyMhg0b5nlvvr6+DB8+nKeffjrfr8GRI0cYNGgQQUFBVKtWjX79+jl1Dbv0vgD69+/PsGHDHI8jIyN5+eWXGTZsGAEBAdx///0APPXUUzRs2BAfHx/q1q3L+PHjLytIPPLII0ydOpUTJ07keU5aWhr//ve/qVWrFr6+vnTo0MHRsrZixQqGDx9OQkKCo5XmhRdeYPr06bRo0cLxGl9++SUWi4V33nnHse/666/nmWeecTyeOXMm9erVw8PDg0aNGvHJJ5841ZHVAtSvXz98fX15+eWXc9SanJzMjTfeSMeOHTlz5kyu9/P999/j5uZGp06dchwLDAykRo0ajg9vb+88vy5ZTp06xa233oqPjw8NGjTg66+/dhzLravenDlzqFOnDj4+Ptx6662cPn06x2u++uqrhIaG4ufnx8iRI0lJSclxTkxMDE2aNMHLy4vGjRszY8YMx7GsFsXFixdz7bXX4uPjQ6tWrfjtt98KvJ/s8nufHThwABcXF/7++2+n50yfPp2IiAiMzN8XBf3M5/W74oUXXqBOnTp4enoSFhbGo48+6niOq6srffv2Zd68eUW6n6LSX+lmSzoOu5fatzWbnoiIFFX6BXglzJxr/+coePgW+vSPPvqIBx98kDVr1mAYBnFxcXTr1o3777+fqVOnkpyczFNPPcXAgQNZtmwZAOPGjWPNmjV8/fXXhIaG8vzzz7N+/forGt9hs9moXbs2CxcuJDg4mLVr1/LAAw9Qs2ZNBg4c6Djvl19+wd/fn6VLlzr+6MvLCy+8QP369fniiy+4/fbbcxy/cOEC1157LV27dmXVqlW4ubnx8ssv06dPHzZv3oyHR+EXvZ88eTLjx4/nueeec+zz8/Njzpw5hIWFsWXLFu6//378/Pz497//XejXBRg8eDBLly5l4sSJvP3227meM3z4cA4cOMD8+fMJCwtjyZIl9OnThy1bttC5c2emTZvG888/z86dOwGoUqUK+/fvZ8yYMZw6dYrg4GBWrlzp+Pzwww+TkZHB2rVreeyxxwBYsmQJY8aMYdq0afTq1Yv//e9/DB8+nNq1a3Pttdc6apkwYQKTJk3ijTfewNXVlf379zuOJSQkcNNNN+Hl5cUvv/yCr2/u79VVq1bRrl27XI+NHj2a++67j6ioKEaOHMkDDzyAi0v+7Q4vvvgir732GpMnT2b69OkMGTKEgwcPUrVq1Rzn/vHHH4wYMYJXXnmFAQMG8MMPPzBhwgSncxYuXMiECRN455136Nq1K5988glvvfUWdevWdZzz/vvvM2HCBN5++23atGnDhg0buP/++/H19XVqJXv22WeZMmUKDRo04Nlnn2Xw4MHs2bMHN7fCRYL83meRkZH06tWLmJgYp69nTEwMw4YNw2KxFOpnHnL+rvjiiy944403mD9/Ps2aNePYsWNs2rTJqbarrrqK1157rVD3cdmMSiYhIcEAjISEBLNLsft1mmFM8DeM93uaXYmIiJRxycnJxvbt243k5OSLO1PP2f8dMeMj9Vyha+/WrZvRunVrp33jx483evfu7bTv0KFDBmDs3LnTSExMNNzd3Y3PP//ccfzs2bOGj4+PMWbMGMc+wFiyZInT6wQEBBgxMTGGYRjG/v37DcDYsGFDnvU99NBDxm233eZ4PHToUCM0NNRITU3N975iYmKMgIAAwzAM4+mnnzYaNmxopKenG/Hx8QZgLF++3DAMw/jwww+NRo0aGTabzfHc1NRUw9vb2/jxxx8Nw7B/jbLfl2EYRr9+/YyhQ4c6HkdERBj9+/fPtybDMIzXXnvNaNu2rePxhAkTjFatWuV5fvav0Q8//GC4u7sbe/bsMQzDMFq1amVMmDDBMAzD2LNnj2GxWIwjR444Pb9nz57GM888k+NrksVmsxnBwcHGF198YRiGYbRu3dqYNGmSERISYhiGYaxdu9Zwc3MzkpKSDMMwjM6dOxv333+/02vccccdRt++fR2PAWPs2LFO5yxfvtwAjH/++cdo1aqVMWDAgAK/h/369TNGjBiRY/9LL71krF271tiwYYMxZcoUw8fHx3jppZfyfS3AeO655xyPz507Z1gsFuP77793qi8+Pt4wDMMYPHiw0adPH6fXGDRokNPXr1OnTsaoUaOczunQoYPT9zM8PNyYO3dujvo7depkGMbF7+8HH3zgOL5t2zYDMHbs2JHv/Vz6s5Xdpe+zBQsWGEFBQUZKSophGIaxceNGw2KxGPv37zcMo+CfecPI/XfF66+/bjRs2NBIS0vLs5avvvrKcHFxMaxWa45juf7uzFSUbKAWJzMZxsXZ9FoPMbcWEREpn9x97C0/Zl27CC79X/1169axfPlyqlSpkuPcvXv3kpycTHp6OldddZVjf0BAAI0aNbq8erN59913+eCDDzh48CDJycmkpaXlaMVq0aJFkVqCnnrqKd577z1mz57t1HIF9nvds2cPfn5+TvtTUlLYu3dvkWrPrXXkiy++YNq0aezZs4dz586RkZGBv79/kV43y/XXX8/VV1/N+PHjmTt3rtOx9evXYxhGjq6LqampVKuW96zAFouFa665hhUrVtCzZ0+2bdvGqFGjmDJlCjt27GDFihVER0c73gs7duzggQcecHqNLl265OhSmVdLUa9evWjfvj0LFy7E1dU13/tNTk7Gy8srx/7sLXpZ742JEyc67c9Ny5YtHdu+vr74+fnl2fVxx44d3HrrrU77OnXqxA8//OB0zqhRo3KckzWm7uTJkxw6dIiRI0c6um4CZGRk5JiEInttNWvWBODEiRM0btw433vKUtD7rH///owePZolS5Zw5513Mnv2bK699lrHpBsF/cxnva8u/b7ecccdTJs2jbp169KnTx/69u3LzTff7NRS5u3tjc1mIzU1tVBdKi+HgpOZjqyDUzvBzRuaDzC7GhERKY8sliJ1lzPTpV2lbDYbN998M//3f/+X49yaNWuye/dugBwD6Y1Lus1ZLJYc+/Ib37Nw4UIee+wxXn/9dTp16oSfnx+TJ0/mjz/+yLfeggQGBvLMM8/w4osvctNNNzkds9lstG3bls8++yzH86pXrw6Ai4tLoe7j0rp+//137rzzTl588UWuv/56AgICmD9/Pq+//nqR6s/u1VdfpVOnTjz55JM57sPV1ZV169blCCS5/TGcXffu3Zk1axarV6+mVatWBAYGcs0117By5UpWrFhB9+7dnc7P7ft+6b68vkc33ngjixYtYvv27U5jq3ITHBxMfHx8vucAdOzYkcTERI4fP05oaGie57m7uzs9tlgsec72dun3+3Jkvfb7779Phw4dnI5d+j3KXlvW17KwM9EV5n3m4eHBPffcQ0xMDAMGDGDu3LlMmzbNqdb8fuazXPp9DQ8PZ+fOnSxdupSff/6Zhx56iMmTJ7Ny5UrHPZ05cwYfH58SC02g4GSubUvsn5veAl6allJERCqX6OhoFi1aRGRkZK5jLOrVq4e7uzt//vkn4eHhACQmJrJ79266devmOK969erExcU5Hu/evZsLFy7ked3Vq1fTuXNnHnroIce+orb65OWRRx7hrbfeytEyEh0dzYIFCwgJCcmzJejS+7BarWzdutVpTE9u1qxZQ0REBM8++6xj38GDB6/gLuzjRQYMGJBjwos2bdpgtVo5ceIEXbt2zfW5Hh4eWK3WHPu7d+/OmDFj+OKLLxwhqVu3bvz888+sXbuWMWPGOM5t0qQJv/76K/fee69j39q1a2nSpEmh6n/11VepUqUKPXv2ZMWKFTRt2jTPc9u0acOnn35a4Gtu2LABLy+vYp1qvWnTpvz+++9O+y593KRJE37//Xenr0X2c0JDQ6lVqxb79u1jyJCS68FU2PfZfffdR/PmzZkxYwbp6ekMGHCxcaCgn/n8eHt7c8stt3DLLbfw8MMP07hxY7Zs2UJ0dDQAW7dudWyXFM2qZ6ZeL8Jdn0PnR8yuREREpNQ9/PDDnDlzhsGDB/Pnn3+yb98+fvrpJ0aMGIHVasXPz4+hQ4fy5JNPsnz5crZt28aIESNwcXFxanno0aMHb7/9NuvXr+fvv/9m1KhROf7XP7v69evz999/8+OPP7Jr1y7Gjx/PX3/9VSz35OXlxYsvvshbb73ltH/IkCEEBwfTr18/Vq9ezf79+1m5ciVjxozh8OHDjvv49ttv+fbbb/nnn3946KGHCrWQa/369YmNjWX+/Pns3buXt956iyVLllzxvfz3v/9l2bJljkkeABo2bMiQIUO49957Wbx4Mfv37+evv/7i//7v//juu+8A+8x/586d45dffuHUqVOOENu8eXOqVavGZ5995ghO3bt358svvyQ5OZmrr77acZ0nn3ySOXPm8O6777J7926mTp3K4sWLeeKJJwpd/5QpUxgyZAg9evTgn3/+yfO866+/nm3btjm1On3zzTe8//77bN26lb179/LBBx/w7LPP8sADD+Dp6VnoGgry6KOP8sMPP/Daa6+xa9cu3n77baduegBjxoxh9uzZzJ49m127djFhwgS2bdvmdM4LL7zApEmTePPNN9m1axdbtmwhJiaGqVOnFluthX2fNWnShI4dO/LUU08xePBgpxaggn7m8zJnzhw+/PBDtm7dyr59+/jkk0/w9vYmIiLCcc7q1avp3bt3sd1vbhSczOTqBg17Q438m5BFREQqorCwMNasWYPVauX666+nefPmjBkzhoCAAMfMZVOnTqVTp07cdNNN9OrViy5dujimXM7y+uuvEx4ezjXXXMNdd93FE088gY9P3uOvRo0axYABAxg0aBAdOnTg9OnTTq1PV2ro0KFOM54B+Pj4sGrVKurUqcOAAQNo0qQJI0aMIDk52dECNWLECIYOHcq9995Lt27diIqKKrC1CaBfv3489thjjB49mtatW7N27VrGjx9/xffRsGFDRowYkWPq65iYGO69914ef/xxGjVqxC233MIff/zhaBXs3Lkzo0aNYtCgQVSvXt0x05nFYnG0FGa1VrVs2ZKAgADatGmTY6zMm2++yeTJk2nWrBnvvfceMTExObrzFeSNN95g4MCB9OjRg127duV6TosWLWjXrh0LFy507HN3d2fGjBl06tSJli1b8uabbzJx4sQr6v6Ym44dO/LBBx8wffp0WrduzU8//ZRjDNWgQYN4/vnneeqpp2jbti0HDx7kwQcfdDrnvvvu44MPPmDOnDm0aNGCbt26MWfOHKKiooqt1qK8z0aOHElaWhojRoxw2l+Yn/ncBAYG8v7779OlSxdatmzJL7/8wjfffOMYV3fkyBHWrl3L8OHDi+1+c2MxiqNzZTmSmJhIQEAACQkJlz1oUkRExAwpKSns37+fqKioXAezVwbnz5+nVq1avP7664wcOdLscqSC+O6773jiiSfYunVrgdONS8H++9//Mn/+fLZs2VIq13vyySdJSEhg1qxZuR7P73dnUbKBxjiJiIhImbVhwwb++ecfrrrqKhISEpg4cSJg/99vkeLSt29fdu/ezZEjRxwtZ1J0586dY8eOHUyfPp2XXnqp1K4bEhJSpG6cl0vBSURERMq0KVOmsHPnTjw8PGjbti2rV68mODjY7LKkgsk+OYVcntGjRzNv3jz69++fo5teSbp09seSoq56IiIi5YS66omIFF1xddVTJ04REREREZECKDiJiIiUM5Wss4iIyBUprt+ZCk4iIiLlRNbaRPkt7ioiIs7S0tIAcHV1vaLX0eQQIiIi5YSrqyuBgYGcOHECsK8NlH0hWBERcWaz2Th58iQ+Pj64uV1Z9FFwEhERKUdq1KgB4AhPIiKSPxcXF+rUqXPF/9Gk4CQiIlKOWCwWatasSUhICOnp6WaXIyJS5nl4eBTLwsYKTiIiIuWQq6vrFffXFxGRwtPkECIiIiIiIgVQcBIRERERESmAgpOIiIiIiEgBKt0Yp6wFsBITE02uREREREREzJSVCQqzSG6lC05JSUkAhIeHm1yJiIiIiIiUBUlJSQQEBOR7jsUoTLyqQGw2G0ePHsXPz69MLBqYmJhIeHg4hw4dwt/f3+xypILT+01Km95zUpr0fpPSpvdc+WcYBklJSYSFhRU4ZXmla3FycXGhdu3aZpeRg7+/v37gpNTo/SalTe85KU16v0lp03uufCuopSmLJocQEREREREpgIKTiIiIiIhIARScTObp6cmECRPw9PQ0uxSpBPR+k9Km95yUJr3fpLTpPVe5VLrJIURERERERIpKLU4iIiIiIiIFUHASEREREREpgIKTiIiIiIhIARScRERERERECqDgZKIZM2YQFRWFl5cXbdu2ZfXq1WaXJBXUpEmTaN++PX5+foSEhNC/f3927txpdllSSUyaNAmLxcLYsWPNLkUqsCNHjnD33XdTrVo1fHx8aN26NevWrTO7LKmAMjIyeO6554iKisLb25u6desyceJEbDab2aVJCVNwMsmCBQsYO3Yszz77LBs2bKBr167ccMMNxMbGml2aVEArV67k4Ycf5vfff2fp0qVkZGTQu3dvzp8/b3ZpUsH99ddfzJo1i5YtW5pdilRg8fHxdOnSBXd3d77//nu2b9/O66+/TmBgoNmlSQX0f//3f7z77ru8/fbb7Nixg9dee43Jkyczffp0s0uTEqbpyE3SoUMHoqOjmTlzpmNfkyZN6N+/P5MmTTKxMqkMTp48SUhICCtXruSaa64xuxypoM6dO0d0dDQzZszg5ZdfpnXr1kybNs3ssqQCevrpp1mzZo16bkipuOmmmwgNDeXDDz907Lvtttvw8fHhk08+MbEyKWlqcTJBWloa69ato3fv3k77e/fuzdq1a02qSiqThIQEAKpWrWpyJVKRPfzww9x444306tXL7FKkgvv6669p164dd9xxByEhIbRp04b333/f7LKkgrr66qv55Zdf2LVrFwCbNm3i119/pW/fviZXJiXNzewCKqNTp05htVoJDQ112h8aGsqxY8dMqkoqC8MwGDduHFdffTXNmzc3uxypoObPn8/69ev566+/zC5FKoF9+/Yxc+ZMxo0bx3/+8x/+/PNPHn30UTw9Pbn33nvNLk8qmKeeeoqEhAQaN26Mq6srVquV//73vwwePNjs0qSEKTiZyGKxOD02DCPHPpHiNnr0aDZv3syvv/5qdilSQR06dIgxY8bw008/4eXlZXY5UgnYbDbatWvHK6+8AkCbNm3Ytm0bM2fOVHCSYrdgwQI+/fRT5s6dS7Nmzdi4cSNjx44lLCyMoUOHml2elCAFJxMEBwfj6uqao3XpxIkTOVqhRIrTI488wtdff82qVauoXbu22eVIBbVu3TpOnDhB27ZtHfusViurVq3i7bffJjU1FVdXVxMrlIqmZs2aNG3a1GlfkyZNWLRokUkVSUX25JNP8vTTT3PnnXcC0KJFCw4ePMikSZMUnCo4jXEygYeHB23btmXp0qVO+5cuXUrnzp1NqkoqMsMwGD16NIsXL2bZsmVERUWZXZJUYD179mTLli1s3LjR8dGuXTuGDBnCxo0bFZqk2HXp0iXHEgu7du0iIiLCpIqkIrtw4QIuLs5/Qru6umo68kpALU4mGTduHPfccw/t2rWjU6dOzJo1i9jYWEaNGmV2aVIBPfzww8ydO5evvvoKPz8/R2tnQEAA3t7eJlcnFY2fn1+O8XO+vr5Uq1ZN4+qkRDz22GN07tyZV155hYEDB/Lnn38ya9YsZs2aZXZpUgHdfPPN/Pe//6VOnTo0a9aMDRs2MHXqVEaMGGF2aVLCNB25iWbMmMFrr71GXFwczZs354033tDU0FIi8ho7FxMTw7Bhw0q3GKmUunfvrunIpUT973//45lnnmH37t1ERUUxbtw47r//frPLkgooKSmJ8ePHs2TJEk6cOEFYWBiDBw/m+eefx8PDw+zypAQpOImIiIiIiBRAY5xEREREREQKoOAkIiIiIiJSAAUnERERERGRAig4iYiIiIiIFEDBSUREREREpAAKTiIiIiIiIgVQcBIRERERESmAgpOIiIiIiEgBFJxERESKwGKx8OWXX5pdhoiIlDIFJxERKTeGDRuGxWLJ8dGnTx+zSxMRkQrOzewCREREiqJPnz7ExMQ47fP09DSpGhERqSzU4iQiIuWKp6cnNWrUcPoICgoC7N3oZs6cyQ033IC3tzdRUVF8/vnnTs/fsmULPXr0wNvbm2rVqvHAAw9w7tw5p3Nmz55Ns2bN8PT0pGbNmowePdrp+KlTp7j11lvx8fGhQYMGfP311yV70yIiYjoFJxERqVDGjx/PbbfdxqZNm7j77rsZPHgwO3bsAODChQv06dOHoKAg/vrrLz7//HN+/vlnp2A0c+bM/2/n7kEaCcIwjj8jCpplGwlGSWMhKikURMGgjVhFEATFJki0kaAEGyGNYkRr7WIhdgYEC8EiaGEZEKughVoLQRTShIA22SsOFoJy6x1cNOH/q2Zn9uOd8mH3Xa2urmp5eVl3d3c6Pz9XT09P1TO2t7c1Pz+v29tbTU1NKRqNqlgs1nSfAIDaMo7jON9dBAAAX7G4uKjj42O1trZWzSeTSW1ubsoYo3g8roODA3dtdHRUQ0NDSqfTOjw8VDKZ1NPTkyzLkiRls1lNT0+rUCgoEAgoGAxqaWlJu7u7n9ZgjNHGxoZ2dnYkSeVyWbZtK5vN0msFAA2MHicAQF2ZmJioCkaS1N7e7o7D4XDVWjgcVj6flyTd399rcHDQDU2SNDY2pkqlosfHRxljVCgUNDk5+ccaBgYG3LFlWbJtWy8vL/+6JQBAHSA4AQDqimVZHz6d82KMkSQ5juOOPzunra3tS/draWn5cG2lUvmrmgAA9YUeJwBAQ7m+vv5w3N/fL0kKhULK5/Mql8vuei6XU1NTk3p7e2Xbtrq7u3V1dVXTmgEAPx9vnAAAdeX9/V3Pz89Vc83NzfL7/ZKk09NTDQ8Pa3x8XJlMRjc3Nzo6OpIkRaNRbW1tKRaLKZVK6fX1VYlEQgsLCwoEApKkVCqleDyujo4ORSIRlUol5XI5JRKJ2m4UAPCjEJwAAHXl4uJCXV1dVXN9fX16eHiQ9PuPdycnJ1pZWVFnZ6cymYxCoZAkyefz6fLyUmtraxoZGZHP59Ps7Kz29vbce8ViMb29vWl/f1/r6+vy+/2am5ur3QYBAD8Sf9UDADQMY4zOzs40MzPz3aUAABoMPU4AAAAA4IHgBAAAAAAe6HECADQMvj4HAPwvvHECAAAAAA8EJwAAAADwQHACAAAAAA8EJwAAAADwQHACAAAAAA8EJwAAAADwQHACAAAAAA8EJwAAAADw8AtCEfmAZrPY4gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -614,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -623,7 +597,7 @@ "'ok'" ] }, - "execution_count": 41, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -642,7 +616,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -700,9 +674,9 @@ "...vars\n", "Keras model archive saving:\n", "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:30 2497920\n", - "config.json 2023-02-01 01:27:30 2425\n", - "metadata.json 2023-02-01 01:27:30 64\n", + "variables.h5 2023-02-03 15:40:22 9972096\n", + "config.json 2023-02-03 15:40:22 2425\n", + "metadata.json 2023-02-03 15:40:22 64\n", "Keras weights file () saving:\n", "...layers\n", "......dense\n", @@ -770,642 +744,9 @@ "...vars\n", "Keras model archive saving:\n", "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:30 2605296\n", - "config.json 2023-02-01 01:27:30 3278\n", - "metadata.json 2023-02-01 01:27:30 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_10\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_3\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_4\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_5\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_6\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_7\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_8\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_9\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........13\n", - ".........14\n", - ".........15\n", - ".........16\n", - ".........17\n", - ".........18\n", - ".........19\n", - ".........2\n", - ".........20\n", - ".........21\n", - ".........22\n", - ".........23\n", - ".........24\n", - ".........25\n", - ".........26\n", - ".........27\n", - ".........28\n", - ".........29\n", - ".........3\n", - ".........30\n", - ".........31\n", - ".........32\n", - ".........33\n", - ".........34\n", - ".........35\n", - ".........36\n", - ".........37\n", - ".........38\n", - ".........39\n", - ".........4\n", - ".........40\n", - ".........41\n", - ".........42\n", - ".........43\n", - ".........44\n", - ".........5\n", - ".........6\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:30 2876328\n", - "config.json 2023-02-01 01:27:30 5403\n", - "metadata.json 2023-02-01 01:27:30 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......conv2d\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "......max_pooling2d\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........13\n", - ".........14\n", - ".........15\n", - ".........16\n", - ".........2\n", - ".........3\n", - ".........4\n", - ".........5\n", - ".........6\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:30 5630656\n", - "config.json 2023-02-01 01:27:30 2761\n", - "metadata.json 2023-02-01 01:27:30 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......conv2d\n", - ".........vars\n", - "............0\n", - "............1\n", - "......conv2d_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......conv2d_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "......max_pooling2d\n", - ".........vars\n", - "......max_pooling2d_1\n", - ".........vars\n", - "......max_pooling2d_2\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........13\n", - ".........14\n", - ".........15\n", - ".........16\n", - ".........17\n", - ".........18\n", - ".........19\n", - ".........2\n", - ".........20\n", - ".........21\n", - ".........22\n", - ".........23\n", - ".........24\n", - ".........3\n", - ".........4\n", - ".........5\n", - ".........6\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:30 1615704\n", - "config.json 2023-02-01 01:27:30 4286\n", - "metadata.json 2023-02-01 01:27:30 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "......functional\n", - ".........layers\n", - "............conv2d\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_1\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_10\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_11\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_12\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_2\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_3\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_4\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_5\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_6\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_7\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_8\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_9\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............input_layer\n", - "...............vars\n", - "............max_pooling2d\n", - "...............vars\n", - "............max_pooling2d_1\n", - "...............vars\n", - "............max_pooling2d_2\n", - "...............vars\n", - "............max_pooling2d_3\n", - "...............vars\n", - "............max_pooling2d_4\n", - "...............vars\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........2\n", - ".........3\n", - ".........4\n", - ".........5\n", - ".........6\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:31 59356288\n", - "config.json 2023-02-01 01:27:30 11981\n", - "metadata.json 2023-02-01 01:27:30 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "......functional\n", - ".........layers\n", - "............conv2d\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_1\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_10\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_11\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_12\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_2\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_3\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_4\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_5\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_6\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_7\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_8\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_9\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............input_layer\n", - "...............vars\n", - "............max_pooling2d\n", - "...............vars\n", - "............max_pooling2d_1\n", - "...............vars\n", - "............max_pooling2d_2\n", - "...............vars\n", - "............max_pooling2d_3\n", - "...............vars\n", - "............max_pooling2d_4\n", - "...............vars\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........13\n", - ".........14\n", - ".........15\n", - ".........16\n", - ".........17\n", - ".........18\n", - ".........19\n", - ".........2\n", - ".........20\n", - ".........21\n", - ".........22\n", - ".........23\n", - ".........24\n", - ".........25\n", - ".........26\n", - ".........27\n", - ".........28\n", - ".........29\n", - ".........3\n", - ".........30\n", - ".........31\n", - ".........32\n", - ".........33\n", - ".........34\n", - ".........35\n", - ".........36\n", - ".........37\n", - ".........38\n", - ".........39\n", - ".........4\n", - ".........40\n", - ".........41\n", - ".........42\n", - ".........43\n", - ".........44\n", - ".........45\n", - ".........46\n", - ".........47\n", - ".........48\n", - ".........49\n", - ".........5\n", - ".........50\n", - ".........51\n", - ".........52\n", - ".........53\n", - ".........54\n", - ".........55\n", - ".........56\n", - ".........57\n", - ".........58\n", - ".........59\n", - ".........6\n", - ".........60\n", - ".........61\n", - ".........62\n", - ".........63\n", - ".........64\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:31 177093096\n", - "config.json 2023-02-01 01:27:31 12379\n", - "metadata.json 2023-02-01 01:27:31 64\n", - "Keras weights file () saving:\n", - "...layers\n", - "......dense\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_1\n", - ".........vars\n", - "............0\n", - "............1\n", - "......dense_2\n", - ".........vars\n", - "............0\n", - "............1\n", - "......flatten\n", - ".........vars\n", - "......functional\n", - ".........layers\n", - "............conv2d\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_1\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_10\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_11\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_12\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_2\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_3\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_4\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_5\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_6\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_7\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_8\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............conv2d_9\n", - "...............vars\n", - "..................0\n", - "..................1\n", - "............input_layer\n", - "...............vars\n", - "............max_pooling2d\n", - "...............vars\n", - "............max_pooling2d_1\n", - "...............vars\n", - "............max_pooling2d_2\n", - "...............vars\n", - "............max_pooling2d_3\n", - "...............vars\n", - "............max_pooling2d_4\n", - "...............vars\n", - ".........vars\n", - "...metrics\n", - "......mean\n", - ".........vars\n", - "............0\n", - "............1\n", - "......mean_metric_wrapper\n", - ".........vars\n", - "............0\n", - "............1\n", - "...optimizer\n", - "......vars\n", - ".........0\n", - ".........1\n", - ".........10\n", - ".........11\n", - ".........12\n", - ".........2\n", - ".........3\n", - ".........4\n", - ".........5\n", - ".........6\n", - ".........7\n", - ".........8\n", - ".........9\n", - "...vars\n", - "Keras model archive saving:\n", - "File Name Modified Size\n", - "variables.h5 2023-02-01 01:27:32 59356288\n", - "config.json 2023-02-01 01:27:31 12391\n", - "metadata.json 2023-02-01 01:27:31 64\n" + "variables.h5 2023-02-03 15:40:22 46173936\n", + "config.json 2023-02-03 15:40:22 3280\n", + "metadata.json 2023-02-03 15:40:22 64\n" ] }, { @@ -1441,97 +782,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:tensorflow:Assets written to: saved_models/regular Neural Network (5 hidden layers)/assets\n", - "WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/regular Neural Network (10 hidden layers)/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/regular Neural Network (10 hidden layers)/assets\n", - "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _update_step_xla while saving (showing 2 of 2). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/convolutional neural network (1 convolution)/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/convolutional neural network (1 convolution)/assets\n", - "WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _update_step_xla while saving (showing 4 of 4). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/convolutional neural network (3 convolutions)/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/convolutional neural network (3 convolutions)/assets\n", - "WARNING:absl:Found untraced functions such as _update_step_xla, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing 5 of 14). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/frozen VGG16 base model/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/frozen VGG16 base model/assets\n", - "WARNING:absl:Found untraced functions such as _update_step_xla, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing 5 of 14). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/fully trainable VGG16 base model/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/fully trainable VGG16 base model/assets\n", - "WARNING:absl:Found untraced functions such as _update_step_xla, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op while saving (showing 5 of 14). These functions will not be directly callable after loading.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/partly trainable VGG16 base model/assets\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: saved_models/partly trainable VGG16 base model/assets\n" + "INFO:tensorflow:Assets written to: saved_models/regular Neural Network (5 hidden layers)/assets\n" ] } ], @@ -1563,7 +814,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1590,7 +841,7 @@ "Non-trainable params: 0\n", "_________________________________________________________________\n", "None\n", - "204/204 [==============================] - 64s 313ms/step - loss: 0.2786 - accuracy: 0.9249\n", + "204/204 [==============================] - 54s 263ms/step - loss: 0.2786 - accuracy: 0.9249\n", "Restored model, accuracy: 92.49%\n" ] } diff --git a/LaTeX/Final_Project_Loedige.tex b/LaTeX/Final_Project_Loedige.tex index 117edfe..1262c12 100644 --- a/LaTeX/Final_Project_Loedige.tex +++ b/LaTeX/Final_Project_Loedige.tex @@ -8,13 +8,51 @@ \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} -\usepackage{listings} \usepackage{xcolor} \usepackage{hyperref} \usepackage{multicol} \usepackage{setspace} \usepackage{graphicx} +\usepackage{float} \usepackage{xurl} +\usepackage{cleveref} +\usepackage{listings} +\definecolor{mGreen}{rgb}{0,0.6,0} +\definecolor{mGray}{rgb}{0.5,0.5,0.5} +\definecolor{mPurple}{rgb}{0.58,0,0.82} +\definecolor{backgroundColour}{rgb}{0.95,0.95,0.92} +\lstset{ + language=python, + backgroundcolor=\color{backgroundColour}, + commentstyle=\color{mGreen}, + keywordstyle=\color{magenta}, + numberstyle=\tiny\color{mGray}, + stringstyle=\color{mPurple}, + basicstyle=\ttfamily\scriptsize, + breakatwhitespace=false, + breaklines=true, + captionpos=b, + keepspaces=true, + numbers=left, + firstnumber=0, + stepnumber=1, + numbersep=5pt, + showspaces=false, + showstringspaces=false, + showtabs=false, + tabsize=2, + literate={~}{{$\mathtt{\sim}$}}1 +} +\lstset{literate=% + {Ö}{{\"O}}1 + {Ä}{{\"A}}1 + {Ü}{{\"U}}1 + {ß}{{\ss}}2 + {ü}{{\"u}}1 + {ä}{{\"a}}1 + {ö}{{\"o}}1 +} + % allow deeeep lists \usepackage{enumitem} @@ -130,48 +168,85 @@ The Street View House Numbers (SVHN) dataset was created at Stanford University and 531\,131 additional, somewhat less difficult samples, to use as extra training data" (\url{http://ufldl.stanford.edu/housenumbers/}). The dataset provided by TensorFlow uses the "MNIST-like 32-by-32 images centered around a single character" version. +\section{Methods}% +\label{sec:Methods} +\subsection{Dense Neural Network}% +\label{sub:Dense Neural Network} +The first method tried to find a good classification model was to use regular Dense Neural Networks. +Through experimentation it was determined that the classification accuracy only varied slightly when using a different amount of hidden layers (see \cref{sub:Dense Neural Network Comparison}). + +\subsection{Convolutional Neural Network (CNN)}% +\label{sub:Convolutional Neural Network} +When it comes to image classification CNNs are often used as they reduce the dimensionality of the input. +This in turn simplifies the problem and makes it easier to classify. +Multiple configurations for CNNs where tried (see \cref{sub:CNN Comparison}) +The best CNN found during experimentation had the following configuration: +\lstinputlisting[firstline=90, lastline=108]{./exported_code.py} \clearpage -\section{Code}% -\label{sec:Code} +\section{Comparison}% +\label{sec:Comparison} +While the Dense Neural Networks can be trained efficiently trained (a few seconds per epoch), +they are also less accurate than the CNNs. +As can be seen in \cref{fig:val_acc all models} the Dense Neural Networks achieved a validation accuracy of around 70 \%. +The CNNs on the other hand achieved around 80 -- 85 \%. + +It can also be seen that the type of model has a bigger impact on the accuracy than its complexity. +Even the CNN with just one convolutional layer performs better than the Dense neural network with 5 hidden dense layers. + +\subsection{VGG16}% +\label{sub:VGG16} +As can be seen from the comparison of the two previous methods CNNs hold a clear advantage when it comes to image classification. +In order to find an even better model for classification it therefore makes sense to look at CNNs developed by other researchers. +VGG16 is one CNN that is commonly used for these kind of tasks and is also available as part of the texttt{tensorflow.keras} library. +While the attempt at transfer learning was unsuccessful (see \cref{sub:Transfer Learning VGG16}), +training the whole model pre-trained on the "Imagenet" dataset with a learning rate of $0.001$ produced a model with even higher accuracy than the CNNs mentioned before. +While the training of this model is very time intensive it gave a validation accuracy of over 92 \% (\cref{fig:val_acc all models}). + +\begin{figure}[H] + \centering + \includegraphics[width=\textwidth]{images/overall_val_acc.pdf} + \caption{Validation Accuracy of the different models} + \label{fig:val_acc all models} +\end{figure} + +\section{Summary}% +\label{sec:Summary} +In this project it has been shown that Convolutional Neural Networks outperform Dense Neural Networks when it comes to classifying the SVHN dataset. +Additionally, if the goal is to achieve the highest accuracy possible one should use a pre-existing model designed for solving problems in a similar context. + +\clearpage +\appendix +\section{Appendix}% +\label{sec:Appendix} + +\subsection{Dense Neural Network Comparison}% +\label{sub:Dense Neural Network Comparison} +\begin{center} + \includegraphics[width=.8\textwidth]{images/dense_neural_net_acc.pdf}\\ + \includegraphics[width=.8\textwidth]{images/dense_neural_net_val_acc.pdf} +\end{center} + + +\subsection{CNN Comparison}% +\label{sub:CNN Comparison} +\begin{center} + \includegraphics[width=.8\textwidth]{images/cnn_acc.pdf} + \includegraphics[width=.8\textwidth]{images/cnn_val_acc.pdf} +\end{center} + +\subsection{Transfer Learning VGG16}% +\label{sub:Transfer Learning VGG16} +\begin{center} + \includegraphics[width=.7\textwidth]{images/transfer_learning_acc.pdf} + \includegraphics[width=.7\textwidth]{images/transfer_learning_val_acc.pdf} +\end{center} + +\subsection{Code}% +\label{sub:Code} The following code is an exported and slightly formatted version of a Jupyter Notebook that is also available at \url{https://git.ploedige.com/Intelligent_World_Informatics_V/Final_Project}. -\definecolor{mGreen}{rgb}{0,0.6,0} -\definecolor{mGray}{rgb}{0.5,0.5,0.5} -\definecolor{mPurple}{rgb}{0.58,0,0.82} -\definecolor{backgroundColour}{rgb}{0.95,0.95,0.92} -\lstset{ - language=python, - backgroundcolor=\color{backgroundColour}, - commentstyle=\color{mGreen}, - keywordstyle=\color{magenta}, - numberstyle=\tiny\color{mGray}, - stringstyle=\color{mPurple}, - basicstyle=\ttfamily\scriptsize, - breakatwhitespace=false, - breaklines=true, - captionpos=b, - keepspaces=true, - numbers=left, - firstnumber=0, - stepnumber=1, - numbersep=5pt, - showspaces=false, - showstringspaces=false, - showtabs=false, - tabsize=2, - literate={~}{{$\mathtt{\sim}$}}1 -} -\lstset{literate=% - {Ö}{{\"O}}1 - {Ä}{{\"A}}1 - {Ü}{{\"U}}1 - {ß}{{\ss}}2 - {ü}{{\"u}}1 - {ä}{{\"a}}1 - {ö}{{\"o}}1 -} \lstinputlisting{./exported_code.py} diff --git a/LaTeX/exported_code.py b/LaTeX/exported_code.py index 97fb5b6..f86b25c 100644 --- a/LaTeX/exported_code.py +++ b/LaTeX/exported_code.py @@ -5,7 +5,7 @@ from tensorflow.keras import layers, models, applications, optimizers import tensorflow_datasets as tfds import tkinter.messagebox # for notifications -# Load Dataset +# Load Dataset # https://www.tensorflow.org/datasets/keras_example # split into training and test data ds_train, ds_test = tfds.load( @@ -42,54 +42,32 @@ configs = {} configs['regular Neural Network (3 hidden layers)'] = { 'model': models.Sequential([ layers.Flatten(input_shape=(32, 32, 3)), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), + layers.Dense(256, activation='relu'), + layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]), 'optimizer': 'adam', 'loss': 'sparse_categorical_crossentropy', 'metrics': ['accuracy'], - 'epochs': 10, + 'epochs': 30, 'batch_size': 64 } configs['regular Neural Network (5 hidden layers)'] = { 'model': models.Sequential([ layers.Flatten(input_shape=(32, 32, 3)), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), + layers.Dense(1024, activation='relu'), + layers.Dense(512, activation='relu'), + layers.Dense(256, activation='relu'), + layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]), 'optimizer': 'adam', 'loss': 'sparse_categorical_crossentropy', 'metrics': ['accuracy'], - 'epochs': 10, - 'batch_size': 64 - } - -configs['regular Neural Network (10 hidden layers)'] = { - 'model': models.Sequential([ - layers.Flatten(input_shape=(32, 32, 3)), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(64, activation='relu'), - layers.Dense(10, activation='softmax') - ]), - 'optimizer': 'adam', - 'loss': 'sparse_categorical_crossentropy', - 'metrics': ['accuracy'], - 'epochs': 10, + 'epochs': 30, 'batch_size': 64 } @@ -132,7 +110,6 @@ configs['convolutional neural network (3 convolutions)'] = { vgg16_base_model = applications.VGG16(input_shape=(32,32,3), include_top= False) # freeze the VGG16 model vgg16_base_model.trainable = False - configs['frozen VGG16 base model'] = { 'model': models.Sequential([ vgg16_base_model, @@ -229,28 +206,4 @@ plt.title("Validation Accuracy") plt.show() # Notify when done -tkinter.messagebox.showinfo("DONE", "DONE") - -# Save data for future use -# store histories with pickle -import pickle -histories = {} -for config_name, config in configs.items(): - histories[config_name] = config['history'] -with open('savepoint.pkl', 'wb') as out: - pickle.dump(histories, out) - -# store models with tensorflow -for config_name, config in configs.items(): - config['model'].save(f'saved_models/{config_name}') - -# store models in HDF5 format -for config_name, config in configs.items(): - config['model'].save(f'hdf5_models/{config_name}.h5') - -# Test Save File -new_model = tf.keras.models.load_model('hdf5_models/fully trainable VGG16 base model.h5') -print(new_model.summary()) -# Evaluate the restored model -loss, acc = new_model.evaluate(ds_test) -print('Restored model, accuracy: {:5.2f}%'.format(100 * acc)) \ No newline at end of file +tkinter.messagebox.showinfo("DONE", "DONE") \ No newline at end of file diff --git a/LaTeX/images/cnn_acc.pdf b/LaTeX/images/cnn_acc.pdf new file mode 100644 index 0000000..0d2ed9e Binary files /dev/null and b/LaTeX/images/cnn_acc.pdf differ diff --git a/LaTeX/images/cnn_val_acc.pdf b/LaTeX/images/cnn_val_acc.pdf new file mode 100644 index 0000000..bc7052a Binary files /dev/null and b/LaTeX/images/cnn_val_acc.pdf differ diff --git a/LaTeX/images/dense_neural_net_acc.pdf b/LaTeX/images/dense_neural_net_acc.pdf new file mode 100644 index 0000000..4c69c2a Binary files /dev/null and b/LaTeX/images/dense_neural_net_acc.pdf differ diff --git a/LaTeX/images/dense_neural_net_val_acc.pdf b/LaTeX/images/dense_neural_net_val_acc.pdf new file mode 100644 index 0000000..7e55649 Binary files /dev/null and b/LaTeX/images/dense_neural_net_val_acc.pdf differ diff --git a/LaTeX/images/dense_neural_nets_val_acc.pdf b/LaTeX/images/dense_neural_nets_val_acc.pdf new file mode 100644 index 0000000..b5fd942 Binary files /dev/null and b/LaTeX/images/dense_neural_nets_val_acc.pdf differ diff --git a/LaTeX/images/overall_acc.pdf b/LaTeX/images/overall_acc.pdf new file mode 100644 index 0000000..d92f1b2 Binary files /dev/null and b/LaTeX/images/overall_acc.pdf differ diff --git a/LaTeX/images/overall_val_acc.pdf b/LaTeX/images/overall_val_acc.pdf new file mode 100644 index 0000000..13815ae Binary files /dev/null and b/LaTeX/images/overall_val_acc.pdf differ diff --git a/LaTeX/images/transfer_learning_acc.pdf b/LaTeX/images/transfer_learning_acc.pdf new file mode 100644 index 0000000..171f693 Binary files /dev/null and b/LaTeX/images/transfer_learning_acc.pdf differ diff --git a/LaTeX/images/transfer_learning_val_acc.pdf b/LaTeX/images/transfer_learning_val_acc.pdf new file mode 100644 index 0000000..7c5a518 Binary files /dev/null and b/LaTeX/images/transfer_learning_val_acc.pdf differ diff --git a/hdf5_models/regular Neural Network (3 hidden layers).h5 b/hdf5_models/regular Neural Network (3 hidden layers).h5 index 54ccf46..5a52e45 100644 Binary files a/hdf5_models/regular Neural Network (3 hidden layers).h5 and b/hdf5_models/regular Neural Network (3 hidden layers).h5 differ diff --git a/hdf5_models/regular Neural Network (5 hidden layers).h5 b/hdf5_models/regular Neural Network (5 hidden layers).h5 index de8b8a6..9b0b7bc 100644 Binary files a/hdf5_models/regular Neural Network (5 hidden layers).h5 and b/hdf5_models/regular Neural Network (5 hidden layers).h5 differ diff --git a/saved_models/regular Neural Network (3 hidden layers)/fingerprint.pb b/saved_models/regular Neural Network (3 hidden layers)/fingerprint.pb index 1e16e87..69160c2 100644 Binary files a/saved_models/regular Neural Network (3 hidden layers)/fingerprint.pb and b/saved_models/regular Neural Network (3 hidden layers)/fingerprint.pb differ diff --git a/saved_models/regular Neural Network (3 hidden layers)/keras_metadata.pb b/saved_models/regular Neural Network (3 hidden layers)/keras_metadata.pb index ecbeb45..7d3adb7 100644 --- a/saved_models/regular Neural Network (3 hidden layers)/keras_metadata.pb +++ b/saved_models/regular Neural Network (3 hidden layers)/keras_metadata.pb @@ -1,9 +1,9 @@ -2root"_tf_keras_sequential*1{"name": "sequential_5", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential_5", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_5_input"}}, {"class_name": "Flatten", "config": {"name": "flatten_5", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_17", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 14, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_5_input"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_5_input"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential_5", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_5_input"}, "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten_5", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense_17", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4}, {"class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7}, {"class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10}, {"class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 16}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 - root.layer-0"_tf_keras_layer*{"name": "flatten_5", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Flatten", "config": {"name": "flatten_5", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 17}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}}2 -root.layer_with_weights-0"_tf_keras_layer*{"name": "dense_17", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_17", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 3072}}, "shared_object_id": 18}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 3072]}}2 -root.layer_with_weights-1"_tf_keras_layer*{"name": "dense_18", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 19}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-2"_tf_keras_layer*{"name": "dense_19", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 20}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-3"_tf_keras_layer*{"name": "dense_20", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 21}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 +2root"_tf_keras_sequential*1{"name": "sequential_2", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential_2", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_2_input"}}, {"class_name": "Flatten", "config": {"name": "flatten_2", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_8", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_9", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_10", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_11", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 14, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_2_input"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_2_input"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential_2", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_2_input"}, "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten_2", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense_8", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4}, {"class_name": "Dense", "config": {"name": "dense_9", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7}, {"class_name": "Dense", "config": {"name": "dense_10", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10}, {"class_name": "Dense", "config": {"name": "dense_11", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 16}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 + root.layer-0"_tf_keras_layer*{"name": "flatten_2", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Flatten", "config": {"name": "flatten_2", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 17}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}}2 +root.layer_with_weights-0"_tf_keras_layer*{"name": "dense_8", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_8", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 3072}}, "shared_object_id": 18}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 3072]}}2 +root.layer_with_weights-1"_tf_keras_layer*{"name": "dense_9", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_9", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 19}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2 +root.layer_with_weights-2"_tf_keras_layer*{"name": "dense_10", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_10", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 128}}, "shared_object_id": 20}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 128]}}2 +root.layer_with_weights-3"_tf_keras_layer*{"name": "dense_11", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_11", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 21}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 mroot.keras_api.metrics.0"_tf_keras_metric*{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 22}2 nroot.keras_api.metrics.1"_tf_keras_metric*{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 16}2 \ No newline at end of file diff --git a/saved_models/regular Neural Network (3 hidden layers)/saved_model.pb b/saved_models/regular Neural Network (3 hidden layers)/saved_model.pb index 3854a4f..aeb5d21 100644 Binary files a/saved_models/regular Neural Network (3 hidden layers)/saved_model.pb and b/saved_models/regular Neural Network (3 hidden layers)/saved_model.pb differ diff --git a/saved_models/regular Neural Network (3 hidden layers)/variables/variables.data-00000-of-00001 b/saved_models/regular Neural Network (3 hidden layers)/variables/variables.data-00000-of-00001 index 4432697..7667e10 100644 Binary files a/saved_models/regular Neural Network (3 hidden layers)/variables/variables.data-00000-of-00001 and b/saved_models/regular Neural Network (3 hidden layers)/variables/variables.data-00000-of-00001 differ diff --git a/saved_models/regular Neural Network (3 hidden layers)/variables/variables.index b/saved_models/regular Neural Network (3 hidden layers)/variables/variables.index index 6b582f9..4b8e4f0 100644 Binary files a/saved_models/regular Neural Network (3 hidden layers)/variables/variables.index and b/saved_models/regular Neural Network (3 hidden layers)/variables/variables.index differ diff --git a/saved_models/regular Neural Network (5 hidden layers)/fingerprint.pb b/saved_models/regular Neural Network (5 hidden layers)/fingerprint.pb index 3f6d8b7..2ce901e 100644 Binary files a/saved_models/regular Neural Network (5 hidden layers)/fingerprint.pb and b/saved_models/regular Neural Network (5 hidden layers)/fingerprint.pb differ diff --git a/saved_models/regular Neural Network (5 hidden layers)/keras_metadata.pb b/saved_models/regular Neural Network (5 hidden layers)/keras_metadata.pb index b77225d..f658818 100644 --- a/saved_models/regular Neural Network (5 hidden layers)/keras_metadata.pb +++ b/saved_models/regular Neural Network (5 hidden layers)/keras_metadata.pb @@ -1,11 +1,11 @@ -@root"_tf_keras_sequential*@{"name": "sequential_14", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential_14", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_14_input"}}, {"class_name": "Flatten", "config": {"name": "flatten_14", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_64", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_65", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_66", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_67", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_68", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_69", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 20, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_14_input"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_14_input"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential_14", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_14_input"}, "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten_14", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense_64", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4}, {"class_name": "Dense", "config": {"name": "dense_65", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7}, {"class_name": "Dense", "config": {"name": "dense_66", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10}, {"class_name": "Dense", "config": {"name": "dense_67", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13}, {"class_name": "Dense", "config": {"name": "dense_68", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 14}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 15}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 16}, {"class_name": "Dense", "config": {"name": "dense_69", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 17}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 19}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 22}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 - root.layer-0"_tf_keras_layer*{"name": "flatten_14", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Flatten", "config": {"name": "flatten_14", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 23}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}}2 -root.layer_with_weights-0"_tf_keras_layer*{"name": "dense_64", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_64", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 3072}}, "shared_object_id": 24}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 3072]}}2 -root.layer_with_weights-1"_tf_keras_layer*{"name": "dense_65", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_65", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 25}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-2"_tf_keras_layer*{"name": "dense_66", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_66", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 26}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-3"_tf_keras_layer*{"name": "dense_67", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_67", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 27}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-4"_tf_keras_layer*{"name": "dense_68", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_68", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 14}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 15}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 16, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 28}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 -root.layer_with_weights-5"_tf_keras_layer*{"name": "dense_69", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_69", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 17}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 19, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 29}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 +@root"_tf_keras_sequential*@{"name": "sequential_4", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": false, "class_name": "Sequential", "config": {"name": "sequential_4", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_4_input"}}, {"class_name": "Flatten", "config": {"name": "flatten_4", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 1024, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 512, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_21", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_22", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_23", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 20, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "ndim": 4, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_4_input"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 32, 32, 3]}, "float32", "flatten_4_input"]}, "keras_version": "2.11.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential_4", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_4_input"}, "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten_4", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 1024, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4}, {"class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 512, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7}, {"class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10}, {"class_name": "Dense", "config": {"name": "dense_21", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13}, {"class_name": "Dense", "config": {"name": "dense_22", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 14}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 15}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 16}, {"class_name": "Dense", "config": {"name": "dense_23", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 17}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 19}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 22}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Custom>Adam", "config": {"name": "Adam", "weight_decay": null, "clipnorm": null, "global_clipnorm": null, "clipvalue": null, "use_ema": false, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "jit_compile": false, "is_legacy_optimizer": false, "learning_rate": 0.0010000000474974513, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": false}}}}2 + root.layer-0"_tf_keras_layer*{"name": "flatten_4", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Flatten", "config": {"name": "flatten_4", "trainable": true, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 32, 32, 3]}, "data_format": "channels_last"}, "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 23}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 32, 32, 3]}}2 +root.layer_with_weights-0"_tf_keras_layer*{"name": "dense_18", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_18", "trainable": true, "dtype": "float32", "units": 1024, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 3072}}, "shared_object_id": 24}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 3072]}}2 +root.layer_with_weights-1"_tf_keras_layer*{"name": "dense_19", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_19", "trainable": true, "dtype": "float32", "units": 512, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 5}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 6}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 7, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 1024}}, "shared_object_id": 25}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 1024]}}2 +root.layer_with_weights-2"_tf_keras_layer*{"name": "dense_20", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_20", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 8}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 9}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 10, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 512}}, "shared_object_id": 26}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 512]}}2 +root.layer_with_weights-3"_tf_keras_layer*{"name": "dense_21", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_21", "trainable": true, "dtype": "float32", "units": 128, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 11}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 12}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 27}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2 +root.layer_with_weights-4"_tf_keras_layer*{"name": "dense_22", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_22", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 14}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 15}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 16, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 128}}, "shared_object_id": 28}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 128]}}2 +root.layer_with_weights-5"_tf_keras_layer*{"name": "dense_23", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "preserve_input_structure_in_config": false, "autocast": true, "class_name": "Dense", "config": {"name": "dense_23", "trainable": true, "dtype": "float32", "units": 10, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 17}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 19, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 64}}, "shared_object_id": 29}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 64]}}2 root.keras_api.metrics.0"_tf_keras_metric*{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 30}2 root.keras_api.metrics.1"_tf_keras_metric*{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 22}2 \ No newline at end of file diff --git a/saved_models/regular Neural Network (5 hidden layers)/saved_model.pb b/saved_models/regular Neural Network (5 hidden layers)/saved_model.pb index cc31446..0d5fd9c 100644 Binary files a/saved_models/regular Neural Network (5 hidden layers)/saved_model.pb and b/saved_models/regular Neural Network (5 hidden layers)/saved_model.pb differ diff --git a/saved_models/regular Neural Network (5 hidden layers)/variables/variables.data-00000-of-00001 b/saved_models/regular Neural Network (5 hidden layers)/variables/variables.data-00000-of-00001 index 19feb22..48385ca 100644 Binary files a/saved_models/regular Neural Network (5 hidden layers)/variables/variables.data-00000-of-00001 and b/saved_models/regular Neural Network (5 hidden layers)/variables/variables.data-00000-of-00001 differ diff --git a/saved_models/regular Neural Network (5 hidden layers)/variables/variables.index b/saved_models/regular Neural Network (5 hidden layers)/variables/variables.index index 75bb07c..d3adc3d 100644 Binary files a/saved_models/regular Neural Network (5 hidden layers)/variables/variables.index and b/saved_models/regular Neural Network (5 hidden layers)/variables/variables.index differ diff --git a/savepoint.pkl b/savepoint.pkl index e5a8962..269cd34 100644 Binary files a/savepoint.pkl and b/savepoint.pkl differ diff --git a/savepoint_2023-02-01.pkl b/savepoint_2023-02-01.pkl new file mode 100644 index 0000000..e5a8962 Binary files /dev/null and b/savepoint_2023-02-01.pkl differ