general structure and project goal

This commit is contained in:
paul-loedige 2023-02-02 00:56:11 +09:00
parent 9e461bed89
commit ecb37d02d1

View File

@ -1,4 +1,10 @@
\documentclass[a4paper, 12pt, english]{article}
\usepackage[
top=2cm,
bottom=2cm,
right=2cm,
left=2cm
]{geometry}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
@ -8,6 +14,7 @@
\usepackage{multicol}
\usepackage{setspace}
\usepackage{graphicx}
\usepackage{xurl}
% allow deeeep lists
\usepackage{enumitem}
@ -46,6 +53,7 @@
\begin{document}
\maketitle
\toccontents
\clearpage
\section{Assignment}%
\label{sec:Assignment}
@ -104,103 +112,67 @@
\item Put all the above in a single PDF and upload to ITC-LMS
\end{itemize}
\end{itemize}
\subsection{How the project is graded}%
\label{sub:How the project is graded}
\begin{itemize}
\item The purpose of the project is to make you familiar with machine learning experiments.
\begin{itemize}
\item Not intended to be a stressful project.
\begin{itemize}
\item So do not worry too much on achieving high accuracy, good parameter settings, etc
\item Make sure to keep it simple
\end{itemize}
\end{itemize}
\item What we would like to see:
\begin{itemize}
\item Clarity of the project description
\item Relevance between the problem and the chosen approaches
\item Appropriate input/output design and execution of the experiments
\item Proper evaluation methods, figures and tables
\item Easy to understand writings, informative comments on the code
\end{itemize}
\item Overall grade for this course : 70\% homeworks, 30\% final project
\begin{itemize}
\item Bonus points for helping each other on slack
\begin{itemize}
\item Feel free to discuss your final project on slack if you have troubles
\end{itemize}
\end{itemize}
\end{itemize}
\clearpage
%\section{Code}%
%\label{sec:Code}
\section{Project Goal}%
\label{sec:Project Goal}
This project aims to compare different deep learning techniques.
The goal is to discern the pros and cons of the different techniques when it comes to their use on character recognitions in images.
This approach was chosen because it doesn't focus on the learning of object concepts but rather on pattern recognition.
Since pattern recognition and character recognition in particular is a less complex topic than concept classification
it allows for the use of less complex models which are easier to understand.
%\definecolor{mGreen}{rgb}{0,0.6,0}
%\definecolor{mGray}{rgb}{0.5,0.5,0.5}
%\definecolor{mPurple}{rgb}{0.58,0,0.82}
%\definecolor{backgroundColour}{rgb}{0.95,0.95,0.92}
%\lstset{
%language=C,
%backgroundcolor=\color{backgroundColour},
%commentstyle=\color{mGreen},
%keywordstyle=\color{magenta},
%numberstyle=\tiny\color{mGray},
%stringstyle=\color{mPurple},
%basicstyle=\ttfamily\scriptsize,
%breakatwhitespace=false,
%breaklines=true,
%captionpos=b,
%keepspaces=true,
%numbers=left,
%firstnumber=0,
%stepnumber=1,
%numbersep=5pt,
%showspaces=false,
%showstringspaces=false,
%showtabs=false,
%tabsize=2,
%literate={~}{{$\mathtt{\sim}$}}1
%}
%\lstset{literate=%
%{Ö}{{\"O}}1
%{Ä}{{\"A}}1
%{Ü}{{\"U}}1
%{ß}{{\ss}}2
%{ü}{{\"u}}1
%{ä}{{\"a}}1
%{ö}{{\"o}}1
%}
\subsection{The Dataset}%
\label{sub:The Dataset}
The project uses the "svhn\_cropped" dataset (\url{https://www.tensorflow.org/datasets/catalog/svhn_cropped}).
The Street View House Numbers (SVHN) dataset was created at Stanford University and includes
"73\,257 digits for training, 26\,032 digits for testing,
and 531\,131 additional, somewhat less difficult samples, to use as extra training data" (\url{http://ufldl.stanford.edu/housenumbers/}).
The dataset provided by TensorFlow uses the "MNIST-like 32-by-32 images centered around a single character" version.
%\subsection{\texttt{vinput.c}}%
%\label{sub:vinput_c}
%\lstinputlisting{../Code/vinput.c}
%\clearpage
\clearpage
%\subsection{\texttt{vinput.h}}%
%\label{sub:vinput_h}
%\lstinputlisting{../Code/vinput.h}
%\clearpage
\section{Code}%
\label{sec:Code}
%\subsection{\texttt{vkbd.c}}%
%\label{sub:vkbd}
%\lstinputlisting{../Code/vkbd.c}
%\clearpage
The following code is an exported and slightly formatted version of a Jupyter Notebook that is also available at \url{https://git.ploedige.com/Intelligent_World_Informatics_V/Final_Project}.
%\section{Output}%
%\label{sec:Output}
\definecolor{mGreen}{rgb}{0,0.6,0}
\definecolor{mGray}{rgb}{0.5,0.5,0.5}
\definecolor{mPurple}{rgb}{0.58,0,0.82}
\definecolor{backgroundColour}{rgb}{0.95,0.95,0.92}
\lstset{
language=python,
backgroundcolor=\color{backgroundColour},
commentstyle=\color{mGreen},
keywordstyle=\color{magenta},
numberstyle=\tiny\color{mGray},
stringstyle=\color{mPurple},
basicstyle=\ttfamily\scriptsize,
breakatwhitespace=false,
breaklines=true,
captionpos=b,
keepspaces=true,
numbers=left,
firstnumber=0,
stepnumber=1,
numbersep=5pt,
showspaces=false,
showstringspaces=false,
showtabs=false,
tabsize=2,
literate={~}{{$\mathtt{\sim}$}}1
}
\lstset{literate=%
{Ö}{{\"O}}1
{Ä}{{\"A}}1
{Ü}{{\"U}}1
{ß}{{\ss}}2
{ü}{{\"u}}1
{ä}{{\"a}}1
{ö}{{\"o}}1
}
%\subsection{Shell Script for compiling and running}%
%\label{sub:Shell Script for compiling and running}
%\includegraphics[width=\textwidth]{run_sh.png}
%\subsection{Terminal Screenshot}%
%\label{sub:Terminal Screenshot}
%\includegraphics[width=\textwidth]{executing_screenshot.png}
%\subsection{\texttt{output.txt}}%
%\label{sub:output_txt}
%\includegraphics[width=\textwidth]{output_txt.png}
\lstinputlisting{./exported_code.py}
\end{document}