import tensorflow as tf import tensorflow_datasets as tfds new_model = tf.keras.models.load_model('hdf5_models/fully trainable VGG16 base model.h5') new_model.summary() ds_train, ds_test = tfds.load( 'svhn_cropped', split=['train', 'test'], shuffle_files=True, as_supervised=True ) loss, acc = new_model.evaluate(ds_test, verbose=2) print('Restored model, accuracy: {:5.2f}%'.format(100 * acc))