Intelligent World Informatics Lecture V
Final Project

Paul Lodige
Student ID: 37-229753
paul.loedige@student.kit.edu

February 3, 2023

(1 Assignment|

2 Project Goall

3 Methods

[> Summary|

[A Appendix|
[A.1 Dense Neural Network Comparison|
[A.2 CNN Comparison|
[A.3 Transter Learning VGGI16|

1 Assignment

e Define your own project

e Describe the task and the goal you would like to achieve
e Experiment on any public dataset provided by Tensorflow:

e Full list: https://www.tensorflow.org/datasets/catalog/overview
e Simple datasets: https://www.tensorflow.org/api_docs/python/tf/kera
s/datasets

e Do one of the followings:

1. Apply two different deep learning techniques you learned from this class

e ec.g.: Comparing Dense DNN vs RNN method on the same dataset (what
pros and cons?)

e c.g.: Combining CNN and RNN on a dataset (why the combination is prefer-
able?)
2. Apply transfer learning with two different base models
e Explain the reasons why the base models are reasonable choices.

e Survey on the internet with keywords such as “best model for imagenet /ci-
far10/mnist”, “tensorflow pre-trained models”, etc, to find the name of the
model

e Download the base model through tensorflow

e Just like in the code, simply change the name of the base model. List of
available base models in Tensorflow:

e https://www.tensorflow.org/api_docs/python/tf/keras/applic
ations

e Add layers, dropouts, use different learning rate, epoch, batch size, etc.

1.1 Additional Details
e Write 1 ~ 2 page(s) (excluding the code) describing your project:

e Imagine the project as a kind of “mini research paper”
e What is the problem? What is your motivation?
e How are you solving them? What deep learning algorithms?
e Outline the experiment and test on the dataset.
e What are the results?
e Add at least 1 figure and insert your analysis
e Attach the code at the end.

e Include your name, affiliation, student number, as well as your university e-mail
address in case if we need to contact you for clarification

e Put all the above in a single PDF and upload to ITC-LMS

https://www.tensorflow.org/datasets/catalog/overview
https://www.tensorflow.org/api_docs/python/tf/keras/datasets
https://www.tensorflow.org/api_docs/python/tf/keras/datasets
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications

16

2 Project Goal

This project aims to compare different deep learning techniques. The goal is to discern the pros
and cons of the different techniques when it comes to their use on character recognitions in im-
ages. This approach was chosen because it doesn’t focus on the learning of object concepts but
rather on pattern recognition. Since pattern recognition and character recognition in particular
is a less complex topic than concept classification it allows for the use of less complex models
which are easier to understand.

2.1 The Dataset

The project uses the "svhn cropped" dataset (https://www.tensorflow.org/datasets/
catalog/svhn_cropped). The Street View House Numbers (SVHN) dataset was created
at Stanford University and includes "73 257 digits for training, 26 032 digits for testing, and
531131 additional, somewhat less difficult samples, to use as extra training data" (http:
//ufldl.stanford.edu/housenumbers/). The dataset provided by TensorFlow uses the
"MNIST-like 32-by-32 images centered around a single character" version.

3 Methods

3.1 Dense Neural Network

The first method tried to find a good classification model was to use regular Dense Neural
Networks. Through experimentation it was determined that the classification accuracy only
varied slightly when using a different amount of hidden layers (see appendix [A.1)).

3.2 Convolutional Neural Network (CNN)

When it comes to image classification CNNs are often used as they reduce the dimensionality of
the input. This in turn simplifies the problem and makes it easier to classify. Multiple configu-
rations for CNNs where tried (see appendix The best CNN found during experimentation
had the following configuration:

configs[’convolutional neural network (3 convolutions)’] = {

’model’: models.Sequential ([
layers.Conv2D (32, (3,3), activation=’relu’, input_shape=(32,32,3)),
layers.MaxPooling2D ((2,2)),
layers.Conv2D (64, (3,3), activation=’relu’),
layers.MaxPooling2D ((2,2)),
layers.Conv2D (128, (3,3), activation=’relu’),
layers.MaxPooling2D ((2,2)),
layers.Flatten(),
layers.Dense (64, activation=’relu’),
layers.Dense (64, activation=’relu’),
layers.Dense (10, activation=’softmax’)

n,

’optimizer’: ’adam’,

’loss’: ’sparse_categorical_crossentropy’,

metrics’: [’accuracy’],

’epochs’: 10,

’batch_size’: 128

https://www.tensorflow.org/datasets/catalog/svhn_cropped
https://www.tensorflow.org/datasets/catalog/svhn_cropped
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/

4 Comparison

While the Dense Neural Networks can be trained efficiently trained (a few seconds per epoch),
they are also less accurate than the CNNs. As can be seen in fig. [I] the Dense Neural Networks
achieved a validation accuracy of around 70 %. The CNNs on the other hand achieved around
80 — 85 %.

It can also be seen that the type of model has a bigger impact on the accuracy than its
complexity. Even the CNN with just one convolutional layer performs better than the Dense
neural network with 5 hidden dense layers.

4.1 VGG16

As can be seen from the comparison of the two previous methods CNNs hold a clear advantage
when it comes to image classification. In order to find an even better model for classification it
therefore makes sense to look at CNNs developed by other researchers. VGG16 is one CNN that
is commonly used for these kind of tasks and is also available as part of the texttttensorflow.keras
library. While the attempt at transfer learning was unsuccessful (see appendix , training
the whole model pre-trained on the "Imagenet" dataset with a learning rate of 0.001 produced
a model with even higher accuracy than the CNNs mentioned before. While the training of
this model is very time intensive it gave a validation accuracy of over 92 % (fig. [1)).

Validation Accuracy

1.0
0.9 A
0.8 A
5 0.7
5
O
& 0.6 1
—— regular Neural Network (3 hidden layers)
0.5 A regular Neural Network (5 hidden layers)
—— convolutional neural network (1 convolution)
0.4 - —— convolutional neural network (3 convolutions)
—— fully trainable VGG16 base model
0.3 T T T T T
0 2 4 6 8
Epoch

Figure 1: Validation Accuracy of the different models

5 Summary

In this project it has been shown that Convolutional Neural Networks outperform Dense Neural
Networks when it comes to classifying the SVHN dataset. Additionally, if the goal is to achieve
the highest accuracy possible one should use a pre-existing model designed for solving problems
in a similar context.

A Appendix

A.1 Dense Neural Network Comparison

Accuracy
1.0
0.9 A
0.8 -
2 0.7 A
o
>S5
0
< 0.6
0.5 A
0.4 -
—— reqgular Neural Network (3 hidden layers)
regular Neural Network (5 hidden layers)
0.3 T T T T T
0 2 4 6 8
Epoch
Validation Accuracy
1.0
0.9 A
0.8 A
2 0.7 A
o
S5
9
< 0.6
0.5 A
0.4 -
—— reqgular Neural Network (3 hidden layers)
regular Neural Network (5 hidden layers)
0-3 T T T T T
0 2 4 6 8
Epoch

A.2 CNN Comparison

Accuracy

1.0

0.9 A
- 0.8 A
|®)]
©
-}
(9]
b

0.7 A

0.6 -

—— convolutional neural network (1 convolution)
convolutional neural network (3 convolutions)
0.5 T T T T T
0 2 4 6 8
Epoch
Validation Accuracy

1.0

0.9 A
- 0.8 A
9]
©
35
O]
<

0.7 A

0.6 A

—— convolutional neural network (1 convolution)
convolutional neural network (3 convolutions)
0-5 T T T T T
0 2 4 6 8
Epoch

A.3 Transfer Learning VGG16

Accuracy
1.0
0.9 -
0.8 -
3 0.7 1
o
>
O
< 0.6 A
0.5 A
0.4 - i —— frozen VGG16 base model
' fully trainable VGG16 base model
—— partly trainable VGG16 base model
0-3 T T T T T
0 1 2 3 4
Epoch
Validation Accuracy
1.0
0.9 -
0.8 -
2 0.7 1
o
>
O
< 0.6 A

o5 =

—— frozen VGG16 base model

0.4 fully trainable VGG16 base model
—— partly trainable VGG16 base model
0.3
0 1 2 3 4
Epoch

A.4 Code

The following code is an exported and slightly formatted version of a Jupyter Notebook that
is also available at https://git.ploedige.com/Intelligent_World_Informatics_V/Final
_Project.

0 # Import libraries

I import matplotlib.pyplot as plt

2 import tensorflow as tf

3 from tensorflow.keras import layers, models, applications, optimizers
1 import tensorflow_datasets as tfds

5 import tkinter .messagebox # for notifications

7 # Load Dataset

8 # https://www.tensorflow.org/datasets/keras_example
9 # split into training and test data

10 ds_train, ds_test = tfds.load(

11 ’svhn_cropped’,

12 split=[’train’, ’test’],
13 shuffle_files=True,

14 as_supervised=True

15)

Confirm Data

for image, label in ds_train.take(1):
plt.imshow (image)
plt.show ()

N o=
= O © 0w =

Define normalization function
def normalize_img(image, label):
return tf.cast(image, tf.float32) / 255.0, label

TR W N

Build a training pipeline

ds_train = ds_train.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache ()

ds_train = ds_train.batch(128)

ds_train = ds_train.prefetch(tf.data.AUTOTUNE)

© 0

W WY NNNNNNNN

1

32 # Build an evaluation pipeline

33 ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
34 ds_test = ds_test.cache()

35 ds_test = ds_test.batch(128)

36 ds_test = ds_test.prefetch(tf.data.AUTOTUNE)

38 # Configurations
39 configs = {}

41 configs[’regular Neural Network (3 hidden layers)’] = {
12 ’model’: models.Sequential ([

13 layers.Flatten(input_shape=(32, 32, 3)),

44 layers.Dense (256, activation=’relu’),

15 layers.Dense (128, activation=’relu’),

46 layers.Dense (64, activation=’relu’),

A7 layers.Dense (10, activation=’softmax’)
48 1,

19 ’optimizer’: ’adam’,

50 ’loss’: ’sparse_categorical_crossentropy’,
51 metrics’: [’accuracy’],

52 ’epochs’: 30,

53 ’batch_size’: 64

54 ¥

55

56 configs[’regular Neural Network (5 hidden layers)’] = {
57 model’: models.Sequential ([

58 layers.Flatten(input_shape=(32, 32, 3)),

59 layers.Dense (1024, activation=’relu’),
60 layers.Dense (512, activation=’relu’),
61 layers.Dense (256, activation=’relu’),
62 layers.Dense (128, activation=’relu’),
63 layers.Dense (64, activation=’relu’),
64 layers.Dense (10, activation=’softmax’)
65 1,

66 ’optimizer’: ’adam’,

’loss’: ’sparse_categorical_crossentropy’,
68 metrics’: [’accuracy’],

https://git.ploedige.com/Intelligent_World_Informatics_V/Final_Project
https://git.ploedige.com/Intelligent_World_Informatics_V/Final_Project

69
70

3

1

T W N

0 00 00 N N ~ N I~ =
N = O © N e U

83

86

© 0w N o U,

SR W N =

o

N SO
W oW W W wWwWwwwwwNNNNDN

H
B %

141
142
143
144

’epochs’: 30,
’batch_size’: 64

¥
configs[’convolutional neural network (1 convolution)’] = {
’model’: models.Sequential ([
layers.Conv2D (32, (3,3), activation=’relu’, input_shape=(32,32,3)),
layers.MaxPooling2D ((2,2)),
layers.Flatten(),
layers.Dense (64, activation=’relu’),
layers.Dense (64, activation=’relu’),
layers.Dense (10, activation=’softmax’)
n,
’optimizer’: ’adam’,
’loss’: ’sparse_categorical_crossentropy’,
metrics’: [’accuracy’],
’epochs’: 10,
’batch_size’: 64
¥
configs[’convolutional neural network (3 convolutions)’] = {
’model’: models.Sequential ([
layers.Conv2D (32, (3,3), activation=’relu’, input_shape=(32,32,3)),
layers.MaxPooling2D ((2,2)),
layers.Conv2D (64, (3,3), activation=’relu’),
layers.MaxPooling2D ((2,2)),
layers.Conv2D (128, (3,3), activation=’relu’),
layers.MaxPooling2D ((2,2)),
layers.Flatten(),
layers.Dense (64, activation=’relu’),
layers.Dense (64, activation=’relu’),
layers.Dense (10, activation=’softmax’)
D,
’optimizer’: ’adam’,
’loss’: ’sparse_categorical_crossentropy’,
metrics’: [’accuracy’],
’epochs’: 10,
’batch_size’: 128
}

vggl6_base_model = applications.VGG16(input_shape=(32,32,3),
freeze the VGG16 model

vggl6_base_model.trainable = False

configs[’>frozen VGG16 base model’] = {

}

’model’: models.Sequential ([
vggl6_base_model,
layers.Flatten(),
layers.Dense (64, activation=’relu’),
layers.Dense (32, activation=’relu’),
layers.Dense (10, activation=’softmax’),

D,

’optimizer’: ’adam’,

’loss’: ’sparse_categorical_crossentropy’,

metrics’: [’accuracy’],

’epochs’: 5,

’batch_size’: 64

vggl6_base_model = applications.VGG16 (input_shape=(32,32,3),
configs[’>fully trainable VGG16 base model’] = {

}

’model’: models.Sequential ([
vggl6_base_model,
layers.Flatten(),
layers.Dense (64, activation=’relu’),
layers.Dense (32, activation=’relu’),
layers.Dense (10, activation=’softmax’),
D,
’optimizer’: optimizers.Adam(learning_rate=0.001),
’loss’: ’sparse_categorical_crossentropy’,
metrics’: [’accuracy’],
’epochs’: 5,
’batch_size’: 64

vggl6_base_model = applications.VGG16 (input_shape=(32,32,3),
freeze the VGG16 model

include_top= False)

include_top= False)

include_top= False)

145 vggl6_base_model.trainable = False
146 for layer in vggl6_base_model.layers[-6:]:

147 layer.trainable=True

148

149 configs[’partly trainable VGG16 base model’] = {
150 ’model’: models.Sequential ([

151 vggl6_base_model,

152 layers.Flatten(),

153 layers.Dense (64, activation=’relu’),
154 layers.Dense (32, activation=’relu’),

155 layers.Dense (10, activation=’softmax’),
156 1),

157 ’optimizer’: optimizers.Adam(learning_rate=0.001),
158 ’loss’: ’sparse_categorical_crossentropy’,
159 metrics’: [’accuracy’],

160 ’epochs’: 5,

161 ’batch_size’: 64

162 }

164 # Compile the Models
165 for config in configs.values():

166 if ’history’ not in config.keys():

167 config[’model’].compile(

168 optimizer=config[’optimizer’],

169 loss=config[’loss’],

170 metrics=config[’metrics’]

171)

172

173 # Train and Evaluate the Models

174 try:

175 for config_name, config in configs.items():
176 if ’history’ in config.keys():

177 print (f’Already trained model "{config_namel}"?’)
178 else:

1

79 print (f’Now training model "{config_namel}"’)

180 config[’history’] = configl[’model’].fit(ds_train, epochs=config[’epochs’],
validation_data=ds_test, batch_size=config[’batch_size’])#, verbose=0)

181 except Exception as e:

182 print (e)

183 tkinter .messagebox.showerror ("ERROR", f£"ERROR: {el}")

185 # Plot the accuracy

186 plt.figure(figsize=(10,5))

187 for config_name, config in configs.items():

188 plt.plot(config[’history’].history[’accuracy’], label=config_name)
189 plt.xlabel (’Epoch?)

190 plt.ylabel (’Accuracy’)

191 # plt.ylim([0.75, 1])

192 plt.legend(loc=’lower right’)

193 plt.title("Accuracy")

194 plt.show ()

196 # Plot the validation accuracy

197 plt.figure(figsize=(10,5))

198 for config_name, config in configs.items():

199 plt.plot(config[’history’].history[’val_accuracy’], label=config_name)
200 plt.xlabel (’Epoch?)

201 plt.ylabel(’Accuracy’)

202 # plt.ylim([0.8, 11)

203 plt.legend(loc=’lower right?’)

204 plt.title("Validation Accuracy")

205 plt.show ()

207 # Notify when done
208 tkinter .messagebox.showinfo ("DONE", "DONE")

10

	Assignment
	Additional Details

	Project Goal
	The Dataset

	Methods
	Dense Neural Network
	Convolutional Neural Network (CNN)

	Comparison
	VGG16

	Summary
	Appendix
	Dense Neural Network Comparison
	CNN Comparison
	Transfer Learning VGG16
	Code

