\chapter{Bayesian Regression Algorithms}% \label{cha:Bayesian Regression Algorithms} \section{Bayesian Linear Regression}% \label{sec:Bayesian Linear Regression} Für die Bayesian Linear Regression ist es möglich den Posterior und die Vorhersage ohne die Nutzung von Approximationen zu berechnen. Hierzu werden die folgenden Komponenten benötigt: \begin{itemize} \item Likelihood (einzelnes Sample): \tabto{6cm}$p(y|\bm x,\bm w) = \nomeq{gaussian_distribution}(y|\bm w^T \nomeq{vector_valued_function},\nomeq{variance})$ \item Likelihood (ganzer Datensatz): \tabto{6cm}$p(\bm y|\bm X,\bm w) = \prod_i \nomeq{gaussian_distribution}(y_i|\bm w^T \bm\phi(\bm x_i), \nomeq{variance})$ \item Gaussian Prior: \tabto{6cm}$p(\bm w) = \nomeq{gaussian_distribution}(\bm w|0,\nomeq{regularization_factor}^{-1}\nomeq{identity_matrix})$ \end{itemize} Anschließend erfolgt die Regression nach den Schritten des \nameref{cha:Bayesian Learning}: \begin{enumerate} \item Posterior errechnen: \begin{equation} \label{eq:bayesian_linear_regression_posterior} p(\bm w|\bm X,\bm y) = \frac{p(\bm y|\bm X,\bm w)p(\bm w)}{p(\bm y|\bm X)} = \frac{p(\bm y|\bm X,\bm w)p(\bm w)}{\int p(\bm y|\bm X,\bm w)p(\bm w)d\bm w} \end{equation} Hierfür kann die 2. Gaussian Bayes Rule (\cref{sec:Gaussian Bayes Rules}) verwendet werden\\ (mit $\bm\mu_{\bm x}=0$, $\nomeq{covariance}_{\bm x} = \nomeq{regularization_factor}^{-1}$, $\bm F = \bm\Phi$ und $\sigma_{\bm y}^2 = \sigma_{\bm y}^2$) \begin{equation} \label{eq:bayesian_linear_regression_posterior_gaussian_bayes_rule} p(\bm w|\bm X,\bm y) = \nomeq{gaussian_distribution}(\bm w|\bm\mu_{\bm w|\bm X,\bm y},\nomeq{covariance}_{\bm w|\bm X,\bm y}) \end{equation} \begin{itemize} \item $\bm\mu_{\bm w|\bm X,\bm y} = (\bm\Phi^T\bm\Phi + \sigma_{\bm y}^2\nomeq{regularization_factor}\nomeq{identity_matrix})^{-1}\bm\Phi^T\bm y$ \item $\nomeq{covariance}_{\bm w|\bm X,\bm y} = \sigma_{\bm y}^2(\bm\Phi^T\bm\Phi + \sigma_{\bm y}^2\nomeq{regularization_factor}\nomeq{identity_matrix})^{-1}$ \end{itemize} \item Predictive Distribution errechnen: \begin{align} \label{eq:bayesion_linear_regression_predictive_distribution} p(y^*|\bm x^*,\bm X,\bm y) &= \int p(y^*|\bm w,\bm x^*)p(\bm w|\bm X,\bm y)d\bm w \\ &= \int \nomeq{gaussian_distribution}(y_*|\phi_*^T\bm w,\sigma_{\bm y}^2)\nomeq{gaussian_distribution}(\bm w|\bm\mu_{\bm w|\bm X,\bm y},\nomeq{covariance}_{\bm w|\bm X,\bm y}) d\bm w \end{align} Um diese Gleichung zu lösen kann die \nameref{sec:Gaussian Propagation} (\cref{sec:Gaussian Propagation}) verwendet werden: \begin{itemize} \item $\nomeq{mean}(\bm x^*) = \phi(\bm x^*)^T(\bm\Phi^T\bm\Phi + \nomeq{regularization_factor}\sigma_{\bm y}^2\nomeq{identity_matrix})^{-1}\bm\Phi^T\bm y$ \item $\nomeq{variance}(\bm x^*) = \sigma_{\bm y}^2(1+\phi(\bm x^*)^T(\bm\Phi^T\bm\Phi + \nomeq{regularization_factor}\sigma_{\bm y}^2\nomeq{identity_matrix})^{-1}\phi(\bm x^*))$ \end{itemize} \end{enumerate} Es fällt auf, dass $\nomeq{mean}(\bm{x^*})$ sich im Vergleich zur \nameref{sub:Ridge Regression} nicht verändert hat. Allerdings ist $\nomeq{variance}(\bm x^*)$ jetzt abhängig von den Eingangsdaten.