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Learning Outcomes

* Understand probabilistic models and maximum likelihood
« Understand the classification problem

 What is a linear classifier?

 What is the loss function of linear classification?
 What is gradient descent ?
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Today’'s Agenda!

Basics: Probability Theory

* Probabilistic Models

* Expectations and Monte Carlo Methods
 Maximum Likelihood

Basics: Gradient Descent

Classification:

* Generative vs. discriminative classification
» Linear Classification

« Logistic Regression

Many slides are based on slides from Shenlon Wang, Yingyu
Jiang, Michail Michailidis and Patrick Maiden
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Basics: Probability Theory

*  “Probability theory is nothing but common sense reduced to calculation”, Pierre
Laplace, 1812

« We will keep our discussion relatively informal and pick the things we need from
probability theory
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Notation

Arandom variable X represents uncertain states or outcomes of the world
We will write p(z) to mean the probability that X takes the value x
The sample space is the space of all possible outcomes

— Might be discrete, continuous or mixed

p(z) is the probability mass (density) function
— Assigns a number to each point of the sample space
— Non-negative, sums (integrates) to 1
— Intuitively: How often does x occur? How much do we believe in x?
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Distributions

 Joint distribution

p(z,y)
— Probability that X=x and Y=y

« Conditional distribution

p(zly)

— Probability that X=x given Y=y

P(W|T)

Conditional Distributions

i P(W|T — hot)
W P
sun 0.8
rain 0.2
P(W|T = cold)
W P
sun 04
rain 0.6
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Joint Distribution

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Rules of Probability

« Sum rule (marginalization / integrating out):

p(z) =2_,p(z,y)

P(T1) =D 0y Doy Doy P(T1, -

— Note: For continuous distributions, the sums will be replaced by integrals

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

—-
P(t) =) P(t,w)

w

—
P(w)=>_ P(t,w)
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P(T)

T P
hot 0.5
cold 0.5

P(W)

w P
sun 0.6
rain 0.4




Rules of Probability

« Chain / product rule

p(z,y) = p(x|y)p(y)

p(z1,- -+ ,xp) = p(z1)p(z2|21) ... p(zp|21, ..., 2D 1)
P(D|W) P(D,W)
P(W) D W P D W P
W = wet sun | 0.1 wet sun | 0.08
sun | 08 dry | sun | 0.9 ” dry | sun | 0.72
ain | 0.2 wet rain | 0.7 wet | rain | 0.14
dry rain | 0.3 dry rain | 0.06
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Bayes Rule

Bayes rule is one of the most important equations in probability theory and in machine
learning

_plylz)p(z)  plylz)p(x)
) =) T S oyl p(@)

« Way of “reversing” the conditional probabilities
« Often one conditional is tricky but the other one is simple
* One of the most important equations for ML!
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Expectations

The expectation of a function f(x) with respect to a distribution p(x) is given by

Bylf()) = [ pla)f(a)ds

A conditional expectation is given by
B, 1)Y=l = [ plaly)f(a)do
Chain rule for expectations:

/(@) = [ pwEL @)Y = sldy
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Monte-carlo estimation

Expectations can always be approximated by samples:

Blfe)) = [ p)f@is~ 1 3 fa)

* Necessary if no analytical solution exists to compute the integral (typical case)
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Moments

Moments are expectations:
« 1stmoment (mean): p =E,[z]

« 2nd moment: Mo = Ep [$mT]

Central moments are always computed relatively to the mean:
« 2nd central moment (covariance):

Y =E,[(x— p)(z—p)']

« Captures variability (diagional entries) and correlation (off-diagional)
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Distributions

Bernoulli Distribution:

Binary random variable X € {0, 1}

One parameter pX=1)=u

Probability distribution  p(z) = &1 — =D

Depending on x, selects either mu or 1-mu as probability

Think of it as tossing a coin
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Distributions

Multinomial / Categorical Distribution:

K different events: C e {1: cee 7K}

K
Directly specifies probabilites: P(C = k) = ik, i >0, Y pp =1
k=1

Or written with 1-hot-encoding (without an “if” clause)

K
ple) = H ﬁk Depending on the class label of x, selects the correct 4,
k=1

— where he Is the K-dimensional 1—hothencoding vector, which is one for
the dimension ¢ = k and 0 elsewhere. "¢* s the k-th element of this
vector.

Think of it as rolling a die
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Distributions

Gaussian Distribution

1.0

« ContinuousRV: X €R 08
 Distribution is completely specified .
by mean / and variance o> =
o
1 (x — p)’ }
p(x) = N(z|p, o) = exp{—— -
(@) = N el 0) = ——; el S

0.0

02202, —— |
02=1.0, ]
., 02250, = |
, 0?05, =—

ISERSINS

=i~ iy =
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Distributions

Multivariate Gaussian Distribution

. Continuous RV: X € R?

« Distribution is completely specified
by mean vector ft and covariance

matrix 33
_ R S O G D R G )
ple) = Nl ®) = o 2

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

}

16



Distributions

Important Properties of Gaussians:

All marginals of a Gaussian are again Gaussian
Every conditional is Gaussian

The product of 2 Gaussians is again Gaussian
Even the sum of 2 Gaussian RVs is again Gaussian
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Maximum Likelihood Estimation (MLE)

«  Given: the training data D = {(:):1-, y@-)}i: identically independently distributred (iid) from
the data distribution p,,
« Let po(x,y) be afamily of distributions parametrized by 8 € ®

«  We want to find 8 such that p fits the data well

1...N

Fitness of 8 for one single data point:
lik(0; wi, i) = pe(Ti, yi)

Fitness of 8 for whole dataset (iid. assumption):

lik(6; D) HP@ (23, yi)
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Maximum Likelihood Estimation (MLE)

Log-likelihood is easier to optimize:
loglik(6; D) = _log po (i, y:)
i
* Log is monotonous -> same optimum

*  Sums are “nicer” to optimize than products
* Log cancels exponential form (most distributions are in the exponential family)

The MLE solution is given by:
Oni1, = argmaxgloglik(6; D)
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Example: Gaussian

Gaussian density function:

. 2
loglik(8; D) = — N logv2r0? — 3 (552_2”)
. ag

MLE solution for ft:
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MLE: conditional log-likelihood

*  Given the training data D = {(z;,y:)}._, , iid. from the data distribution p,
« Let po(y|z) be a family of distributions parametrized by @ € ©

*  We only care about distribution of y, not of x

« Typical case in supervised learning

Log-likelihood:

loglik(6; D) Zlogpg Yilz;)
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Example: Linear Gaussian model

We consider the following conditional Gaussian model:

pe(ylx) = N(y|lw'z,0%), 0= {w,o’}

Log-likelihood:

. 'wTa%)2
loglik(@; D) = — log V2702 Z

For obtaining w, only the squared errors matter, i.e.
loglik(0; D) = consty — consts z:(yZ w’! ;)

i
Hence, the MLE solution is equivalent to the least squares solution!
But: we can also obtain the variance!
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Takeaway messages

What have we learned so far?

« Basic rules of probabilities ... nothing new so far
« Expectations can be evaluated by samples
 How to compute the ML estimator

« Maximum likelihood is equivalent to minimizing the squared loss for:
— Conditional Gaussian models
— With constant noise
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Today's Agenda!

Basics: Probability Theory

* Probabilistic Models

* Expectations and Monte Carlo Methods
 Maximum Likelihood

Linear Classification:
 Linear Classifiers

« Logistic Regression

Basics: Gradient Descent

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022



Supervised Learning

Training data includes targets

— Regression:
* Learn continuous function
« Example: line

— Classification:

« Learn class labels ¢ o A A
.. . o %o, A‘
- Example: Digit recognition e Y
P A A‘AA
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Example 1: Image classification
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outdoor
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Example 2: Spam Classification

—mm_

Email 1
Email 2 0 1 0 No
Email 3 1 1 1 Yes
Email n
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Definition

Given the dataset D = {(x;,¢;)}._, , »Where x; € R? are the input samples and

ce {l1...K} arethe class labels, we want to learn a classifier f(x) that predicts the
class label for unseen samples.

« K= 2: Binary classification

K> 2: Multi-class classification

In difference to regression, the output is now discrete!
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Generative vs. discriminative modelling

Generative Models:

OO

«  Assume some functional form for class prior p(c) and class
densities p(x|c)

« Learn prior and densities from data

— This is a “generative” model, as we can create new datapoints x

using p(x|c)

«  Predict class label by computing posterior p(c|x) =
p(z)
Learn full joint distribution of the data (typically very hard)

«  Our modelling assumptions, e.g. that p(x|c) is Gaussian, might
introduce big errors
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p(x|c)p(c)

Generative
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Generative vs. discriminative modelling ®

Discriminative Models:

Discriminative
@

*

. ®

«  Directly assume some functional form for p(c|x) (or any other ‘@ ®

predictor f(x) that returns the class label). ® o ® [
* This is a ‘discriminative’ model of the data! .. ‘, o
«  Estimate parameters of p(c|x) directly from training data L P ‘009

. . . * .'
| | | ® o0

Modelling needs to consider only points on the border "

*  Typically much simpler than generative modelling
We therefore concentrate on discriminative models
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(Discriminative) Binary Classification

A AAA 4

Given the training data (i, ¢;),i=

such that:
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f(%:):{

> 0,
< 0,

ifC@.'Zl
ifC@':O

1...N, withz; € R* and c¢; € {0, 1}, learn a classifier f(z)
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L inear Classifiers

A linear classifier is given in the form:

F(x) = wlx + b

In 2D, the classifier is a line
e w |sthe normal to the line
e p Isthe bias
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Linear Discriminators

A linear discriminator is given in the form:

F(x) = wlx + b

In 2D, the discriminator is a line
e w |sthe normal to the line
e p Isthe bias

In 3D, it's a plane

In N-D, it's a hyper-plane
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Linear Separability

Linear Separable

Non-Linear Separable

® o
e %o A A
.. Y AAA
* e, A AAA 4,
o'.. AA“‘
A AA
A

* A A

o ®o A A,

Ao 4,

...AA“‘

e ® A AA
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Linear Classification: 0-1 loss (15t attempt)

Prediction: ¥ = step(f(x)) = step(w” = + b)
 Predictclass 1 for f(x) >0
« else predict class 0

Optimization: Find w such that
Lo(w) = Z I (step ('wT:L' +b) #¢;)

7
« where I returns 1 if the argument is true
. ... counts the number of misclassifications

x  Very difficult to optimize!!! (NP-hard)
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Linear Classification: regression loss (29 attempt)

We can use same loss as in regression
2
Lreg(w) — Z (f(wz) - ci)
i
*  Minimize the squared error: Easy!
* However: we ignored the fact that ¥: is restricted to {0,1}

x  Not robust to outliers

8
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Compare the two

w

=
I

y = step(w’x)

*  The output of a linear function is unbounded!
*  However, useful output values are only O or 1
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Logistic sigmoid function

Sigmoid function:

1
1+ exp(—a)

o(a)

*  Output is bounded between 0 and 1
*« Smooth

For linear classification:
*  Squash the output of the linear function
. Minimize the loss

Liw) = Y (o(f(@) ~ )’ = 3 (o(w'@ +1) )’

i )
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Better: Probabilistic View

Define conditional probability distribution of the class label
plc=1lz) =o(w’z+b), plc=0z)=1-oc(w'z+0)

« This is now a conditional Bernoulli distribution. |.e. the outcome of the event ¢ depends on x

*  We can use the same “exponential trick” to select the correct probability depending on the value
of c,i.e.

C

plclx) = ple = 1]x)°p(c = 0]:13)1_‘3 = a('wTa: + b)c(l — O’(’wTCC + b))l_
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Log-Likelihood

We can now directly optimize the conditional Bernoulli log-likelihood
loglik(w, D) Zlogp (cile;) = Zlog (¢ =1lz;)p(c = Ofa;)' ~)
= Z cilogp(c = 1|a;) + (1 — ¢;) logp(c = 0|x;)
i

= Z C; 10g O’(’&JTCE@) ‘I‘ (]- _ C’i) IOg (]- - J(@Tiﬁz))

— Negative likelihood is also often referred to as cross-entropy loss

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Logistic Regression

Optimizing the log-likelihood of a sigmoid is called logistic regression

argmax,, loglik(w, D) = argmax,, Z ¢ilogo(wl &) + (1 — ¢;)log (1 —o(w
i
« ... even though we solve a classification problem

*  One can show that the function is still convex (only one maximum exists)
 However, there is no closed form solution as in linear regression

How can we find the maximum? -> Gradient Descent!
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Generalized logistic models

We can fit a linear discriminator in a non-linear feature space
« Similar to generalized linear regression models

argmax,, loglik(w, D) = argmax,, Z cilogo(w' ¢(x;)) + (1 — ¢;) log (1 — o(w’ ¢(x;)))

2

* Problems that are not linear separable in input space can be linear separable in feature space

Input space Feature space

&
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Regularization

Similar as in linear regression, we can again add a regularization penalty
L(w, D) = loglik(w, D) — A penalty(w)
Most common: L2 regularization loss

penalty(w) = ||w||?

» Lis still convex for most penalty terms

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Today’'s Agenda!

Basics: Probability Theory

* Probabilistic Models

* Expectations and Monte Carlo Methods
 Maximum Likelihood

Linear Classification:
 Linear Classifiers

« Logistic Regression

Basics: Gradient Descent
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Optimization

For most ML algorithms, we want to find the best model to fit the data.
Two examples we already know:

 Least squares solution:
argmin,, SSE(w, D)
« Maximum likelihood solution:

argmax,, loglik(w, D)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Optimization
For most ML algorithms, we want to find the best model to fit the data.
Two examples we already know:

 Least squares solution:

argmin,, SSE(w, D) + A penalty(w)

e Maximum likelihood solution: . Note that:
argmax,,, loglik(w, D) -\ peﬂalty(fw) arg;nlnf(:c) = arg;nax—f(w)

Hence, the role of the penalty is the same
... plus regularization penalty

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 46



Optimization

General form of optimization for ML: loss + penalty
N
argmin Y (@, 0) + A penalty(6)

parameters @ i—1

« Summed sample-loss plus regularization penalty

How to do that? Optimization

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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When can we do that?

6 I I I I

global maximum

local maximum

2 | >\ ]
0 »_/\
_2 — —

local minimum

global minimum

-6 - I | | | I ]

0 0.2 0.4 0.6 0.8 1 1.2

*  The global minimum/maximum can only be found for convex functions!
* For non-convex functions we are limited to finding a local minimum / maximum
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Convex functions

A convex function f:R? — R satisfies for any axg,xq € RY

F((1=a)zg+ az) < (1 —a)f(zo) + af(x1), «a€(0,1]

Line joining (o, f(z0)) and (1, f(x1)) is always
above the function value

There is only one minimum! {(,16)
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Example: Linear Regression Objective

Liidge = (Y — <I>'w)T(y — dw) + dw ! w

 Convex

* Quadratic function in w

* Minimum can be obtained analytically
* One of the very rare cases!

In most other cases, we have to resort to incremental methods: Gradient descent
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Gradient Descent

Is good for finding global minima if function is convex
Is good for finding local minima if function is non-convex
Has many applications in ML:

— Logistic Regression

— Linear Regression (for large input dimensions)

— Neural Networks

— Mixture Models
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Gradient Descent

Start at some point, follow the gradient towards (a) minimum

xo < init, t =0
while termination condition does not hold do

Ti1 = Tt — NV f(Tr), t=t+1
end while
* 77...learning rate or step size “iboo 500 0 500 1000 1500 2000

o

» Gradient always points in the direction of steepest ascen.
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Choosing the step-size

too small 7, after 100

Ny = t, it is too big _ _
iterations

1

I I | [ I
=20 =10 0 10 20
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How to terminate

When change in iterates is small
* When gradient is small
* When change in function value is small

Or after a fixed time step or budget

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Stochastic Gradient Descent

« Usually we are minimizing the empirical loss (batch gradient descent)

1
—Zl(az,,;;ﬂ) 01 =0 — _ngl x;;04)
n —
(4
« We do this to approximate the expected loss
Em [l(.’l), 9)] Ot—l—l — Ot — T]]Em [V@l(ﬂ?, Bt)]
* Use arougher, cheaper approximation: stochastic gradient descent

[(x;;0) O:11 =0 —nVel(x;; 0:)

— for random sample i
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Stochastic Gradient Descent (SGD)

Use only one sample to compute the update

* Does NOT always “descent”

black line = LMS trajectory towards LS soln (red cross)

* |terations are much cheaper
* Requires more iterations
* ... and smaller step sizes
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Stochastic vs. Batch Gradients

 Blue: Batch Gradients

g |
* Red: Stochastic Gradients
g —
Rule of thumb:
«  Stochastic methods work well far away
from optimum o
«  But struggle to find the exact optimum
o
S

-20
|
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Step-sizes

1
Standard in SGD is to use diminishing step sizes, e.g., 7 =

t
« Assymptotically approach the optimum
* instead of “wiggling” around optimum

In general, it can be shown that SGD converges to the optimum for strictly convex
functions if (stochastic approximation theory)

Znt oo and 277,3 < 00

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Stochastic vs. Batch Gradients

Why are stochastic gradients often better than batch?

«  Typically, our data-set will contain redundancy

* Hence, some computation in the batch gradients are redundant
— compute the gradients for similar samples
— using the same parameter vector

* This does not happen if we update immediately after one sample

As a consequence, SGD requires less computation (in most cases)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Mini-Batches

Take subset of samples I; C {1,...,n}, |I{| =b, b < n to approximate real gradient:
1 _p. " .
. Z I(x;;0) 0:ry1 = 0, ) Z Vol(x;; 0:)
€1y 1€l

* Intermediate version of stochastic and batch gradient descent
* Less noisy estimates

» Achieves “descent” more often

* Preferable for GPU implementations
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Example

10000 samples, loglikelihood logistic regression:

— Ful ull
—— Stochastic tochastic
—— Mini-batch, b=10 ini-batch, b=10
© —— Mini-batch, b=100 ini-batch, b=100
wn
© © -
o o
£ o £ o
c © 4 = [To .
k=] (=} o o
g g
G &}
w wn
v n
o o
o o
D o
(=] o
T T T T T T T T T
0 10 20 30 40 50 1e+02 1e+04 1e+06
Iteration number k Flop count
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Gradient Descent for Logistic Regression

Properties of the sigmoid function:

« Bounded: (a) = T exlp(_a) € (0,1)
« Symmetric: 1 — __eplma) L — o(—
ymmetric: 1 —a(a) 1 +exp(—a) 14 exp(a) o(~a)
Gradient:  ¢'(a) = expla) _ _ o(a)(1 —o(a))

(1 + exp(—a))?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Classification loss

Ve

Data log- Iikelihood
loglik(D, w) Zp (ci|ld(x;), @loga x;)) + (1 —¢;)log (1 - U('qub(mz')))

loss;... loss of the ith sample

ossi _ 0 (cytog ol g(ay) + (1 <o) log (1 - o(w” g(a:)

4 %M)M(A-m ) a0
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Gradient for Logistic Regression

620;&' - ai, (c; log o(wT d(a;)) + (1 — ¢;) log (1 — o (wT(x;)))
ol 9l (1 — 0w d())o(a)
F(1—c) : (—)or(wT ¢(x:)(1 — o(wT p(:)))b(:)

1—o(wT¢(x;))
= ¢;(1 — o(wTd(x:)))p(x:) — (1 — ¢;)o(wl d(x:)) ()
= (ci — o(w' @(x;))) d()
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Multiclass Classification

Softmax Likelihood function:

exp ('w;fqb(m))
>y oxp (wp(@))
* Each class gets a weight vector

»  Higher probability for class i if 'wzrqﬁ(a:) is high
« ForK =2, ws is redundant -> better to use sigmoid

plc=1ilz) =
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Recap: Multinomial distribution

Multinomial / Categorical Distribution:

K different events: C e {L v 7K} K @a

Directly specifies probabilities: p(C = k) = [k, Hr =0, Z pr =1
k=1

Or written with 1-hot-encoding (without an “if” clause)

K
ple) = H ﬁk Depending on the class label of x, selects the correct 4,
k=1

— where he Is the K-dimensional 1—hothencoding vector, which is one for
the dimension ¢ = k and 0 elsewhere. "¢* s the k-th element of this
vector.

Think of it as tossing a die
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Multiclass Classification

The multi-class classification problem can expressed as a conditional multinomial
distribution:

* l.e. the probability of the event ¢ depends on the input x
*  We can again use the “exponential trick” to select the correct probability depending on c

plclw) = [] vl = Hlay

:ﬁ( oxp(w] p(x:)) )“

Sy exp(w], o(x;))
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Multiclass Classification

Data log-likelihood: 1oglik(D, w1.x) Zlogp cilxi) = Z th@ 1 log p(k|x;)
1=1 =

I
11
M= 1M

hci,kwgqb(wi)

o

-
I
—_
I
I
=

« Can again be optimized by gradient ascent
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he, 1 |w; gb a:z

loss;...

— log

-

'

loss of the ith sample

— log Z exp

K
Z exp (U)T
7=1

zi))

~
independet from k
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Multiclass Classification

Gradient:

Oloss;
Gy, = (Z h., rwg d) x;) — log (Z exp ) )

=7
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Takeaway messages

What have we learned today?

* Refresher on probability theory and maximum likelihood
* Relation between maximum likelihood and least squares
« What is a linear classification problem ...

« ... and how to formalize it as likelihood maximization problem
— Sigmoid likelihood for binary classification
— Soft-max likelihood for multi-class

 What is gradient descent, stochastic gradient descent and mini-batches?
 How to apply gradient descent to logistic regression
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