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Learning Outcomes

• Understand probabilistic models and maximum likelihood

• Understand the classification problem

• What is a linear classifier?

• What is the loss function of linear classification?

• What is gradient descent ?
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Today‘s Agenda!

Basics: Probability Theory

• Probabilistic Models

• Expectations and Monte Carlo Methods

• Maximum Likelihood

Basics: Gradient Descent

Classification:

• Generative vs. discriminative classification

• Linear Classification

• Logistic Regression
Many slides are based on slides from Shenlon Wang, Yingyu

Jiang, Michail Michailidis and Patrick Maiden
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Basics: Probability Theory

• “Probability theory is nothing but common sense reduced to calculation”, Pierre 

Laplace, 1812

• We will keep our discussion relatively informal and pick the things we need from 

probability theory
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Notation

• A random variable represents uncertain states or outcomes of the world

• We will write         to mean the probability that X takes the value x

• The sample space is the space of all possible outcomes

– Might be discrete, continuous or mixed

• is the probability mass (density) function

– Assigns a number to each point of the sample space

– Non-negative, sums (integrates) to 1

– Intuitively: How often does x occur? How much do we believe in x?
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Distributions

• Joint distribution

– Probability that X=x and Y=y

• Conditional distribution

– Probability that X=x given Y=y
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Rules of Probability

• Sum rule (marginalization / integrating out):

– Note: For continuous distributions, the sums will be replaced by integrals
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Rules of Probability

• Chain / product rule
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Bayes Rule

Bayes rule is one of the most important equations in probability theory and in machine 

learning

• Way of “reversing” the conditional probabilities

• Often one conditional is tricky but the other one is simple

• One of the most important equations for ML!
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Expectations

The expectation of a function f(x) with respect to a distribution p(x) is given by

A conditional expectation is given by

Chain rule for expectations:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 10



Monte-carlo estimation

Expectations can always be approximated by samples:

• Necessary if no analytical solution exists to compute the integral (typical case)
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Moments

Moments are expectations:

• 1st moment (mean):

• 2nd moment: 

Central moments are always computed relatively to the mean:

• 2nd central moment (covariance):

• Captures variability (diagional entries) and correlation (off-diagional)
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Distributions

Bernoulli Distribution:

• Binary random variable

• One parameter

• Probability distribution

• Think of it as tossing a coin 

Depending on x, selects either mu or 1-mu as probability
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Distributions

Multinomial / Categorical Distribution:

• K different events: 

• Directly specifies probabilities:

• Or written with 1-hot-encoding (without an “if” clause)

– where         is the K-dimensional 1-hot encoding vector, which is one for 
the dimension c = k and 0 elsewhere.          is the k-th element of this 
vector.

• Think of it as rolling a die

Depending on the class label of x, selects the correct 
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Distributions

Gaussian Distribution

• Continuous RV: 

• Distribution is completely specified 

by mean     and variance

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 15



Distributions

Multivariate Gaussian Distribution

• Continuous RV: 

• Distribution is completely specified 

by mean vector      and covariance

matrix
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Distributions

Important Properties of Gaussians:

• All marginals of a Gaussian are again Gaussian

• Every conditional is Gaussian

• The product of 2 Gaussians is again Gaussian

• Even the sum of 2 Gaussian RVs is again Gaussian
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Maximum Likelihood Estimation (MLE)

• Given: the training data                                     identically independently distributred (iid) from 

the data distribution pdata

• Let                 be a family of distributions parametrized by

• We want to find     such that p fits the data well

Fitness of      for one single data point:

Fitness of     for whole dataset (iid. assumption):
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Maximum Likelihood Estimation (MLE)

Log-likelihood is easier to optimize:

• Log is monotonous -> same optimum

• Sums are “nicer” to optimize than products

• Log cancels exponential form (most distributions are in the exponential family)

The MLE solution is given by:
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Example: Gaussian 

Gaussian density function:

MLE solution for     :
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MLE: conditional log-likelihood

• Given the training data                                     iid. from the data distribution pdata

• Let                 be a family of distributions parametrized by

• We only care about distribution of y, not of x

• Typical case in supervised learning

Log-likelihood:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 21



Example: Linear Gaussian model

We consider the following conditional Gaussian model:

Log-likelihood:

• For obtaining w, only the squared errors matter, i.e.

• Hence, the MLE solution is equivalent to the least squares solution!

• But: we can also obtain the variance!
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Takeaway messages

What have we learned so far?

• Basic rules of probabilities … nothing new so far

• Expectations can be evaluated by samples

• How to compute the ML estimator

• Maximum likelihood is equivalent to minimizing the squared loss for:

– Conditional Gaussian models

– With constant noise
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Today‘s Agenda!

Basics: Probability Theory

• Probabilistic Models

• Expectations and Monte Carlo Methods

• Maximum Likelihood

Linear Classification:

• Linear Classifiers

• Logistic Regression

Basics: Gradient Descent
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Supervised Learning

Training data includes targets

– Regression:

• Learn continuous function

• Example: line

– Classification:

• Learn class labels

• Example: Digit recognition
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Example 1: Image classification
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Example 2: Spam Classification
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Definition

Given the dataset                                        , where                are the input samples and 

are the class labels, we want to learn a classifier           that predicts the 

class label for unseen samples.

• K = 2: Binary classification

• K > 2: Multi-class classification

In difference to regression, the output is now discrete!
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Generative vs. discriminative modelling

Generative Models:

• Assume some functional form for class prior         and class 

densities

• Learn prior and densities from data

– This is a “generative” model, as we can create new datapoints x 

using

• Predict class label by computing posterior

Learn full joint distribution of the data (typically very hard)

• Our modelling assumptions, e.g. that             is Gaussian, might 

introduce big errors 
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Generative vs. discriminative modelling

Discriminative Models:

• Directly assume some functional form for            (or any other 

predictor         that returns the class label). 

• This is a ‘discriminative’ model of the data!

• Estimate parameters of            directly from training data

Modelling needs to consider only points on the border

• Typically much simpler than generative modelling

• We therefore concentrate on discriminative models
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(Discriminative) Binary Classification

Given the training data               , i = 1…N, with                and                  , learn a classifier          

such that:
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Linear Classifiers

A linear classifier is given in the form:

In 2D, the classifier is a line

• is the normal to the line

• is the bias
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Linear Discriminators

A linear discriminator is given in the form:

In 2D, the discriminator is a line

• is the normal to the line

• is the bias

In 3D, it’s a plane

In N-D, it’s a hyper-plane
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Linear Separability 

Linear Separable

Non-Linear Separable
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Linear Classification: 0-1 loss (1st attempt)

Prediction:

• Predict class 1 for 

• else predict class 0 

Optimization: Find      such that

• where     returns 1 if the argument is true

• … counts the number of misclassifications

× Very difficult to optimize!!! (NP-hard)
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Linear Classification: regression loss (2nd attempt)

We can use same loss as in regression

• Minimize the squared error: Easy!

• However: we ignored the fact that      is restricted to {0,1}

× Not robust to outliers
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Compare the two

• The output of a linear function is unbounded!

• However, useful output values are only 0 or 1
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Logistic sigmoid function

Sigmoid function:

• Output is bounded between 0 and 1

• Smooth

For linear classification:

• Squash the output of the linear function

• Minimize the loss 
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Better: Probabilistic View

Define conditional probability distribution of the class label

• This is now a conditional Bernoulli distribution. I.e. the outcome of the event c depends on x

• We can use the same “exponential trick” to select the correct probability depending on the value 

of  c, i.e.
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Log-Likelihood

We can now directly optimize the conditional Bernoulli log-likelihood

– Negative likelihood is also often referred to as cross-entropy loss
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Logistic Regression

Optimizing the log-likelihood of a sigmoid is called logistic regression

• … even though we solve a classification problem

• One can show that the function is still convex (only one maximum exists)

• However, there is no closed form solution as in linear regression

How can we find the maximum? -> Gradient Descent!
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Generalized logistic models

We can fit a linear discriminator in a non-linear feature space

• Similar to generalized linear regression models

• Problems that are not linear separable in input space can be linear separable in feature space 
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Regularization

Similar as in linear regression, we can again add a regularization penalty

Most common: L2 regularization loss

• L is still convex for most penalty terms
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Today‘s Agenda!

Basics: Probability Theory

• Probabilistic Models

• Expectations and Monte Carlo Methods

• Maximum Likelihood

Linear Classification:

• Linear Classifiers

• Logistic Regression

Basics: Gradient Descent
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Optimization

For most ML algorithms, we want to find the best model to fit the data.

Two examples we already know:

• Least squares solution:

• Maximum likelihood solution:
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Optimization

For most ML algorithms, we want to find the best model to fit the data.

Two examples we already know:

• Least squares solution:

• Maximum likelihood solution:

… plus regularization penalty

Note that:

Hence, the role of the penalty is the same
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Optimization

General form of optimization for ML:  loss + penalty

• Summed sample-loss plus regularization penalty

How to do that? Optimization
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When can we do that?

• The global minimum/maximum can only be found for convex functions!

• For non-convex functions we are limited to finding a local minimum / maximum

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 48



Convex functions

A convex function                     satisfies for any 

• Line joining                     and                     is always

above the function value

• There is only one minimum!
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Example: Linear Regression Objective

• Convex

• Quadratic function in w

• Minimum can be obtained analytically

• One of the very rare cases!

In most other cases, we have to resort to incremental methods: Gradient descent
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Gradient Descent

• Is good for finding global minima if function is convex

• Is good for finding local minima if function is non-convex

• Has many applications in ML:

– Logistic Regression

– Linear Regression (for large input dimensions)

– Neural Networks

– Mixture Models

– …

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 51



Gradient Descent

Start at some point, follow the gradient towards (a) minimum

• learning rate or step size

• Gradient always points in the direction of steepest ascent
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Choosing the step-size
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How to terminate

When change in iterates is  small  

• When gradient is small

• When change in function value is small  

Or after a fixed time step or budget
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Stochastic Gradient Descent

• Usually we are minimizing the empirical loss (batch gradient descent)

• We do this to approximate the expected loss

• Use a rougher, cheaper approximation: stochastic gradient descent

– for random sample i
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Stochastic Gradient Descent (SGD)

Use only one sample to compute the update

• Does NOT always “descent”

• Iterations are much cheaper

• Requires more iterations

• … and smaller step sizes
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Stochastic vs. Batch Gradients

• Blue: Batch Gradients

• Red: Stochastic Gradients

Rule of thumb:

• Stochastic methods work well far away 

from optimum

• But struggle to find the exact optimum
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Step-sizes

Standard in SGD is to use diminishing step sizes, e.g.,

• Assymptotically approach the optimum 

• instead of “wiggling” around optimum

In general, it can be shown that SGD converges to the optimum for strictly convex 

functions if (stochastic approximation theory)
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Stochastic vs. Batch Gradients

Why are stochastic gradients often better than batch?

• Typically, our data-set will contain redundancy

• Hence, some computation in the batch gradients are redundant

– compute the gradients for similar samples

– using the same parameter vector

• This does not happen if we update immediately after one sample

As a consequence, SGD requires less computation (in most cases)
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Mini-Batches

Take subset of samples to approximate real gradient:

• Intermediate version of stochastic and batch gradient descent

• Less noisy estimates

• Achieves “descent” more often

• Preferable for GPU implementations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 61



Example

10000 samples, loglikelihood logistic regression:
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Gradient Descent for Logistic Regression

Properties of the sigmoid function:

• Bounded: 

• Symmetric: 

• Gradient: 
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Classification loss

Data log-likelihood:
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Gradient for Logistic Regression
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Multiclass Classification

Softmax Likelihood function:

• Each class gets a weight vector

• Higher probability for class i if                 is high

• For K = 2,        is redundant -> better to use sigmoid
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Recap: Multinomial distribution

Multinomial / Categorical Distribution:

• K different events: 

• Directly specifies probabilities:

• Or written with 1-hot-encoding (without an “if” clause)

– where         is the K-dimensional 1-hot encoding vector, which is one for 
the dimension c = k and 0 elsewhere.          is the k-th element of this 
vector.

• Think of it as tossing a die

Depending on the class label of x, selects the correct 
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Multiclass Classification

The multi-class classification problem can expressed as a conditional multinomial 

distribution:

• I.e. the probability of the event c depends on the input x

• We can again use the “exponential trick” to select the correct probability depending on c
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Multiclass Classification

Data log-likelihood:

• Can again be optimized by gradient ascent
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Multiclass Classification

Gradient:
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Takeaway messages

What have we learned today?

• Refresher on probability theory and maximum likelihood

• Relation between maximum likelihood and least squares

• What is a linear classification problem … 

• … and how to formalize it as likelihood maximization problem

– Sigmoid likelihood for binary classification

– Soft-max likelihood for multi-class

• What is gradient descent, stochastic gradient descent and mini-batches?

• How to apply gradient descent to logistic regression
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