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Learning Outcomes

What will we learn today?

* Understand the concept of Maximum Margin classifiers
» Define the corresponding optimization problem

* How do relax the problem using slack variables

» Connection to the hinge loss

« How do optimize the problem using sub-gradients

* How to do the Kernel Trick with SVMs
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Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:
Maximum Margin

*  Optimization Problem

«  Soft-Margin
 Hinge-Loss

SVMs with Kernels
«  Constraint Optimization Problem
« Kernel Trick

Basics:

«  Constraint Optimization
* Sub-gradients
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Binary Classification: Previous Definition

A
o 9 A‘ A ‘A:
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[ ] A-‘
Given the training data (i, v;) ,i=1...N, with z; € R? and v; € {0,1} ,learna

classifier f(x) such that:

o >0, ify;=1
f(‘”@)_{ <0, ify;=0
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Binary Classification: New Definition

For SVMs, it simplifies notation to use +1 and -1 as class labels

New definition: Given the training data («;,¥;) ,i=1...N, with ; € R¢ and v € {-1,1}

learn a classifier f(x) such that:
Y
>0, ify; =1
<0, ify, =-—

Or: f(x;)y; > 0 for a correct classification

—— —
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Recap: Linear Classifiers

A linear classifier is given in the form:

f(x)=wlx+b

In 2D, the classifier is a line
e Ww isthe normal to the line
e b isthe bias
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Basics: Projections of vectors

The scalar product of 2 vectors can be used to compute the projection of vector a on
vector b:

» Geometric definition of scalar product

a'b = |a||||b]|cos b

* Angle between 2 vectors

Observation: If 2 vectors are normal to each other, the projection is 0
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Recap: Geometrical inspection

Observations:
* The decision boundary is normal to w
« Without b, it goes through the origin
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Recap: Geometrical inspection

Observations:

« b shifts the decision boundary along
(negative) direction of w

» The shift corresponds to adding
to the projection

projection x,,

m

* l.e.in order for x to be on the decision
boundary, the projectiqn has to be

L

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 9



Optimal Separation

Which is the optimal line?

v
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Maximum Margin

« Support Vectors: Data points closes to
the decision boundary 4

— Other examples can be ignored

* Margin p is the distance between the
support vectors and the decision boundary

* Margin should be maximized

— l.e. minimum distance between decision
boundary and examples should be
maximized

v
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Maximum Margin

« Maximize distance between hyper-plane
and “difficult examples”

— Examples next to decision boundary
— Also called Support Vectors

* Intuition:

— Less examples close to decision boundary
-> more robust

- Statistical Learning Theory:

— Maximum Margin Classifier has smaller
complexity (VC-dimension)

v

— And therefore generalizes better
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Geometric Inspection
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Mathematical Formulation

Observation:

— wI'x+b=0 and ¢(wix+b)=0

define the same hyper-plane linearly separable data t

Margin =
[[w]

— Scaling c can be chosen freely

|
! s
: i
| i
I ° :
Choose scaling such that | o ; o
| : :
— For positive support vectors | e P R e —
| S t Vector@j |
WTX+ +b=+1 | B Or@ ] _® Support Vector °
° ;
—  For negative support vectors | ¢ | .
T . I i o
%% X_+b——1 I wix+h=1 ° :
Margin is then given by : wix < b =0 i o
| : |
wlix, +b wa_—l—b_ 2 I Wik b1 5 ®
[[wll [[wll [Iwl| l ¢
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SVM Optimization

Optimization problem:

2 _ .
argmaxy, W, Maximize margin
st. wlix;+b >+ iy =+l Condition for margin
< -1, ify,=-1

Observations:
* If the constraints are not satisfied, our definition of the margin would be wrong, i.e,

minx+EX+ (WTX_|_ + b) = 41 maXy cx_ (WTX_ + b) — —1 X_ :negative examples

X 4 : positive examples

Positive support vectors Negative support vectors

— Support vectors have the smallest distance to the decision boundary

* There is at least one positive and one negative data point that satisfy the support vector
condition exactly (i.e. equality instead of inequality) from above

— Why? Because of the argmax! Norm of weight vector could be reduced otherwise
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SVM Optimization

Optimization problem:

2 _ .
argmaxy, W, Maximize margin
st. wlix;+b >+ iy =+l Condition for margin
< -1, ify,=-1

Reformulation: Easier to solve, same solution

* Quadratic optimization problem
» Linear Constraints

» Convex, single optimum

We will see later how to solve it...

argminy, ||wl[?,

st yi(wlix; +b)>1
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Back to linear Separability

A A
A A,

A AAA 4
NIRRT

What is the best w?

« Linear separable but: small margin

« Large margin but error in classification

We have to choose a trade-off between margin
and classification accuracy!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

17



Soft Max-Margin

PY & 2

[lwll - lwl]

Misclassified @
point

Introduce slack-variables:
& >0

2

Margin =
W]

Allows violating the margin conditions

yi(Wix; +0) > 1-¢;
Support Vector@"‘
« 0<¢ <1 sample is between
margin and decision boundary:

margin violation ®

« & > 1 sample is on the wrong side
of the decision boundary:
misclassified

wix+b=0

wix+b=-1
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Soft Max-Margin

Optimization problem:

N
argming . ||w|> +C Z &, Punish large slack variables
)

st y(wlix +0)>1-&, &>0 Condition for soft-margin

« Cis a (inverse) regularization parameter
— Small C: Constraints have little influence -> large margin -> large regularization
— Large C: Constraints have large influence -> small margin -> small regularization

— Cinfinite: Constraints are enforced-> hard margin -> no regularization
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lllustration

Hard Margin

feature y

T 0.8 0.6

Soft Margin

feature y

0.4 0.2 0 0.2 0.4 06 0.8 ! 08 06
feature x
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Reformulation into an unconstrained problem

Constrained optimization:

N [ LSlackvariables |
argming, ¢ ||WH2—|—CZ€Z‘, st oy (Wixg+b)>1-&, &>0

Regularization parameter
SVMs can be reformulated into an unconstrained optimization problem

«  Rewrite constraints: & > 1 — yi(wai +0)=1—vy,;f(x;)

+ Together with & > 0 this results in §; = max (O, 1— yif(mz-)) (given that &; should be
minimized)

Unconstrained optimization (over w):

N

argmin,,  |[w|® + € max (0.1 - yif()
. 1=1

regularization - _

Vo
loss function
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Hinge Loss

N
argmin,, Iw|[*>  + C’Zmax (0,1 — y; f(xs))
. . =1 o Y
regularization ~ ~ _
loss function
Points are in 3 categories: Support Vector;:

y: f(x;) > 1 : Point outside margin, no °
contribution to loss

yif(z;) =1 : Point is on the margin, ®
no contribution to loss as in hard margin

y; f(z;) <1 : Point violates the margin,
contributes to loss
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Loss function is convex

N
argmin,, CZ max (0,1 — y; f(x;)) +  ||w]|” |
i=1

~ regularization

TV
loss function

| )
I

Convex
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We can find it with gradient
descent

However: Hinge loss is not
differentiable!
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Comparison to logistic loss function

« SVM-hinge loss

1
—— 6

regularization _

N
argming, A ||w|]* + Zmax (0,1 —y;f(;)), with A=
i=1

~
data loss

* (Regularized) logistic regression loss (see lecture 2)

N
argmax,, — A||w||? + ch- log(o(f(z;)) + (1 —¢;)log(l — o(f(;)), with ¢; € {0,1}
i=1

N
=argmin,, A [[w|® + > log(l+exp(—yif(x))), withy; €{-1,1}
\\/_/ i—1

regularization N _
NV

data loss

Both loss functions have similar interpretations
«  Keep weights small + ¥:f(x;:) should be large
« Saturates if y;f(x;) gets too large
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Comparison to logistic loss function

SVM (hinge) loss:
max (O, 1— y,f(a:z))

*  Outputs -1 or 1 (classlabels)

— Zero-one loss

+  Estimates maximum margin 5 — Hinge loss
solution L
S — Logistic loss
* Loss contribution is O for o
correct classification
Z,
. g Y=
Logistic loss: =
3
log (1 + exp(—y: f(z:))) 2|
*  Outputs probabilities y
*  Contribution never 0
— Often results in slightly less ; : ; -
accurate classification % 3 =2 1 0 1 2 3
» Diverges faster than hinge loss yi - flz;)
— More sensitive to outliers
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 25




Comparison to logistic regression (LR)

« SVM finds more balanced \’ R .0 | . . .
decision boundary T o 9 " ey

3 - a z 2 . . . -, ® g ° ©
2 0 . ® o ? 2 ) IR : ¥ i
: : i SVM : ; R : R
P S 4 e sk . L IR
«  SVMis less sensitive to | " I T . L
outliers k- Nt i ' . e
o - o. ” .. © ‘.,. o ] Lod : . : :7 5 5
| ol ; * e 2 ’ o . LIPS ’
’ SVM o 1 2 LR 3 4
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Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:
Maximum Margin

*  Optimization Problem

«  Soft-Margin
 Hinge-Loss

SVMs with Kernels
«  Constraint Optimization Problem
« Kernel Trick

Basics:
* Sub-gradients
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Basics: Sub-gradients

Remember: For any convex function f : R? - R

f(z) 2 f(z) + V(@) (2 - )

* l.e. linear approximation underestimates function

A subgradient of a convex function f at point x is any g such that
f(z)> f(x)+g" (z—=)

* Always exists (also if fis not differentiable)
« If fis differentiable at x, then g = V f(x)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Examples

Consider f(z) = |z|

«  For z # 0 , unique sub-gradient of g = sign(x) _

e Forz =0, sub-gradient is any ——
element of [—1,1] <
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Examples

Let f1, fo : R™ — R be convex, differentiable, and consider

f(x) = max{fi(z), fa(z)}

o For fi(z) > fa(x), unique subgradient g = V fi(x)

e For fo(x) > f1(x), unique subgradient g = V fo(x) o

e For fi(x) = fa(x), subgradient g is any point on the line =
segment between V fi(z) and V fa(x) 5 -
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Sub-Gradient Method

Like gradient descent, but replacing gradients with sub-gradients

Sub-gradient Descent:

« Given convex f, not necessarily differentiable

* Initialize xg

* Repeat: x;41 = ¢ + 1g , where g is any sub-gradient of f at point x;

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Sub-gradients for hinge loss

L(xj,y;w) =max (0,1 -y f(x)) f(x)=w'x;+b

20 )

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Sub-gradient descent for SVMs

N
argmin,  C Z max (0,1 — y; f(x;)) +  ||w]|?
i=1

_ regularization

"
loss function

At each iteration, pick random training sample (x;,y;)
o I yif(e) <1: wipr = we — 2wy — Cyix;)

*  Otherwise: Wi = Wy — N2Wy

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Application: Pedestrian Tracking

Objective: Detect (localize) standing humans in images

Detection with a sliding window approach:
. Reduces object detection to binary classification

. Does an image window contain a person or not?
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Training Data

« Positive Data: 1208 examples

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Features: Histogram of oriented Gradients (HoG features)

_ dominant
Image direction HOG

« tile window into 8 x 8 pixel cells

 each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
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Example HoG features

~—r
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Averaged Positive Example

— = e

s — AN/

38
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Example detection

Dalal and.Trigas, GVPR 2009.¢ L carning | ki1 | ws 202112022
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Learned model
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Wrap-up

SVMs have been the “gold standard” in the 90s and 2000s for classification

« SVM have been used successfully in many real-world problems
— text (and hypertext) categorization
— image classification
— bioinformatics (Protein classification, cancer classification)
— hand-written character recognition

« Can be extended to complex feature spaces using kernels (next part)
* ... and regression problems (support vector regression, not covered)

In the last 7-10 years, neural networks have outperformed SVMs on most
applications

« However, similar insights are still used (e.g, hinge loss is also used for DNNs)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 41



SVMs with Kernels

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

42



Support Vector Machines (continued...

SVMs with features:
*  Maximum margin principle
» Slack variables allow for margin violation

N
argming, ¢ [[w][>+C > &,

sty (Who(x) +0) >1-&, &>0
«  Simpler formulation without slack variables
argmin,, ||w]|%,

st yi(whd(xi) +b) > 1

In order to apply the kernel trick, we need to apply Constrained Optimization!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Constraint Optimization

Gerhard Neumann | Machine Learning 1 | KIT | WS 2020/2021
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Basics: Constrained Optimization

Simple constrained optimization problem:

argminz® s.t. x> b

No Constraint | X 2 -1 X > 1
—> —
x*=0 x*=0 X*=1

How do we solve the constrained optimization problem? Lagrangian Multipliers!
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Basics: Lagrangian Multipliers

Why is this equivalent?
Min fights max!
e x<b:

minz? s.t. x> b
€T

The Lagrangian:
« L= objective - multiplier * constraint — (z-0)<0— max ANz —b) =

|
|
|
|
|
|
; : — min won't let that happen
Lxz,\N)= z* — A - (z—-0) | xz>bh:
objective  multiplier | — (;{; — b) > 0, A Z 0— )\* =0
: — L is the same as original objective
I c x=20b:
| — )\ can be anything
: — Lis the same as original objective
|

Min forces max to behave such that constraints
are satisfied

constraint

Lagrangian optimization:

minm}%\xxL(az, A), st.A>0
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General formulation

General Formulation: min f(x),

s.t. hz(a:) Z bi, fori=1...K

»  Several inequality constraints (equality constraints also possible)

K
Lagrangian optimization: minmax L(z,A),  L(z,A) = f(z) - > Nilhi(z) — by)
i=1
st.\; >0, fori=1... K

Gerhard Neumann | Machine Learning 1 | KIT | WS 2019/2020
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Dual formulation

Primal optimization problem: Dual optimization problem:

A" =argmax g(A), ¢(A) = min L(x, A)
N 1
min f(x),

s.t. hi(x) >b;, fori=1...K

st. \; >0, fore=1...K
* gis also called the dual function of the
optimization problem

*  We essentially swapped min and max
in the definition of L

Slaters condition: For a convex objective and convex constraints, solving the dual is
equivalent to solving the primal!
«  Optimal primal parameters can be obtained from optimal dual parameters, i.e.

x* = argmin L(x, \")
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Lagrangian Optimization

Basic “Cookbook”:
1. Write down Lagrangian

Lz, A) = f(=) - Z Ai(hi(@) = bi)

2. Obtain optimal solution for primal parameters
—  Compute derivative, set to zero and solve for x

OL(x, \)

ox
3. Set x*back into Lagrangian to obtain the dual function

9A) = Lf(A), A)

4. Obtain optimal solution for the dual function
— Set derivative to zero or gradient descent

A" = argmaxyg(A), s.t. A >0,Vi

—0—a" = f(A)

5. Compute optimal primal parameters for given

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 49



Example:

minz? s.t. x >1

Gerhard Neumann | Machine Learning 1 | KIT | WS 2019/2020
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Example:

minz® s.t. x> 1

T
1. Write down Lagrangian L(z,\) = 2* = Mz — 1)
2. Find optimal primal parameters z* = f(\) 9
3. Plug back in Lagrangian to get dual
g(\) = L(z*(\), \) gA) =N[4 = AA/2 1) = =N /4 + )
4. Find optimal dual parameters 5
A* = argmax, g(A) s.t. A >0 ag()\) =-A241=0—-A"=2
5.  Compute primal solution
x* = f(\Y) xr=X"/2=1

Gerhard Neumann | Reinforcement Learning | KIT | WS 2021



Dual derivation of the SVM

SVM optimization:
+ Lagrangian:  argmin, [[w|*, st y(wlé(xi) +b) > 1

Compute optimal w: L(w,\) —w w — Z)\ yi(w  ¢(xz;) +b) — 1)

0L
aw =w — Z)\zyz (mz) =0,

w" = Z iy P (x4)
— Many of the ); will be zero (constraint satisfied)

— If \; is not zero, @(x;) is a support vector
— The optimal weight vector w is a linear combination of the support vectors!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Dual derivation of the SVM

SVM optimization:
- Lagrangian: argming, ||w||?, s.t. y(wlo(x;) +b) >1

Optimality condition for b:
1
L(w, A) = §wT’w - Z i (yi(w' (i) +b) — 1)

«  We do not obtain a solution for b
But an additional condition for the lambdas

% Z—Z)\iyiﬁz)\wizo

b can be computed from w:
« If A; >0, then x; is on the margin, i.e.: yi(qub(a:i)

N — —
1.
p—t

i —w ()

I
SIS
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Kernel Trick in SVMs

1
Lagrangian: L(w,A) = §w w — ZA yilw! o(z;) +b) = 1), w* —Z&yz ;)

Dualfunction: g(\) = L(w*,\)

__ZZijzyj z;)" ZAZ% ZA]% (x5)) qb(a:i)JrZ)\i

~ "

’lU*T’UJ* w*

—Z)\ ——ZZ)\ AjYiy; @ (wZ)T (wj)

7

We just derived the kernel trick for SVMs
1
g(A) = Z Ai — 3 Z Z Nidjyiyik(xi, x;)
1 1 i

»  Scalar products of the feature vectors can be written as kernels
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Kernelized SVM

Solve dual optimization problem:

max Z)\ — = sz\ Aiyiyik(xi, ;)

2

s.t. N >0,Vie]l Z)\zyl—o

Compute primal from dual parameters
*  Weight vector (can not be represented): Z AiYi D (CEZ)
« Bias: for any i with A; > 0: b=y — ¢(g;k)Tw*

=y — Y yidik(@i, T)

«  Decision function: f(x) = ¢p(x)Tw* +b

= Z yidik(x;, ) + b

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Relaxed constraints with slack

Primal optimization problem: Dual optimization problem:

m}a\mx Z A — % Z Z )\i)\jyiyjk(wz‘, wj)
i (]

N
argming, . |[w|[*+C ) &,
€ Zz: S.t.CZAiZO,\V/iE[l...N], Z)\iyizo

t. (wlx, b) > 1-&;, >0 .
S yi(w' Xi +b) > SIS - For computing b, we now take an example

where C' > \; >0

——————————————————————— e oo o o o e e e e e e e e mm m mm mw Ew Em Em Ew Em =
Intuitive explanation:
What changed? «  Without slack, A; — oo when constraints are
«  Added upper bound of C on ;! violated (points misclassified)

* Upper bound of C limits the ); , so
misclassifications are allowed
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Example: SVM with RBF kernel

Data is non-linearly separable in original space

RBF-kernel: 0.6-

2
r—yY
k(x,y) = exp (—%) 0.4

0.2~

feature y

-0.2 -

-0.4 -

-0.6L ! ! ! 1 L !
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

feature x
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Example: SVM with RBF kernel

Data is non-linearly separable in original space

c=10 (C=o0

06

f(x) =

0.4

02

feature y

02

F(x) = -

0.4

feature x
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Example: Different Cs

0.4

feature y
=]
o N

&
N

)
N

=]
(=53]
@
i
o
™
[=]
=N
[=]
[N
o

0.2

feature x

0.4

feature y

02

0.4

%)

feature x

1.0 C =100

feature y
o o o
o N = o

o
N

o
=

=
=t}

02
feature x
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Example: Different sigma

c=0.25 (C=o0

feature y
o o o
N R o

o

]
[N}

0.4

0.4
_g_%
08 -0.6 -0.4 -0.2 o 02
: 02 feature x
S
i, c=0.1 C =
02
0.4 0.4
.. 02
—EI._% o
.8 -06 -0.4 -0.2 0 02 0.4 06 08 1 2
feature x 2 g
0.2
-0.4
.n.—%
.8 -0.6 04 02 0 02 0.4 06 08 1
feature x
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Overfitting

Huge feature space with kernels: should we worry about overfitting?

SVM obijective seeks a solution with large margin
Theory says that large margin leads to good generalization
But everything overfits sometimes!!!

Can control overfitting by: -
Setting C (low C -> smaller Complexity)
Choosing a better Kernel — Model Selection Problems
Varying parameters of the Kernel
(width of Gaussian, etc.) _

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Handwritten Digit Clasification

US postal service database
Human performance: 2.5% error

Various learning algorithms (pre-deep learning)

16.2%: Decision tree (C4.5)
5.9%: 2-layer neural network
5.1%: LeNet 1 - 5-layer neural network

Various SVM results

4.0%: Polynomial kernel (274 support vectors)

4 1%: Gaussian kernel

2601886357 ) 5231037200410
LSz &2 28 LARE62023800
2301032010320422312R2328)2
14053506222801245F0229955
51212220 083257083 144861
LLel)IIeQS IR L00153INIET ]
LS55 3281908828170 ) 4
9960512901934622220321343.73
3321221%723)3338073838031)1
1321804003082 048403800810
LOLLEN24252362 Y3 s LELRR
$35812023323212222).002L428)
3984841252101 08 250610363
LOELLLIE305252420010233.6.¢
83 38R IREIZELALARDIASTES
Lelr230) 8yl 122410% 118748
Q103107521221223Q).23 L1015
LR7A3L82aSS(828.L420801.014:
L23ISH1eS8Xe235246R38L8035
LEZSSLRRIRIREISARIAILRL
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Handwritten Digit Clasification

Very little overfitting due to max-margin

degree of || dimensionality of | support | raw
polynomial feature space vectors | error Recent results
1 256 2392 80 «  With more training data, better modeling of
2 ~ 33000 221 4.7 invariances, etc.
3 A1 x 103 274 4.0 «  Error down to about 0.5% with SVMs and 0.4%
4 ~ 1% 10 321 4.2 with neural networks
5 ~ 1 x 1012 374 4.3
6 ~ 1 x 101 377 4.5
7 ~ 1 x 1016 422 4.5
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Takeaway messages

What have we learned today?

Maximum Margin Classifiers:
* Arobust formulation for classification
 Margin can be expressed as constrained optimization

« Slack variables allow for constrained violation and
regularization

» Can be efficiently optimized using hinge-loss and sub-
gradient descent

Sub-gradients:
 Use it for non-differentiable convex functions

Kernel trick for SVMs:
» Results from the Lagrangian dual formulation

*  Optimal solution for w is a linear combination of the
support vectors (compare to kernel regression)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

64



Self-test questions

You should understand now:

Why is it good to use a maximum margin objective for classification?

How can we define the margin as optimization problem?

What are slack variables and how can they be used to get a “soft” margin?

How is the hinge loss defined?

What is the relation between the slack variables and the hinge loss?

What are the advantages and disadvantages in comparison to logistic regression?
What is the difference between gradients and sub-gradients
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