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Learning Outcomes

What will we learn today?
• Understand the concept of Maximum Margin classifiers
• Define the corresponding optimization problem
• How do relax the problem using slack variables
• Connection to the hinge loss
• How do optimize the problem using sub-gradients 
• How to do the Kernel Trick with SVMs
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Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:
• Maximum Margin
• Optimization Problem
• Soft-Margin
• Hinge-Loss

SVMs with Kernels
• Constraint Optimization Problem
• Kernel Trick

Basics:
• Constraint Optimization
• Sub-gradients
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Binary Classification: Previous Definition

Given the training data                  , i = 1…N, with                  and                       , learn a 
classifier          such that:
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Binary Classification: New Definition

For SVMs, it simplifies notation to use +1 and -1 as class labels

New definition: Given the training data               , i = 1…N, with                 and                  ,        
learn a classifier            such that:

Or:                            for a correct classification
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Recap: Linear Classifiers

A linear classifier is given in the form:

In 2D, the classifier is a line
• is the normal to the line
• is the bias
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Basics: Projections of vectors

The scalar product of 2 vectors can be used to compute the projection of vector a on 
vector b:

• Geometric definition of scalar product

• Angle between 2 vectors

• Scalar projection of a on b

Observation: If 2 vectors are normal to each other, the projection is 0

ab = Projection of a on b

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 7



Recap: Geometrical inspection

Observations: 
• The decision boundary is normal to w
• Without b, it goes through the origin

projection on w
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Recap: Geometrical inspection

Observations: 
• b shifts the decision boundary along 

(negative) direction of w
• The shift corresponds to adding              

to the projection

• I.e. in order for x to be on the decision 
boundary, the projection has to be 
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Optimal Separation

Which is the optimal line?
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Maximum Margin

• Support Vectors: Data points closes to 
the decision boundary

– Other examples can be ignored

• Margin ρ is the distance between the 
support vectors and the decision boundary

• Margin should be maximized

– I.e. minimum distance between decision 
boundary and examples should be 
maximized

ρ
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Maximum Margin

• Maximize distance between hyper-plane 
and “difficult examples” 

– Examples next to decision boundary
– Also called Support Vectors

• Intuition:

– Less examples close to decision boundary 
-> more robust

• Statistical Learning Theory:

– Maximum Margin Classifier has smaller 
complexity (VC-dimension)

– And therefore generalizes better

ρ
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Geometric Inspection

Distance between point      and line:
w
xw br i

T +
=
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Mathematical Formulation

Observation:
– and                                  

define the same hyper-plane

– Scaling c can be chosen freely

Choose scaling such that

– For positive support vectors

– For negative support vectors

Margin is then given by 
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SVM Optimization

Optimization problem:

Observations:
• If the constraints are not satisfied, our definition of the margin would be wrong, i.e,

– Support vectors have the smallest distance to the decision boundary
• There is at least one positive and one negative data point that satisfy the support vector 

condition exactly (i.e. equality instead of inequality) from above
– Why? Because of the argmax! Norm of weight vector could be reduced otherwise

Maximize margin

Condition for margin

Positive support vectors Negative support vectors
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SVM Optimization

Optimization problem:

Reformulation: Easier to solve, same solution

Maximize margin

Condition for margin

• Quadratic optimization problem
• Linear Constraints
• Convex, single optimum
We will see later how to solve it...
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Back to linear Separability

What is the best w?
• Linear separable but: small margin

• Large margin but error in classification

We have to choose a trade-off between margin 
and classification accuracy!
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Soft Max-Margin

Introduce slack-variables:

Allows violating the margin conditions

• sample is between 
margin and decision boundary: 
margin violation

• sample is on the wrong side 
of the decision boundary: 
misclassified
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Soft Max-Margin

Optimization problem:

• C is a (inverse) regularization parameter
– Small C: Constraints have little influence  ->  large margin -> large regularization

– Large C: Constraints have large influence -> small margin -> small regularization

– C infinite: Constraints are enforced-> hard margin -> no regularization

Punish large slack variables

Condition for soft-margin
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Illustration

Hard Margin Soft Margin
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Reformulation into an unconstrained problem

Constrained optimization:

SVMs can be reformulated into an unconstrained optimization problem

• Rewrite constraints:

• Together with               this results in                                               (given that     should be 
minimized)

Unconstrained optimization (over w):

Slack variables

Regularization parameter
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Hinge Loss

Points are in 3 categories:

• : Point outside margin, no
contribution to loss

• : Point is on the margin, 
no contribution to loss as in hard margin

• : Point violates the margin,
contributes to loss
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Loss function is convex

Convex

• There is only one minimum
• We can find it with gradient 

descent
• However: Hinge loss is not 

differentiable!
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Comparison to logistic loss function

• SVM-hinge loss

• (Regularized) logistic regression loss (see lecture 2)

Both loss functions have similar interpretations
• Keep weights small +               should be large
• Saturates if               gets too large
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Comparison to logistic loss function

SVM (hinge) loss: 

• Outputs -1 or 1 (classlabels)
• Estimates maximum margin 

solution
• Loss contribution is 0 for 

correct classification

Logistic loss:

• Outputs probabilities
• Contribution never 0

– Often results in slightly less 
accurate classification

• Diverges faster than hinge loss
– More sensitive to outliers
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Comparison to logistic regression (LR)

• SVM finds more balanced
decision boundary

• SVM is less sensitive to
outliers
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Agenda for Today

Recap: Linear Discriminators

Support Vector Machines:
• Maximum Margin
• Optimization Problem
• Soft-Margin
• Hinge-Loss

SVMs with Kernels
• Constraint Optimization Problem
• Kernel Trick

Basics:
• Sub-gradients

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 27



Basics: Sub-gradients

Remember: For any  convex function

• I.e. linear approximation underestimates function 

A subgradient of a convex function f at point x is any g such that

• Always exists (also if f is not differentiable)
• If f is differentiable at x, then 
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Examples

Consider

• For            , unique sub-gradient of 

• For            , sub-gradient is any 
element of 
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Examples
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Sub-Gradient Method

Like gradient descent, but replacing gradients with sub-gradients

Sub-gradient Descent:
• Given convex f, not necessarily differentiable
• Initialize
• Repeat:                                , where     is any sub-gradient of f at point 
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Sub-gradients for hinge loss
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Sub-gradient descent for SVMs

At each iteration, pick random training sample

• If                      : 

• Otherwise: 
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Application: Pedestrian Tracking

Objective: Detect (localize) standing humans in images

Detection with a sliding window approach:
• Reduces object detection to binary classification

• Does an image window contain a person or not?
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Training Data

• Positive Data: 1208 examples 

• Negative Data: 1218 examples 
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Features: Histogram of oriented Gradients (HoG features) 
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Example HoG features

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 37



Averaged Positive Example
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Example detection
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Learned model

Model: 
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Wrap-up

SVMs have been the “gold standard” in the 90s and 2000s for classification

• SVM have been used successfully in many real-world problems
– text (and hypertext) categorization
– image classification
– bioinformatics (Protein classification,  cancer classification)
– hand-written character recognition

• Can be extended to complex feature spaces using kernels (next part)

• … and regression problems (support vector regression, not covered)

In the last 7-10 years, neural networks have outperformed SVMs on most 
applications
• However, similar insights are still used (e.g, hinge loss is also used for DNNs)
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SVMs with Kernels
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Support Vector Machines (continued…)

SVMs with features:
• Maximum margin principle
• Slack variables allow for margin violation

• Simpler formulation without slack variables

In order to apply the kernel trick, we need to apply Constrained Optimization!

ρ
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Constraint Optimization
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Basics: Constrained Optimization

Simple constrained optimization problem:

How do we solve the constrained optimization problem? Lagrangian Multipliers!
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Basics: Lagrangian Multipliers

The Lagrangian: 
• L = objective - multiplier * constraint

Lagrangian optimization:

Why is this equivalent?
Min fights max!
•

–
– min won’t let that happen

•
–
– L is the same as original objective 

•
– can be anything
– L is the same as original objective

Min forces max to behave such that constraints 
are satisfied
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General formulation

General Formulation:

• Several inequality constraints (equality constraints also possible)

Lagrangian optimization:
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Dual formulation

Primal optimization problem: Dual optimization problem:

• g is also called the dual function of the 
optimization problem

• We essentially swapped min and max 
in the definition of L

Slaters condition: For a convex objective and convex constraints, solving the dual is 
equivalent to solving the primal!

• Optimal primal parameters can be obtained from optimal dual parameters, i.e.
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Lagrangian Optimization

Basic “Cookbook”:
1. Write down Lagrangian

2. Obtain optimal solution for primal parameters
– Compute derivative, set to zero and solve for x

3. Set      back into Lagrangian to obtain the dual function

4. Obtain optimal solution for the dual function
– Set derivative to zero or gradient descent

5. Compute optimal primal parameters for given 
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Example:

Gerhard Neumann | Machine Learning 1 | KIT | WS 2019/2020 50



Example:

1. Write down Lagrangian

2. Find optimal primal parameters 

3. Plug back in Lagrangian to get dual

4. Find optimal dual parameters

5. Compute primal solution
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Dual derivation of the SVM

SVM optimization:

• Lagrangian: 

Compute optimal w:

– Many of the       will be zero (constraint satisfied)
– If       is not zero,            is a support vector
– The optimal weight vector w is a linear combination of the support vectors!
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Dual derivation of the SVM

SVM optimization:

• Lagrangian: 

Optimality condition for b:

• We do not obtain a solution for b
• But an additional condition for the lambdas

b can be computed from w:
• If              , then      is on the margin, i.e.:  
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Kernel Trick in SVMs

Lagrangian: 

Dualfunction:

We just derived the kernel trick for SVMs

• Scalar products of the feature vectors can be written as kernels
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Kernelized SVM

Solve dual optimization problem:

Compute primal from dual parameters

• Weight vector (can not be represented):

• Bias: for any i with             : 

• Decision function: 
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Relaxed constraints with slack

Primal optimization problem: Dual optimization problem:

• For computing b, we now take an example 
where

What changed? 
• Added upper bound of C on      !

Intuitive explanation:
• Without slack,                when constraints are 

violated (points misclassified)
• Upper bound of C limits the      , so 

misclassifications are allowed
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Example: SVM with RBF kernel

Data is non-linearly separable in original space

RBF-kernel:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 57



Example: SVM with RBF kernel

Data is non-linearly separable in original space
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Example: Different Cs
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Example: Different sigma
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Overfitting

Huge feature space with kernels: should we worry about overfitting? 
• SVM objective seeks a solution with large margin 
• Theory says that large margin leads to good generalization
• But everything overfits sometimes!!! 

Can control overfitting by: 
• Setting C (low C -> smaller Complexity)
• Choosing a better Kernel 
• Varying parameters of the Kernel 

(width of Gaussian, etc.) 

Model Selection Problems
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Handwritten Digit Clasification

US postal service database
• Human performance: 2.5% error

Various learning algorithms (pre-deep learning)
• 16.2%: Decision tree (C4.5)
• 5.9%: 2-layer neural network
• 5.1%: LeNet 1 - 5-layer neural network

Various SVM results
• 4.0%: Polynomial kernel (274 support vectors)
• 4.1%: Gaussian kernel
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Handwritten Digit Clasification

Recent results
• With more training data, better modeling of 

invariances, etc.
• Error down to about 0.5% with SVMs and 0.4% 

with neural networks

Very little overfitting due to max-margin
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Takeaway messages

What have we learned today?

Maximum Margin Classifiers:
• A robust formulation for classification
• Margin can be expressed as constrained optimization
• Slack variables allow for constrained violation and 

regularization
• Can be efficiently optimized using hinge-loss and sub-

gradient descent

Sub-gradients:
• Use it for non-differentiable convex functions

Kernel trick for SVMs:
• Results from the Lagrangian dual formulation 
• Optimal solution for w is a linear combination of the 

support vectors (compare to kernel regression)
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Self-test questions

You should understand now:
• Why is it good to use a maximum margin objective for classification?
• How can we define the margin as optimization problem?
• What are slack variables and how can they be used to get a “soft” margin?
• How is the hinge loss defined?
• What is the relation between the slack variables and the hinge loss?
• What are the advantages and disadvantages in comparison to logistic regression?
• What is the difference between gradients and sub-gradients
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