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Learning Outcomes

We will learn today…

• How to process images with neural networks

• Why do we need convolutions?

• What kind of architectures have been successful?

• How can we use CNNs with a “reasonable” amount of training data?

• What are recurrent neural networks (RNNs) and why do we need them?

• How do train RNNs?

• Long-term short-term Memory Networks as one of the most popular types of RNNs
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CNNs are everywhere nowadays…

Slides based on slides from 

Fei-Fei Li, Justin Johnson and 

Serena Yeoung, Stanford
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CNNs are everywhere nowadays…
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Image-based inputs

Fully connected layer: 32x32x3 image -> stretch to 3072 x 1

• We need a huge amount of weights using a FC layer

• How can we better exploit the spatial structure of an image?

– I.e. neighbored pixels are more correlated / contain more similar information than distant pixels
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Image-based inputs

Convolutional Layer: 32x32x3 image -> preserve spatial structure
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Example: 1 channel
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Stacking convolutions

We can stack filters to obtain a multi-channel output “image” (28x28x6)

• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps
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Stride and padding

• We can also set the “stride” (step-size) for our convolution

– Stride > 1 often used to down-sample the image

• What do we do with border pixels?

– Padding: Fill up the image  borders (zero-padding is most common)

In general, common to see CONV layers 

with stride 1, filters of size FxF, 

and zero-padding with (F-1)/2. 

(will preserve size spatially)

• e.g. F = 3 => zero pad with 1

• F = 5 => zero pad with 2

• F = 7 => zero pad with 3
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Example:

Input volume: 32x32x3

• 10 5x5 filters with stride 1, pad 2

Output volume size: ?
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Example:

Input volume: 32x32x3

• 10 5x5 filters with stride 1, pad 2

Output volume size:

• (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Number of parameters in this layer?

• each filter has 5*5*3 + 1 (bias) = 76 params

• => 76*10 = 760
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ConvLayer Summary

Accepts a volume of size W1 x H1 x D1

• Four hyperparameters:

– Number of filters K

– Spatial extend / kernel size F

– Stride S

– Amount of zero padding P

Produces a volume of size W2 x H2 x D2 where

– W2 = (W1 – F + 2P)/S + 1

– H2 = (H1 – F + 2P)/S + 1

– D2 = K

• Number of Weights:                          (and K biases)

Common settings:
• K = (powers of 2, e.g. 32, 64, 128, 512)

• F = 3, S = 1, P = 1

• F = 5, S = 1, P = 2

• F = 5, S = 2, P = ? (whatever fits)

• F = 1, S = 1, P = 0
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Pooling Layers

• Pooling layer makes the representations smaller and more manageable 

• operates over each activation map independently:
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Max-Pooling

The most common pooling is max-pooling:

• For each channel, compute the max over the whole window
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Pooling Layer Summary

Accepts a volume of size W1 x H1 x D1

• Two hyperparameters:

– Spatial extend / kernel size F

– Stride S

Produces a volume of size W2 x H2 x D2 where

– W2 = (W1 – F )/S + 1

– H2 = (H1 – F )/S + 1

– D2 = D1

• Introduces 0 parameters since it computes a fixed function of the input

• Note that typically no zero padding is used for pooling

Common settings:
• F = 2, S = 2

• F = 3, S = 2
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Convolutional Network

A convolutional Network is a sequence of Convolution Layers, interspersed with

activation functions and pooling functions…

… followed by one or multiple FC layers to compute the output (regression or 

classification)
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Convolutional Network
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Visualization of the filters
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CNN architectures

Case Study:

• AlexNet

• VGG

• ResNet

Also....

• Google LeNet

• SENet

• NiN (Network in Network)

• Wide ResNet

• ResNeXT

• DenseNet

• FractalNet

• MobileNets

• NASNet
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A bit of history…

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

• Conv filters were 5x5, applied at stride 1

• Subsampling (Pooling) layers were 2x2 applied at stride 2 

• i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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ImageNet

Standard benchmark for vision:

• 1.2 M images

• 1000 classes

• > 500 images per class
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

MAX POOL3

FC6

FC7

FC8
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4, no padding

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Output volume: [55x55x96]

Parameters: (11*11*3)*96 = 35K
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Output volume: 27x27x96

Parameters: 0!
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)
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AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Details/Retrospectives:

• first use of ReLU

• used Norm layers (not common anymore)

• heavy data augmentation

• dropout 0.5

• batch size 128

• SGD Momentum 0.9

• Learning rate 1e-2, reduced by a factor of 10 
manually when val accuracy plateaus

• L2 weight decay 5e-4

• 7 CNN ensemble: 18.2% -> 15.4%
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ImageNet challenge (ILSVRC) winners

First CNN-based 

winner

ZFNet: Improved

Hyperparameters

over AlexNet
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ImageNet challenge winners

Deeper architectures
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VGG Net

Small filters, Deeper networks

• 8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

• Only 3x3 CONV stride 1, pad 1

• and 2x2 MAX POOL stride 2

• 11.7% top 5 error in ILSVRC’13 (ZFNet)

• -> 7.3% top 5 error in ILSVRC’14

Why use smaller filters? (3x3 conv)

• Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

• But deeper, more non-linearities

• And fewer parameters: 
3 * (32C2) vs. 72C2 for C channels per layer

[Simonyan and Zisserman, 2014]
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VGG Net

Details:

• ILSVRC’14 2nd in classification, 1st in localization

• Similar training procedure as AlexNet

• No Local Response Normalisation (LRN)

• Use VGG16 or VGG19 (VGG19 only 

slightly better, more memory)

• Use ensembles for best results

• FC7 features generalize well to other tasks

[Simonyan and Zisserman, 2014]
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ImageNet challenge winners

“Revolution of Depth”
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ResNet

Very deep networks using residual 

connections

• 152-layer model for ImageNet

• ILSVRC’15 classification winner 

(3.57% top 5 error)

• Swept all classification and 

detection competitions in 

ILSVRC’15 and COCO’15!

Gerhard Neumann | Machine Learning  | KIT | WS 2021/2022 36



A new level of Depth…

How can we train such deep networks?

Deeper models should be able to perform at least as well as the shallower model. However, this is 

typically not the case

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize.
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How can we train such deep networks?

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

• Use layers to fit residual F(x) = H(x) – x

instead of H(x) directly

• Initially, F(x) is set to 0, so the layer

just computes the identity

• I.e. adding more layers does not

harm 

Residual Layers
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ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has 

two 3x3 conv layers
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ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has 

two 3x3 conv layers

• Periodically, double # of 

filters and downsample

spatially using stride 2

(/2 in each dimension)

3x3 conv layer,

64 filters

3x3 conv, 128

filters, /2

spatially with

stride 2
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ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has 

two 3x3 conv layers

• Periodically, double # of 

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

7x7 conv layer

at the beginningGerhard Neumann | Machine Learning  | KIT | WS 2021/2022 41



ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has 

two 3x3 conv layers

• Periodically, double # of 

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

• No FC layers at the end

(only FC 1000 to output 

classes)

No FC layers besides 

FC 1000 to output

classes.

Global average 

pooling layer after last 

conv layer
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ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has 

two 3x3 conv layers

• Periodically, double # of 

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

• No FC layers at the end

(only FC 1000 to output 

classes)

Total depths of 34, 50, 

101, or 152 layers for 

ImageNet
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Case Study: ResNet

Training ResNet in practice:

• Batch Normalization after every CONV layer 

(not covered)

• Xavier 2/ initialization from He et al.

• SGD + Momentum (0.9)

• Learning rate: 0.1, divided by 10 

when validation error plateaus

• Mini-batch size 256

• Weight decay of 1e-5

• No dropout used

Experimental Results

• Able to train very deep networks without 

degrading (152 layers on ImageNet, 1202

on Cifar)

• Deeper networks now achieve lower

training error as expected

• Swept 1st place in all ILSVRC and COCO 

2015 competitions

• ILSVRC 2015 classification winner (3.6% 

top 5 error) -- better than “human 

performance”! (Russakovsky 2014)
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Beyond millions of samples

Very impressive results… but ImageNet has 1.2 million images!

• Typically, we do not have that many!

• Can we also use these methods with less images?

Yes, with transfer learning!

• Features (conv layers) are generic and can be reused!
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Transfer learning

• Train on huge data-set (e.g. Imagenet)

• Freeze layers and adapt only last (FC) layers
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Transfer Learning

• Very little data, very similar dataset:

– Use Linear classifier on top layer

• Very little data, very different dataset:

– You’re in trouble... Try linear classifier from different 

stages and pray

• A lot of data, very similar dataset:

– Finetune a few layers

• A lot of data, very different dataset:

– Finetune a larger number of layers
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Transfer learning

Transfer learning with CNNs is the norm, not the exception…
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Transfer learning

Deep learning frameworks provide a “Model Zoo” of pretrained models so you 

don’t need to train your own

• TensorFlow: https://github.com/tensorflow/models

• PyTorch: https://github.com/pytorch/vision

Nice CNN Demo:

• https://www.cs.ryerson.ca/~aharley/vis/conv/
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Summary: CNNs

What have we learned today?

• CNNs employ convolutions to exploit spatial structure of images

• Can also be used for other modalities (audio, etc..)

A CNN consists of:

• Conv layers

• ReLU activation units

• Pooling

Many popular architectures available in model zoos

• ResNet and SENet (not covered) currently good defaults to use

• Networks have gotten increasingly deep over time

• Pre-trained models can be fine-tuned if amount of training data is not sufficient
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Self-test questions

• Why are fully connected networks for images a bad idea and why do we need 

images?

• What are the key components of a CNN?

• What hyper-parameters can we set for a convolutional layer and what is their 

meaning?

• What hyper-parameters can we set for a pooling layer and what is their meaning?

• How can we compute the dimensionality of the output of a convolutional layer

• Describe basic properties of AlexNet and VCG

• What is the main idea of  ResNet to make it very deep?
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Recurrent Neural Networks



Vanilla Neural Networks

Vanilla Neural 

Networks
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Recurrent Neural Networks: Process Sequences

• Video classification on frame level

Vanilla Neural 

Networks

e.g. Image Captioning
Image -> Seq. of words

e.g. Sentiment

Classification
sequence of words -> 

sentiment

e.g. Machine Translation
seq of words -> seq of words

e.g. Video classification 

on frame level
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Recurrent Neural Networks

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

• Note: same function and same parameters are used 

for every time step

New state

Old state

InputSome function 

with 

parameters W
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“Vanilla” Recurrent Neural Networks

The state consists of a single “hidden” vector h:
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RNN Computational Graph

• Unroll the time steps to get network of depth T

• Re-use the same weight matrix at every time-step
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RNN Computational Graph

Many to many computation graph:
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RNN Computational Graph

Many to one computation graph:
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RNN Computational Graph

One to many computation graph:
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RNN Computational Graph

Sequence to Sequence: Many-to-one + One-to-many

Many to one: Encode input

sequence in a single vector

One to many: Produce output

sequence from single input vector
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Example: Character-level Language Model

Predict next letter:

• Vocabulary: [h,e,l,o]

• Example training sequence: “hello”
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Example: Character-level Language Model

Predict next letter:

• Vocabulary: [h,e,l,o]

• Example training sequence: “hello”

At test-time sample characters one at a time,

feed back to model
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Backpropagation through time (BPTT)

• Forward through entire sequence to compute loss, then 

• Backward through entire sequence to compute gradient

Gerhard Neumann | Machine Learning  | KIT | WS 2021/2022 65



Truncated backpropagation through time

Carry hidden states forward in 

time forever, but only 

backpropagate for some 

smaller number of steps

• Computationally more efficient

• While hidden states are “more 

realistic”
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Example: Learn to be a poet
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Example: Learn to be a poet
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Example: Generate C-Code

Synthized code snipped
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Example: Image Captioning
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Example: Image Captioning
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Example: Image Captioning
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Example: Image Captioning
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Example: Image Captioning
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Image Captioning: Results
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Image Captioning: Results
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Gradient Flow in Vanilla RNNs

Vanilla RNN unit:

• Gradient flow backwards in time

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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Gradient Flow in Vanilla RNNs

Computing gradient of h involves many factors of W (and repeated tanh)

• Largest singular value > 1: Exploding gradients

– Gradient Clipping: Scale gradients if the norm is too big

• Largest singular value < 1: Vanishing gradients

– We need a different RNN architecture!
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Long-term short-term memory (LSTM)

Contribution of old memory state and current input is gated

• f: Forget gate, 

– whether to erase cell

• i: Input gate, 

– whether to write to cell

• g: Gate gate (?)

– How much to write to cell

• o: Output gate

– How much to reveal cell

Next memory state:
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LSTM: Gradient Flow

Backpropagation from ct to

ct-1 only elementwise

multiplication by f, no matrix

multiply by W
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LSTM: Gradient Flow
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Deep LSTMs

Stacking multiple LSTM layers vertically

• Output sequence of one layer forming the 
input sequence of the next 

– in addition to recurrent connections within the 
same layer

• Increases the number of parameters - but 
given sufficient data, performs significantly 
better than single-layer LSTMs (Graves et 
al. 2013)

• Dropout usually applied only to non-
recurrent edges, including between layers

Other alternatives:

• Encoder architecture, encode input x with 
deep NN
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LSTM for Machine Translation

Sutskever et al. 2014:

State of the art now: Transformer networks (no recurrency but attention)
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Demos

• Handwriting generation demo:

– http://www.cs.toronto.edu/~graves/handwriting.html

• Music composition:

– http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

• Image captioning and other stuff:

– http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• And many more...

– https://www.dlology.com/blog/top-10-deep-learning-experiences-run-on-your-browser/
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Other RNN Variants

Gated Recurrent Units (GRU):

• No explicit forget gate

• Less parameters

• Often similar performance

[Learning phrase representations using rnn encoder-decoder for statistical machine

translation, Cho et al. 2014]
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Wrap-Up: RNNs

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Common to use LSTM or GRU: their additive interactions

improve gradient flow

• Backward flow of gradients in RNN can explode or vanish.

• Exploding is controlled with gradient clipping. Vanishing is

controlled with additive interactions (LSTM)

• Better/simpler architectures are a hot topic of current research

• Better understanding (both theoretical and empirical) is needed.
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