
Convolutional Neural Networks and

Recurrent Neural Networks

Machine Learning –

Foundations and Algorithms

WS21/22

Prof. Gerhard Neumann

KIT, Institut für Anthrophomatik und Robotik

Learning Outcomes

We will learn today…

• How to process images with neural networks

• Why do we need convolutions?

• What kind of architectures have been successful?

• How can we use CNNs with a “reasonable” amount of training data?

• What are recurrent neural networks (RNNs) and why do we need them?

• How do train RNNs?

• Long-term short-term Memory Networks as one of the most popular types of RNNs

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 2

CNNs are everywhere nowadays…

Slides based on slides from

Fei-Fei Li, Justin Johnson and

Serena Yeoung, Stanford

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 3

CNNs are everywhere nowadays…

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 4

Image-based inputs

Fully connected layer: 32x32x3 image -> stretch to 3072 x 1

• We need a huge amount of weights using a FC layer

• How can we better exploit the spatial structure of an image?

– I.e. neighbored pixels are more correlated / contain more similar information than distant pixels

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 5

Image-based inputs

Convolutional Layer: 32x32x3 image -> preserve spatial structure

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 6

Convolutional Layer

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 7

Convolutional Layer

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 8

Convolutional Layer

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 9

Convolutional Layer

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 10

Example: 1 channel

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 11

Stacking convolutions

We can stack filters to obtain a multi-channel output “image” (28x28x6)

• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 12

Stride and padding

• We can also set the “stride” (step-size) for our convolution

– Stride > 1 often used to down-sample the image

• What do we do with border pixels?

– Padding: Fill up the image borders (zero-padding is most common)

In general, common to see CONV layers

with stride 1, filters of size FxF,

and zero-padding with (F-1)/2.

(will preserve size spatially)

• e.g. F = 3 => zero pad with 1

• F = 5 => zero pad with 2

• F = 7 => zero pad with 3

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 13

Example:

Input volume: 32x32x3

• 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 14

Example:

Input volume: 32x32x3

• 10 5x5 filters with stride 1, pad 2

Output volume size:

• (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Number of parameters in this layer?

• each filter has 5*5*3 + 1 (bias) = 76 params

• => 76*10 = 760

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 15

ConvLayer Summary

Accepts a volume of size W1 x H1 x D1

• Four hyperparameters:

– Number of filters K

– Spatial extend / kernel size F

– Stride S

– Amount of zero padding P

Produces a volume of size W2 x H2 x D2 where

– W2 = (W1 – F + 2P)/S + 1

– H2 = (H1 – F + 2P)/S + 1

– D2 = K

• Number of Weights: (and K biases)

Common settings:
• K = (powers of 2, e.g. 32, 64, 128, 512)

• F = 3, S = 1, P = 1

• F = 5, S = 1, P = 2

• F = 5, S = 2, P = ? (whatever fits)

• F = 1, S = 1, P = 0

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 16

Pooling Layers

• Pooling layer makes the representations smaller and more manageable

• operates over each activation map independently:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 17

Max-Pooling

The most common pooling is max-pooling:

• For each channel, compute the max over the whole window

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 18

Pooling Layer Summary

Accepts a volume of size W1 x H1 x D1

• Two hyperparameters:

– Spatial extend / kernel size F

– Stride S

Produces a volume of size W2 x H2 x D2 where

– W2 = (W1 – F)/S + 1

– H2 = (H1 – F)/S + 1

– D2 = D1

• Introduces 0 parameters since it computes a fixed function of the input

• Note that typically no zero padding is used for pooling

Common settings:
• F = 2, S = 2

• F = 3, S = 2

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 19

Convolutional Network

A convolutional Network is a sequence of Convolution Layers, interspersed with

activation functions and pooling functions…

… followed by one or multiple FC layers to compute the output (regression or

classification)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 20

Convolutional Network

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 21

Visualization of the filters

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 22

CNN architectures

Case Study:

• AlexNet

• VGG

• ResNet

Also....

• Google LeNet

• SENet

• NiN (Network in Network)

• Wide ResNet

• ResNeXT

• DenseNet

• FractalNet

• MobileNets

• NASNet

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 23

A bit of history…

Gradient-based learning applied to document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

• Conv filters were 5x5, applied at stride 1

• Subsampling (Pooling) layers were 2x2 applied at stride 2

• i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 24

ImageNet

Standard benchmark for vision:

• 1.2 M images

• 1000 classes

• > 500 images per class

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 25

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

MAX POOL3

FC6

FC7

FC8
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 26

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4, no padding

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Output volume: [55x55x96]

Parameters: (11*11*3)*96 = 35K

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 27

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Output volume: 27x27x96

Parameters: 0!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 28

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 29

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Details/Retrospectives:

• first use of ReLU

• used Norm layers (not common anymore)

• heavy data augmentation

• dropout 0.5

• batch size 128

• SGD Momentum 0.9

• Learning rate 1e-2, reduced by a factor of 10
manually when val accuracy plateaus

• L2 weight decay 5e-4

• 7 CNN ensemble: 18.2% -> 15.4%

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 30

ImageNet challenge (ILSVRC) winners

First CNN-based

winner

ZFNet: Improved

Hyperparameters

over AlexNet

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 31

ImageNet challenge winners

Deeper architectures

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 32

VGG Net

Small filters, Deeper networks

• 8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

• Only 3x3 CONV stride 1, pad 1

• and 2x2 MAX POOL stride 2

• 11.7% top 5 error in ILSVRC’13 (ZFNet)

• -> 7.3% top 5 error in ILSVRC’14

Why use smaller filters? (3x3 conv)

• Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

• But deeper, more non-linearities

• And fewer parameters:
3 * (32C2) vs. 72C2 for C channels per layer

[Simonyan and Zisserman, 2014]
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 33

VGG Net

Details:

• ILSVRC’14 2nd in classification, 1st in localization

• Similar training procedure as AlexNet

• No Local Response Normalisation (LRN)

• Use VGG16 or VGG19 (VGG19 only

slightly better, more memory)

• Use ensembles for best results

• FC7 features generalize well to other tasks

[Simonyan and Zisserman, 2014]
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 34

ImageNet challenge winners

“Revolution of Depth”

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 35

ResNet

Very deep networks using residual

connections

• 152-layer model for ImageNet

• ILSVRC’15 classification winner

(3.57% top 5 error)

• Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 36

A new level of Depth…

How can we train such deep networks?

Deeper models should be able to perform at least as well as the shallower model. However, this is

typically not the case

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 37

How can we train such deep networks?

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

• Use layers to fit residual F(x) = H(x) – x

instead of H(x) directly

• Initially, F(x) is set to 0, so the layer

just computes the identity

• I.e. adding more layers does not

harm

Residual Layers

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 38

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has

two 3x3 conv layers

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 39

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has

two 3x3 conv layers

• Periodically, double # of

filters and downsample

spatially using stride 2

(/2 in each dimension)

3x3 conv layer,

64 filters

3x3 conv, 128

filters, /2

spatially with

stride 2

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 40

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has

two 3x3 conv layers

• Periodically, double # of

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

7x7 conv layer

at the beginningGerhard Neumann | Machine Learning | KIT | WS 2021/2022 41

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has

two 3x3 conv layers

• Periodically, double # of

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

• No FC layers at the end

(only FC 1000 to output

classes)

No FC layers besides

FC 1000 to output

classes.

Global average

pooling layer after last

conv layer

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 42

ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has

two 3x3 conv layers

• Periodically, double # of

filters and downsample

spatially using stride 2

(/2 in each dimension)

• Additional conv layer at

the beginning

• No FC layers at the end

(only FC 1000 to output

classes)

Total depths of 34, 50,

101, or 152 layers for

ImageNet

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 43

Case Study: ResNet

Training ResNet in practice:

• Batch Normalization after every CONV layer

(not covered)

• Xavier 2/ initialization from He et al.

• SGD + Momentum (0.9)

• Learning rate: 0.1, divided by 10

when validation error plateaus

• Mini-batch size 256

• Weight decay of 1e-5

• No dropout used

Experimental Results

• Able to train very deep networks without

degrading (152 layers on ImageNet, 1202

on Cifar)

• Deeper networks now achieve lower

training error as expected

• Swept 1st place in all ILSVRC and COCO

2015 competitions

• ILSVRC 2015 classification winner (3.6%

top 5 error) -- better than “human

performance”! (Russakovsky 2014)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 45

Beyond millions of samples

Very impressive results… but ImageNet has 1.2 million images!

• Typically, we do not have that many!

• Can we also use these methods with less images?

Yes, with transfer learning!

• Features (conv layers) are generic and can be reused!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 46

Transfer learning

• Train on huge data-set (e.g. Imagenet)

• Freeze layers and adapt only last (FC) layers

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 47

Transfer Learning

• Very little data, very similar dataset:

– Use Linear classifier on top layer

• Very little data, very different dataset:

– You’re in trouble... Try linear classifier from different

stages and pray

• A lot of data, very similar dataset:

– Finetune a few layers

• A lot of data, very different dataset:

– Finetune a larger number of layers

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 48

Transfer learning

Transfer learning with CNNs is the norm, not the exception…

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 49

Transfer learning

Deep learning frameworks provide a “Model Zoo” of pretrained models so you

don’t need to train your own

• TensorFlow: https://github.com/tensorflow/models

• PyTorch: https://github.com/pytorch/vision

Nice CNN Demo:

• https://www.cs.ryerson.ca/~aharley/vis/conv/

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 50

https://github.com/tensorflow/models
https://github.com/pytorch/vision
https://www.cs.ryerson.ca/~aharley/vis/conv/

Summary: CNNs

What have we learned today?

• CNNs employ convolutions to exploit spatial structure of images

• Can also be used for other modalities (audio, etc..)

A CNN consists of:

• Conv layers

• ReLU activation units

• Pooling

Many popular architectures available in model zoos

• ResNet and SENet (not covered) currently good defaults to use

• Networks have gotten increasingly deep over time

• Pre-trained models can be fine-tuned if amount of training data is not sufficient

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 51

Self-test questions

• Why are fully connected networks for images a bad idea and why do we need

images?

• What are the key components of a CNN?

• What hyper-parameters can we set for a convolutional layer and what is their

meaning?

• What hyper-parameters can we set for a pooling layer and what is their meaning?

• How can we compute the dimensionality of the output of a convolutional layer

• Describe basic properties of AlexNet and VCG

• What is the main idea of ResNet to make it very deep?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 52

Recurrent Neural Networks

Vanilla Neural Networks

Vanilla Neural

Networks

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 54

Recurrent Neural Networks: Process Sequences

• Video classification on frame level

Vanilla Neural

Networks

e.g. Image Captioning
Image -> Seq. of words

e.g. Sentiment

Classification
sequence of words ->

sentiment

e.g. Machine Translation
seq of words -> seq of words

e.g. Video classification

on frame level

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 55

Recurrent Neural Networks

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

• Note: same function and same parameters are used

for every time step

New state

Old state

InputSome function

with

parameters W

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 56

“Vanilla” Recurrent Neural Networks

The state consists of a single “hidden” vector h:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 57

RNN Computational Graph

• Unroll the time steps to get network of depth T

• Re-use the same weight matrix at every time-step

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 58

RNN Computational Graph

Many to many computation graph:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 59

RNN Computational Graph

Many to one computation graph:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 60

RNN Computational Graph

One to many computation graph:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 61

RNN Computational Graph

Sequence to Sequence: Many-to-one + One-to-many

Many to one: Encode input

sequence in a single vector

One to many: Produce output

sequence from single input vector

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 62

Example: Character-level Language Model

Predict next letter:

• Vocabulary: [h,e,l,o]

• Example training sequence: “hello”

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 63

Example: Character-level Language Model

Predict next letter:

• Vocabulary: [h,e,l,o]

• Example training sequence: “hello”

At test-time sample characters one at a time,

feed back to model

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 64

Backpropagation through time (BPTT)

• Forward through entire sequence to compute loss, then

• Backward through entire sequence to compute gradient

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 65

Truncated backpropagation through time

Carry hidden states forward in

time forever, but only

backpropagate for some

smaller number of steps

• Computationally more efficient

• While hidden states are “more

realistic”

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 66

Example: Learn to be a poet

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 67

Example: Learn to be a poet

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 68

Example: Generate C-Code

Synthized code snipped

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 69

Example: Image Captioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 70

Example: Image Captioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 71

Example: Image Captioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 72

Example: Image Captioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 73

Example: Image Captioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 74

Image Captioning: Results

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 75

Image Captioning: Results

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 76

Gradient Flow in Vanilla RNNs

Vanilla RNN unit:

• Gradient flow backwards in time

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 77

Gradient Flow in Vanilla RNNs

Computing gradient of h involves many factors of W (and repeated tanh)

• Largest singular value > 1: Exploding gradients

– Gradient Clipping: Scale gradients if the norm is too big

• Largest singular value < 1: Vanishing gradients

– We need a different RNN architecture!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 78

Long-term short-term memory (LSTM)

Contribution of old memory state and current input is gated

• f: Forget gate,

– whether to erase cell

• i: Input gate,

– whether to write to cell

• g: Gate gate (?)

– How much to write to cell

• o: Output gate

– How much to reveal cell

Next memory state:

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 79

LSTM: Gradient Flow

Backpropagation from ct to

ct-1 only elementwise

multiplication by f, no matrix

multiply by W

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 80

LSTM: Gradient Flow

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 81

Deep LSTMs

Stacking multiple LSTM layers vertically

• Output sequence of one layer forming the
input sequence of the next

– in addition to recurrent connections within the
same layer

• Increases the number of parameters - but
given sufficient data, performs significantly
better than single-layer LSTMs (Graves et
al. 2013)

• Dropout usually applied only to non-
recurrent edges, including between layers

Other alternatives:

• Encoder architecture, encode input x with
deep NN

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 82

LSTM for Machine Translation

Sutskever et al. 2014:

State of the art now: Transformer networks (no recurrency but attention)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 83

Demos

• Handwriting generation demo:

– http://www.cs.toronto.edu/~graves/handwriting.html

• Music composition:

– http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

• Image captioning and other stuff:

– http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• And many more...

– https://www.dlology.com/blog/top-10-deep-learning-experiences-run-on-your-browser/

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 84

http://www.cs.toronto.edu/~graves/handwriting.html
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.dlology.com/blog/top-10-deep-learning-experiences-run-on-your-browser/

Other RNN Variants

Gated Recurrent Units (GRU):

• No explicit forget gate

• Less parameters

• Often similar performance

[Learning phrase representations using rnn encoder-decoder for statistical machine

translation, Cho et al. 2014]

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 85

Wrap-Up: RNNs

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Common to use LSTM or GRU: their additive interactions

improve gradient flow

• Backward flow of gradients in RNN can explode or vanish.

• Exploding is controlled with gradient clipping. Vanishing is

controlled with additive interactions (LSTM)

• Better/simpler architectures are a hot topic of current research

• Better understanding (both theoretical and empirical) is needed.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 86

