%appendix \appendix \chapter{Anhang} \label{appendix} \section{Herleitung: Gradient for Logistic Regression}% \label{sec:Herleitung: Gradient for Logistic Regression} \includegraphics[page=64,width=.8\textwidth]{Vorlesungen/02_LinearClassification.pdf} \section{Herleitung: Multiclass Classification: Data log-likelihood}% \label{sec:Herleitung: Multiclass Classification: Data log-likelihood} \includegraphics[page=68,width=.8\textwidth]{Vorlesungen/02_LinearClassification.pdf} \section{Herleitung: CART: Classification Tree}% \label{sec:Herleitung: CART: Classification Tree} \includegraphics[page=32,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=33,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=34,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=35,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=36,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf} \section{Herleitung: CART: Regression Tree}% \label{sec:Herleitung: CART: Regression Tree} \includegraphics[page=24,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=25,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=26,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=27,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=28,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=29,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=30,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf}\\ \includegraphics[page=31,width=.8\textwidth]{Vorlesungen/04_TreesAndForests.pdf} \section{Herleitung: Soft Max-Margin: Hinge Loss}% \label{sec:Herleitung: Soft Max-Margin: Hinge Loss} \includegraphics[page=21,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf} \section{Anwendungsbeispiele: \glstopshortpl{SVM}}% \label{sec:Anwendungsbeispiele: SVMs} \includegraphics[page=34,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=35,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=36,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=37,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=38,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=39,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=40,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf} \section{Herleitung: SVMs with Kernels}% \label{sec:Herleitung: SVMs with Kernels} \includegraphics[page=52,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=53,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=54,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=55,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=56,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf} \section{Beispiele: SVM: Model Selection}% \label{sec:Beispiele: SVM: Model Selection} \includegraphics[page=57,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=58,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=59,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=60,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=62,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf}\\ \includegraphics[page=63,width=.8\textwidth]{Vorlesungen/06_SVMs.pdf} \section{Anwendungsbeispiel: Bayesian Learning: Regression}% \label{sec:Anwendungsbeispiel: Bayesian Learning: Regression} \includegraphics[page=18,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=19,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=20,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Beweis: Gaussian Processes ist eine kernelized Bayesian Linear Regression}% \label{sec:Beweis: Gaussian Processes ist eine kernelized Bayesian Linear Regression} \includegraphics[page=41,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=42,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=43,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=44,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=45,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Herleitung: Gaussian Processes: Posterior}% \label{sec:Herleitung: Gaussian Processes: Posterior} \includegraphics[page=38,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Herleitung: Gaussian Processes: \nomsym{mean} und \nomsym{variance}}% \label{sec:Herleitung: Gaussian Processes: mean and variance} \includegraphics[page=39,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Beispiel: Neural Network: XOR}% \label{sec:Beispiel: Neural Network: XOR} \includegraphics[page=25,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf}\\ \includegraphics[page=26,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf} \section{Beispiel: Neural Networks: Feature Learning}% \label{sec:Beispiel: Neural Networks: Feature Learning} \includegraphics[page=35,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf} \section{Herleitung: Backpropagation in Matrix-Form}% \label{sec:Herleitung: Backpropagation in Matrix-Form} \includegraphics[page=52,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf}\\ \includegraphics[page=53,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf} \section{Zusätzliche Informationen: Second Order Optimization}% \label{sec:Zusaetzliche Informationen: Second Order Optimization} \includegraphics[page=74,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf}\\ \includegraphics[page=75,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf}\\ \includegraphics[page=76,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf} \section{Zusätzliche Informationen: MNIST Datensatz}% \label{sec:Zusaetzliche Informationen: MNIST Datensatz} \includegraphics[page=82,width=.8\textwidth]{Vorlesungen/08_NeuralNets.pdf} \section{Anwendungsbeispiele für CNNs}% \label{sec:Anwendungsbeispiele fuer CNNs} \includegraphics[page=3,width=.8\textwidth]{Vorlesungen/09_CNNs+RNNs.pdf}\\ \includegraphics[page=4,width=.8\textwidth]{Vorlesungen/09_CNNs+RNNs.pdf} \section{Beispiel: Convolutional Layer: Stride and Padding}% \label{sec:Beispiel: Convolutional Layer: Stride and Padding} \includegraphics[page=14,width=.8\textwidth]{Vorlesungen/09_CNNs+RNNs.pdf}\\ \includegraphics[page=15,width=.8\textwidth]{Vorlesungen/09_CNNs+RNNs.pdf} \section{Herleitung: Dimensionality Reduction: Minimizing the Error}% \label{sec:Herleitung: Dimensionality Reduction: Minimizing the Error} \includegraphics[page=16,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf} \section{Herleitung: PCA: Maximierungsproblem in Matrix-Schreibweise}% \label{sec:Herleitung: PCA: Maximierungsproblem in Matrix-Schreibweise} \includegraphics[page=19,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf} \section{Anwendungsbeispiele: PCA}% \label{sec:Anwendungsbeispiele: PCA} \includegraphics[page=27,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=28,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=29,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=30,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=31,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=32,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf}\\ \includegraphics[page=33,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf} \section{Beweis: K-Means Konvergenz}% \label{sec:Beweis: K-Means Konvergenz} \includegraphics[page=49,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf} \section{Formale Definition: Histrograms}% \label{sec:Formale Definition: Histrograms} \includegraphics[page=64,width=.8\textwidth]{Vorlesungen/10_DimensionalityReductionClustering.pdf} \section{Herleitung: Differenzierung des \glstopshortpl{GMM}}% \label{sec:Herleitung: Differenzierung des GMMs} \includegraphics[page=7,width=.8\textwidth]{Vorlesungen/11 - ExpectationMaximization.pdf} \section{Herleitung: \glstopshort{EM}-Decomposition}% \label{sec:Herleitung: EM-Decomposition} \includegraphics[page=24,width=.8\textwidth]{Vorlesungen/11 - ExpectationMaximization.pdf} \section{Herleitung: EM for GMMs: Maximization"~Step}% \label{sec:Herleitung: EM for GMMs: Maximization-Step} \includegraphics[page=16,width=.8\textwidth]{Vorlesungen/11 - ExpectationMaximization.pdf} \section{Herleitung: EM for Dimensionality Reduction: Maximization"~Step}% \label{sec:Herleitung: EM for Dimensionality Reduction: Maximization-Step} \includegraphics[page=38,width=.8\textwidth]{Vorlesungen/11 - ExpectationMaximization.pdf} \section{Herleitung: EM for Dimensionality Reduction: Maximization"~Step: Monte-Carlo Esitmation}% \label{sec:Herleitung: EM for Dimensionality Reduction: Maximization-Step: Monte-Carlo Esitmation} \includegraphics[page=40,width=.8\textwidth]{Vorlesungen/11 - ExpectationMaximization.pdf} \section{Herleitung: Variational Bayes: Maximierung des Marginal Log"~Likelihood}% \label{sec:Herleitung: Variational Bayes: Maximierung des Marginal Log-Likelihood} \includegraphics[page=13,width=.8\textwidth]{Vorlesungen/12 - VaraitionalAutoEncoders.pdf}\\ \includegraphics[page=14,width=.8\textwidth]{Vorlesungen/12 - VaraitionalAutoEncoders.pdf} \section{Reparameterization Trick}% \label{sec:Reparameterization Trick} \includegraphics[page=19,width=.8\textwidth]{Vorlesungen/12 - VaraitionalAutoEncoders.pdf}\\ \includegraphics[page=20,width=.8\textwidth]{Vorlesungen/12 - VaraitionalAutoEncoders.pdf} \section{Zusätzliche Informationen: Optimization over the variational distribution}% \label{sec:Zusaetzliche Informationen: Optimization over the variational distribution} \includegraphics[page=21,width=.8\textwidth]{Vorlesungen/12 - VaraitionalAutoEncoders.pdf} \section{Zusätzliche Informationen: MLE: conditional log-likelihood}% \label{sec:Zusaetzliche Informationen: MLE: conditional log-likelihood} \includegraphics[page=21,width=.8\textwidth]{Vorlesungen/02_LinearClassification.pdf}\\ \includegraphics[page=22,width=.8\textwidth]{Vorlesungen/02_LinearClassification.pdf} \section{Beweis für die positive Definitheit des Gaussian Kernels}% \label{sec:Beweis fuer die positive Definitheit des Gaussian Kernels} \includegraphics[page=14,width=.8\textwidth]{Vorlesungen/05_KernelMethods.pdf}\\ \includegraphics[page=15,width=.8\textwidth]{Vorlesungen/05_KernelMethods.pdf} \section{Beispiele für die Optimierung von Hyper-Parametern eines Gaussian Kernels}% \label{sec:Beispiele fuer die Optimierung von Hyper-Parametern eines Gaussian Kernels} \includegraphics[page=53,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=54,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=55,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=56,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=57,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Herleitung: Gaussian Bayes Rules}% \label{sec:Herleitung: Gaussian Bayes Rules} \includegraphics[page=26,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}\\ \includegraphics[page=27,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf} \section{Herleitung: Gaussian Propagation}% \label{sec:Herleitung: Gaussian Propagation} \includegraphics[page=29,width=.8\textwidth]{Vorlesungen/07_BayesianLearning.pdf}