\chapter{Gaussian Identities}% \label{cha:Gaussian Identities} Im folgenden werden 3 Gaussian Identities genauer betrachtet \begin{enumerate} \item Marginal Gaussian Distribution: die Gaußsche Normalverteilung von einem Faktor \begin{equation} \label{eq:marginal_gaussian_distribution} p(\bm x) = \nomeq{gaussian_distribution}(\bm x|\bm \mu_x,\nomeq{covariance}_{\bm x}) \end{equation} \item Conditional Gaussian Distribution: die Gaußsche Normalverteilung des zweiten Faktors in Abhängigkeit vom ersten Faktor ($\bm F$: lineares Modell, dass $\bm x$ und $\bm y$ verknüpft) \begin{equation} \label{eq:conditional_gaussian_distribution} p(\bm y|\bm x) = \nomeq{gaussian_distribution}(\bm y|\bm F\bm x,\nomeq{covariance}_{\bm y}) \end{equation} \item Joint Gaussian Distribution: Die Gaußsche Normalverteilung in Abhängigkeit von beiden Faktoren \begin{equation} \label{eq:joint_gaussian_distribution} p(\bm x,\bm y) = \nomeq{gaussian_distribution}\left( \begin{bmatrix}\bm x\\ \bm y \end{bmatrix} | \begin{bmatrix} \bm\mu_{\bm x} \\ \bm F\bm\mu_{\bm x} \end{bmatrix}, \begin{bmatrix} \nomeq{covariance}_{\bm x} & \nomeq{covariance}_{\bm x}\bm F^T \\ \bm F\nomeq{covariance}_{\bm x} & \nomeq{covariance}_{\bm y} + \bm F\nomeq{covariance}_{\bm x} \bm F^T \end{bmatrix} \right) \end{equation} \end{enumerate} Es gibt zwei Richtungen, in die umgewandelt werden kann: \begin{enumerate} \item Marginal und Conditional wird zu Joint:\\ ($\bm F$: lineares Modell, dass $\bm x$ und $\bm y$ verknüpft) \begin{equation} \label{eq:joint_gaussian_distribution_from_marginal_and_conditional} \nomeq{gaussian_distribution}(\bm x|\bm\mu_{\bm x},\nomeq{covariance}_{\bm x})\nomeq{gaussian_distribution}(\bm y|\bm F\bm x,\nomeq{covariance}_{\bm y}) = \nomeq{gaussian_distribution}\left( \begin{bmatrix}\bm x\\ \bm y \end{bmatrix} | \begin{bmatrix} \bm\mu_{\bm x} \\ \bm F\bm\mu_{\bm x} \end{bmatrix}, \begin{bmatrix} \nomeq{covariance}_{\bm x} & \nomeq{covariance}_{\bm x}\bm F^T \\ \bm F\nomeq{covariance}_{\bm x} & \nomeq{covariance}_{\bm y} + \bm F\nomeq{covariance}_{\bm x} \bm F^T \end{bmatrix} \right) \end{equation} \item Joint zu Marginal und Conditional:\\ ($C$ ist wieder eine Matrix, die eine lineare Relation zwischen $x$ und $y$ herstellt) \begin{equation} \label{eq:marginal_and_conditional_gaussian_distribution_from_joint} \nomeq{gaussian_distribution}\left( \begin{bmatrix}\bm x\\ \bm y \end{bmatrix} | \begin{bmatrix} \bm\mu_{\bm x} \\ \bm\mu_{\bm y} \end{bmatrix}, \begin{bmatrix} \nomeq{covariance}_{\bm x} & \bm C \\ \bm C^T & \nomeq{covariance}_{\bm y} \end{bmatrix} \right) = \nomeq{gaussian_distribution}(\bm x|\bm\mu_{\bm x},\nomeq{covariance}_{\bm x}) \nomeq{gaussian_distribution}(\bm y| \bm\mu_{\bm y} + \bm C^T\nomeq{covariance}_{\bm x}^{-1}(\bm x - \bm\mu_{\bm x}), \nomeq{covariance}_{\bm y} - \bm C^T\nomeq{covariance}_{\bm x}^{-1}\bm C) \end{equation} \end{enumerate} \section{Gaussian Bayes Rules}% \label{sec:Gaussian Bayes Rules} Es gibt zwei bayesische Regeln für die Errechnung des Posteriors:\\ (Herleitung: \cref{sec:Herleitung: Gaussian Bayes Rules})\\ Gegeben: Marginal (\cref{eq:marginal_gaussian_distribution}) und Conditional (\cref{eq:conditional_gaussian_distribution}) \begin{itemize} \item Gaussian Bayes Rule 1: \begin{itemize} \item Mean: \tabto{2.2cm}$\bm\mu_{\bm x|\bm y} = \bm\mu_{\bm x} + \nomeq{covariance}_{\bm x}\bm F^T(\sigma_{\bm y}^2\nomeq{identity_matrix} + \bm F\nomeq{covariance}_{\bm x}\bm F^T)^{-1}(\bm y - \bm F\bm\mu_{\bm x})$ \item Covariance:\tabto{2.2cm} $\nomeq{covariance}_{\bm x|\bm y} = \nomeq{covariance}_{\bm x}-\nomeq{covariance}_{\bm x}\bm F^T(\sigma_{\bm y}^2\nomeq{identity_matrix}+\bm F\nomeq{covariance}_{\bm x}\bm F^T)^{-1}\bm F\nomeq{covariance}_{\bm x}$ \end{itemize} \item Gaussian Bayes Rule 2: \begin{itemize} \item Mean: \tabto{2.2cm}$\bm\mu_{\bm x|\bm y} = \bm\mu_{\bm x} + (\sigma_{\bm y}^2\nomeq{covariance}_{\bm x}^{-1} + \bm F^T\bm F)^{-1} \bm F^T (\bm y - \bm F\bm\mu_{\bm x})$ \item Covariance:\tabto{2.2cm} $\nomeq{covariance}_{\bm x|\bm y} = \sigma_{\bm y}^2(\sigma_{\bm y}^2\nomeq{covariance}_{\bm x}^{-1} + \bm F^T\bm F)^{-1}$ \end{itemize} \end{itemize} \section{Gaussian Propagation}% \label{sec:Gaussian Propagation} Mit den Marginal und Conditional aus \cref{eq:marginal_gaussian_distribution} und \cref{eq:conditional_gaussian_distribution} ist es möglich den Conditional $p(\bm y)$ zu ermitteln:\\ (Herleitung: \cref{sec:Herleitung: Gaussian Propagation}) \begin{itemize} \item Mean: \tabto{2.2cm}$\bm\mu_{\bm y} = \bm F\bm\mu_{\bm x}$ \item Covariance:\tabto{2.2cm} $\nomeq{covariance}_{\bm y} = \sigma_{\bm y}^2\nomeq{identity_matrix} + \bm F\nomeq{covariance}_{\bm x}\bm F^T$ \end{itemize}