{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5-final" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "source": [ "# Datendarstellung für die Dotcom-Blase" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "import pandas as pd \n", "import matplotlib as mp " ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Date Open High Low Close Adj Close \\\n", "0 1995-01-03 751.309998 751.309998 743.530029 743.580017 743.580017 \n", "1 1995-01-04 744.770020 746.419983 740.469971 745.840027 745.840027 \n", "2 1995-01-05 746.869995 748.500000 745.130005 745.659973 745.659973 \n", "3 1995-01-06 746.270020 750.729980 745.760010 749.690002 749.690002 \n", "4 1995-01-09 750.190002 752.840027 750.099976 752.090027 752.090027 \n", "\n", " Volume \n", "0 248750000 \n", "1 290350000 \n", "2 297510000 \n", "3 312920000 \n", "4 267090000 " ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
DateOpenHighLowCloseAdj CloseVolume
01995-01-03751.309998751.309998743.530029743.580017743.580017248750000
11995-01-04744.770020746.419983740.469971745.840027745.840027290350000
21995-01-05746.869995748.500000745.130005745.659973745.659973297510000
31995-01-06746.270020750.729980745.760010749.690002749.690002312920000
41995-01-09750.190002752.840027750.099976752.090027752.090027267090000
\n
" }, "metadata": {}, "execution_count": 16 } ], "source": [ "df = pd.read_csv('^IXIC.csv')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Date\n", "1995-01-03 751.309998\n", "1995-01-04 744.770020\n", "1995-01-05 746.869995\n", "1995-01-06 746.270020\n", "1995-01-09 750.190002\n", "Name: Open, dtype: float64" ] }, "metadata": {}, "execution_count": 19 } ], "source": [ "df.index = pd.to_datetime(df[\"Date\"])\n", "df = df[\"Open\"]\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 23 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-11-29T16:44:00.151569\n image/svg+xml\n \n \n Matplotlib v3.3.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD+CAYAAADWKtWTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6nElEQVR4nO3dd5hU1fnA8e+7fZey9F4WpHcEERRsoGJJIEYNxoqF2EuSX4IxUWPUGEti7LFjjaixAYqKoKIgTaUjvXdYtrB9z++Pe2b2zuzs7myZsjvv53n22XvPvXf23d2Zd86ce4oYY1BKKRUb4iIdgFJKqfDRpK+UUjFEk75SSsUQTfpKKRVDNOkrpVQM0aSvlFIxRJO+UnVERLaIyLhIx6FUZTTpqwbPJuO9ItLIVXa1iMyLYFhKRYQmfRUrEoBbIh2EUpGmSV/FioeA34tIM/8DIvJvEdkuIlkislRExriOjRCRJfbYXhH5p+vYpSKyVUQOisgdfo85QkQWiEimiOwWkSdEJMl1/HQRWSsiR+yxL0Xk6tD86kqV0aSvYsUSYB7w+wDHFgNDgBbAG8DbIpJij/0b+LcxpilwDDAdQET6AU8DlwIdgJZAJ9djlgC3Aa2AUcBY4Hp7bSvgXeDP9vhG4MQ6+S2VqoImfRVL7gRuEpHW7kJjzGvGmIPGmGJjzCNAMtDbHi4CeohIK2NMjjFmoS0/H5hhjPnKGFMA/AUodT3mUmPMQvuYW4D/ACfbw2cDq40x7xhjioBHgT0h+Y2V8qNJX8UMY8xKYAYw1V0uIr8TkTW2qSUTSMepgQNcBfQC1orIYhE515Z3ALa7HjsXOOh6zF4iMkNE9ohIFnC/6zH9rzXufaVCSZO+ijV3AdcAHQFs+/0fgQuB5saYZsARQACMMeuNMRcBbYB/AO/YXkC7gc6eBxWRNJwmHo+ngbVAT9s09CfPYwa4Vtz7SoWSJn0VU4wxG4C3gJttUROgGNgPJIjInUBTz/kicomItDbGlAKZtrgEeAc4V0RG2xu09+D7emoCZAE5ItIHuM51bCbQX0TOE5EEG0u7uv1NlQpMk76KRfcAnj77s4GPgZ+ArUA+vk0t44FVIpKDc1N3kjEm3xizCrgB58bvbuAwsMN13e+BXwPZwHM4bzQAGGMOABcAD+A0CfUEvqnbX1GpwEQXUVEq8uxAsdeMMc9HOhbVsGlNXymlYogmfaWUiiHavKOUUjFEa/pKKRVDNOkrpVQMSYh0AFVp1aqVycjIiHQYSilVb7Rq1YrZs2fPNsaM9z8W9Uk/IyODJUuWRDoMpZSqV+zEfuVo845SSsUQTfpKKRVDNOkrpVQM0aSvlFIxRJO+UkrFEE36SkWZ0lLDT3uzIx2GaqCCSvoiskVEVojIDyKyxJa1EJHPRGS9/d7cdf7tIrJBRNaJyJmu8mH2cTaIyGN28QillMsL8zdzxr++4oftmZEORTVA1anpn2qMGWKMGW73pwJzjDE9gTl237Ng9CSgP85c5E+JSLy95mlgCs784T3tcaWUy4qdRwDYejA3wpGohqg2zTsTgGl2exow0VX+X2NMgTFmM7ABGCEi7YGmxpgFdk3QV1zXKKWs3UfyAPjHx2v5ev3+CEejGppgk74BPhWRpSIyxZa1NcbsBrDf29jyjviuPLTDlnXEd2UhT3k5IjJFRJaIyJL9+/VJr2LL4i2HAdh1JJ/LXlwU4WhUQxPsNAwnGmN2iUgb4DMRWVvJuYHa6U0l5eULjXkWeBZg+PDhOvezilk687mqa0HV9I0xu+z3fcB7wAhgr22ywX7fZ0/fAXR2Xd4J2GXLOwUoV0opFSZVJn0RaSQiTTzbwBnASuBD4HJ72uXAB3b7Q2CSiCSLSDecG7aLbBNQtoiMtL12LnNdo5RSKgyCad5pC7xne1cmAG8YYz4RkcXAdBG5CtgGXABgjFklItOB1UAxcIMxpsQ+1nXAy0Aq8LH9UkopFSZVJn1jzCZgcIDyg8DYCq65D7gvQPkSYED1w1QqdjRJSSA7vzjSYagGSkfkKhVFjDHkFmjCV6GjSV+pKFJUYijVHjsqhDTpKxVF8otLqj5JqVrQpK9UFCkoKo10CKqB06SvVBTJL9KavgotTfpKRZGCYq3pq9DSpK9UFNGavgo1TfpKRRGt6atQ06SvVBQp0Jq+CjFN+kpFkSmvLgWgV9vGEY5ENVSa9JWKIjl2NG6j5LIZUozOr6zqkCZ9paLEvux87/a9EwcQZ1eg0Jyv6pImfaWixHNfbfJu9++QTrumKQDszMyLVEiqAdKkr1SUSE2M99m/5qTuAOzSpK/qkCZ9paLEc19v9tk/qVdrADbsz4lEOKqB0qSvVJTI8+uu2SjJuZl7x3srddCWqjOa9JWKAit3HilX5rmRC1Cs8y2rOqJJX6koEGgkbpwr65dqFx5VRzTpKxUVypJ6zzbOwKw4cSV9remrOqJJX6kokBjvvBR/Nbwzs24ZA0C8K+mXaNJXdUSTvlJRwNNmf9bAdt43AHG9OjXnq7qiSV+pKFBk2/ST4steku6avrbpq7qiSV+pCNuwL4fZq/YCkJRQ9pKM0+YdFQIJVZ+ilAqlcf/80rud4Krpx7mqZJr0VV3Rmr5SUaRjs1TvtrumX1nrzv7sAp6cu8H7xnC0sJhBd8/m89V7Qxanqr806SsVJZqnJdK6SbJ336f3TiVZ/3dv/8hDs9exwg7w2ptVQFZ+MX94d3noglX1ljbvKBUh+UUl3vnzAVL8Jlxz5fxKm3dW2WR/tLDYp/xQbmEdRKkaGk36SkXIlS8v5tuNB7377uYcAAmy947nvIIipwdQcYmus6sqps07SkWIO+FD5fPmV5b0Pfd+py/ZDug8PapymvSVihLuPvr+KmveKbR9/D9euQeA4hJN+qpimvSVihZS8aHSSlps/FN8dkFRnYSjGiZt01cqSlRWmw/UvLN4yyFy8ovp3DyNzKNHvN09D+aU3cAtKin1TuugFFSjpi8i8SLyvYjMsPstROQzEVlvvzd3nXu7iGwQkXUicqarfJiIrLDHHhORSuo2SsWWypJ+oC6bFzyzgMkvL/Y27yQnOi/nWSt2e8/JPKq1fuWrOlWAW4A1rv2pwBxjTE9gjt1HRPoBk4D+wHjgKRHx9EV7GpgC9LRf42sVvVIxotI2fdtbJ7/QWV1r15F87zH/bpxKBZX0RaQTcA7wvKt4AjDNbk8DJrrK/2uMKTDGbAY2ACNEpD3Q1BizwBhjgFdc1ygVU4Jd/jDF1t4rS/qbD+QCZcstFrgeOztfk77yFWxN/1HgD4D7dlJbY8xuAPu9jS3vCGx3nbfDlnW02/7l5YjIFBFZIiJL9u/fH2SIStUfL36zueqTgGmTRwDBLaLiSfpr92TTJNm5XZeVr807yleVSV9EzgX2GWOWBvmYgdrpTSXl5QuNedYYM9wYM7x169ZB/lil6o99WQVBnRdvl0wMpu99flEpC2zf/2w70vfmN7+vYYSqoQqmpn8i8HMR2QL8FzhNRF4D9tomG+z3ffb8HUBn1/WdgF22vFOAcqViTmGQo2Y9Sf/H7Zk8PHsdpoJBWucOag/AD9szfcoP5OhUDMpXlUnfGHO7MaaTMSYD5wbtF8aYS4APgcvtaZcDH9jtD4FJIpIsIt1wbtgusk1A2SIy0vbaucx1jVIxpTDAQuiBeJL+I5/9xBNzN3jn0/G/J5CW5PSV+McnawH4z6XD6ipU1cDUpp/+A8B0EbkK2AZcAGCMWSUi04HVQDFwgzHG8wy9DngZSAU+tl9KxRx30m+Wllhh10pP0vcosqNtR/19jk+5e/EVgMGdmtVBlKohqlbSN8bMA+bZ7YPA2ArOuw+4L0D5EmBAdYNUqqFxJ/2hnZsxd91+bxONW/mk71x32O9NomuLRj77qa4ZO+eu28epvdugFOg0DEpFhLtNP06EtX8bz78nDS13XoJf0g90L+CHO0+nS8s0nzLPQC2AyS8trm24qgHRaRiUioAid9KPk3Jz6XuP+Q1aLy4xfLvhgE9Zs7Skctf7f0JQykNr+kqFWW5BMV+vL0vcleXnhDjfl2hRSSmbD+Z699+5dhTg25zjXKdJXwWmNX2lwuxAjm8f/cpq5X45n6VbD/tMvjY8owVQNnIXIDkhDp3WSlVEa/pKhZmnB87p/doCVJqg/Wv6d324KuAoR3fzTpcWTvv+k78+1lsWbBdR1fBp0lcqzIrt5PieCr5/u72bf00fyiZUe+Hy4WXnuR7ilaucqRtaNk7ylm3Yl1PTcFUDo807SoWZZ2WrcX3bsvlALjef1qPCc/1r+uDU2pumJDC2b1tvWbzrvPbpzrz67kna/JuUVOzSpK9UmH35kzOJYFpSAp/ednKl58YH+BTw8rdbaJ6W6FOW4ddlE3x7CFU2S6eKLdq8o1SYPTR7HQA7M49WeW58fOCmn3i/TwCB7gsUudbK1cXSlYcmfaUipFFy1R+0A9X0IbgumcU+NX29kascmvSVipDEQHdp/VTUnTOYwVen9mlD77ZNAK3pqzKa9JUKo4Li4FbM8qgouSdU0OzjlpIYz9OXON02i0s06SuHJn2lwsi9fGFiQtWJu6IKfbDTLHh6/2hNX3lo7x2lwsizYlaXFmmcO6hDledXNHArUJv+wtvHlvsE4NnXNn3loTV9pcLIs7LVa1cdT2J8zV9+/r13ANqlp9CqcbJPmefN4el5G/nDOz9qf32lSV+pcNqT5YymTffrZ19dwU6oFmfP23LwKNOX7GD4vZ+zZndWrX62qt806SsVJvlFJTw2Zz1Q+1kwg23TD7Sk7h/fXV6rn63qN036SoXJ4aNli5TXZL77j24cXe3rm6SUv223fMeRav9s1XBo0lcqTF74erN3uybt+QM7pXuXVAw26ackxnNaH10qUZXRpK9UmDw/vyzp17R1Jz3VuRdQneahQLV9Fbs06SsVATVd5MST9KvTPOSf9ANNzqZihyZ9pcJkUKf0Wj+GZ76e6sya2TTFt6eQrp8b2zTpKxUmnhuo6+87q8aP8f22TAA27c+t/EQX/0XTA83Rr2KH/veVCqMWjZJqNSjr8zV7gbL+/sHwr9nHaU0/pmnSVypMkhLiuGB4p7D/XP/lGGvxnqMaAP33KxUGmUcLKSwupVFS3fSkSUoI/qU7fcl2n/1AA7ZU7NC+XEqFwRdr9wEwsnvLal/70uTjvDdj4+OEklLDST1bB3395gO+7f+6dGJs05q+UmHgme+mR5vG1b721N5tGNa1OQDHdmkGwNVjutUojrMHttNplmOcJn2lwuA5Oxo3LSm+ijOD499OH6z4uDit6cc4TfpKhVFyNdriA/n7eQM5vV9bBncOvs//ecd29G4fySti84Fc5q8/UKs4VP2lSV+pMKrpSFyPHm2a8Nxlw0lOCP4Tg/s+wqb9OQDe2T5V7NGkr1SIVXdd3LpWVFK2alZjO6K3VLvwxKwqk76IpIjIIhH5UURWichfbXkLEflMRNbb781d19wuIhtEZJ2InOkqHyYiK+yxx6S21R6l6oGsvOKqTwohz6Lol47s6r2noCk/dgVT0y8ATjPGDAaGAONFZCQwFZhjjOkJzLH7iEg/YBLQHxgPPCUins+iTwNTgJ72a3zd/SpKRaecAifp3zOhf0R+vmdq5UkjOntHA2sPnthVZdI3jhy7m2i/DDABmGbLpwET7fYE4L/GmAJjzGZgAzBCRNoDTY0xC4wxBnjFdY1SDVZWXhEAHdJTI/LzO7dIY8sD59C/Q7o36WfnFVFcUkpeYWSbnlT4BdWmLyLxIvIDsA/4zBjzHdDWGLMbwH73rNTQEXAPAdxhyzrabf/yQD9viogsEZEl+/fvr8avo1T08cyT07ZpSoQjKZuHZ9OBXC56biF97/wkwhGpcAsq6RtjSowxQ4BOOLX2AZWcHqid3lRSHujnPWuMGW6MGd66dfAjD5WKRnuOOEm/XXrkk7578ZXFWw5HMBIVKdXqvWOMyQTm4bTF77VNNtjv++xpO4DOrss6AbtseacA5Uo1aLuP5JMYL7RslBTpULjshIxIh6AiLJjeO61FpJndTgXGAWuBD4HL7WmXAx/Y7Q+BSSKSLCLdcG7YLrJNQNkiMtL22rnMdY1SDc7yHZlkTJ3Jp6v20KZJSlRMaXxyr9Y1mgpCNRzBTLjWHphme+DEAdONMTNEZAEwXUSuArYBFwAYY1aJyHRgNVAM3GCM8dwtug54GUgFPrZfStVb+UUlJCfEeQddGWO44/2VHMgu8DbnbDqQS592TSIZpo/azOev6r8qk74xZjkwNED5QWBsBdfcB9wXoHwJUNn9AKXqjU37czjtkS/596QhTBji9ElYtSuLN77bVu7caBqS4h9JaakhLk4oLimlxJhqjfZV9Y++5StVQ5+s2gPAsq1lN0QXbjoY8FzPLJvRwH80bnGpobTU0OOOj+n950949quNEYpMhYMmfaVqaLNdp7aN7Yq5Lzufe2euiWRIQeneupHPfkmpYcXOI979x+ZsCHdIKow06StVQ28vdYadGFtz/vnj31R4rv86tZH09/MG+ewXl5b6tPN7RhCrhkmTvlI1cDi30LtdUOxMaOYZhDUio0W58+f89uTwBBaE9NREn/3SUih0TcqmGjZN+krVwIOz13q3n5jrNIekJDovp0VbDpU7PyE+emr6/opLSyko0ukYYoUmfaVqIKegfJLML6q4thxNzTv+SkqN99MKQNMUXTq7IdP/rlI1kJ1fRP8OTUlNjGfH4TwAurdqxKYDuVwysgsXDu/Mhn059GjTmHeW7qB9hCZbC8bSrYd93pSapUV+5LAKHU36SlXilQVbaNkomXMGtfcpP5JXRPO0JOZvcJYdfOTTdWw6kMvYPm24d+JAAAZ1aubzPVqt3HWEPu2aAiDifKmGS5t3lKrEnR+s4oY3lpUrz84vpmlqAmcPbAfA41847fr7sgvCGl9daJaaxFI71mBQx3S2Hjwa4YhUKGnSVyqA/KISJjxZ1gXzrx+t8i47uHZPFhv25ZCemsgjFwzxue5ng30/EdQHhSWlvPztFgC22IS/9WBuBCNSoaRJX6kAPlm5hx+3Z3r3X/pmCzOX7wZg/KNfA9AkJZHUpHjG9XWWkkiMF64Z0z3ssdbWRrtYemK88MtjnYlwl+84Utklqh7TpK9UALe+9UOVZbl2EFNT2+/9uIwWUTXHTmUeOn8Qj/5qCHEC/1u2E4AxPVszfoDTXNVcb+Y2WJr0laqhM/s7CfKz1XsBWLsnO5LhVMsFwzszcWhHn1WMcguKSUpwUkJmXmHgC1W9p0lfxbQFGw/yqZ04LRh/em8FAJeO7MpJvZxV3Y5p7cxPb0z9W2zcHXJJqSE10Zlh88Y3vo9QRCrUNOmrmHbRcwuZ8upSn7Ivf6p4XWbPtMltmiR7y565ZBgA5w7qEIIIw6e41NA8LbHqE1W9pv30lQK2HzpK5xZpLNlyiMtfXFTueHpqIkfyirz7TVyjVtulp/DF706mS4u0sMQaKsWlpTSPgiUdVWhpTV/FrNcWbvVue+aY/793lnvLWtgEOOvmMbw0+Tifa0v9WnK6t25MQj1fkaq4xPjMtlkfm6tU1er3s1SpWvjz+yu92yU2i28+UNY/PcXe1ExJjPO2dXvkFze8Ccp2Zeb57C/cVH7iOFX/adJXMck9NTLAjzsyWbrVN8l5avPJifHlJkyLqyddM6sjK9/pgvqy/VSzJyuvstNVPaVt+iomnfv4fJ/92976sdw5xaXOCNzEeKFH68ZcPqorjZITWLM7i0nHdQ5LnJHQs62ziHthsc6x3xBp0lcxaWdm1bXYYlvVT4yLIy5O+OuEAaEOK6JW3H0GAEm2XV+TfsOkzTtKVeDFK47jvGM7lltpqqFqkuL8np4BWgWVJP3cgmKy84sqPK6il9b0Vcwp9e9646dZWiLXnXwMx3ZpzrFdmocpquiRbJN+ZUsonvDAFxzJK2LLA+eEKyxVR7Smr2JOnmtpwC4t0ujeqpHP8R/uPIPfnHxMuMOKiMcvGlquzNO88+An6yq8zjNmQbt11j+a9FXMOVpYlvTfuXYUr19zvHe/f4emkQgpYn42uPwo4jhXT6WSKj4Vdbt9FksCrAmsopcmfRVz8lxJX0Ron57Ku9eNYuVfz+SDG06MYGSRcd0px9CvfeA3u0ue/67K6//47vIqz1HRQ9v0Vcw5WlTs3U5NcgZdDevaIlLhRNwfx/fhj+P7BDy2YNNBn/0tB3L5/du+3Vs37tcFV+oTremrmPMXOxL335OG0DhZ6z2B3HRaj3JlxSWlnPLwPJbYpRU9GiXFlztXRS9N+iqmLN5yiMVbnKRV32fFDKVedoCW28+f+CbAmZBbWMIXa/ey5YDW+OsDTfoqpqyzC508dtHQclMrqDIpieVr76t3Z1V4/pUvL+FXzy4IZUiqjmjSVzFlb1Y+cQJn22UBVWCHj1Z/5ay9WQUhiETVNU36KqbszMyjbdOUej8Ncqid1qdNja7bdvAok19axLcbDtTo+swavNmo6qnymS8inUVkroisEZFVInKLLW8hIp+JyHr7vbnrmttFZIOIrBORM13lw0RkhT32mNSXVaRVg1BYXMqa3dn1frGTcGjVOJk/jO8NQH5R4GmkR/doxeBO6T5lJz00l7nr9nPFS4ur/TMvfn4hQ+75jI9X7K5+wCpowVR3ioHfGWP6AiOBG0SkHzAVmGOM6QnMsfvYY5OA/sB44CkR8TQQPg1MAXrar/F1+LsoVakL/7OANbuz6Ng8NdKh1AueOYey8nzn2Bnfvx1TTurO85cPJ8NvNLNHZVM4uK3ZncWEJ+azNyufbzY43UOve31ZLaJWVaky6RtjdhtjltntbGAN0BGYAEyzp00DJtrtCcB/jTEFxpjNwAZghIi0B5oaYxYYZ+z2K65rlKqWf372E68s2BL0+f/4ZC0/bM8E4KMfd4UmqAbGs3DMvz5f71Oe0aoRfzq7LymJ8d5EXVMzl+/mxx1HeGzOejJaOp/AhnWNvfmO/O05ks/KnUcoDvLNszqq1bApIhnAUOA7oK0xZjc4bwyApxGwI7DdddkOW9bRbvuXK1Uta3Zn8dic9dz5waqgr3l63kbvtk4XExxP76Y3FzmLwXtm33SvJfDQBYMqvH7hpqrfEJqmOuMkXv9uG1sOHgWqnvqhoTmSV8T/lu2gtNTwxnfbWL4jk7cWb+fcx+dTVFL3f4ugR6aISGPgXeBWY0xWJc3xgQ6YSsoD/awpOM1AdOnSJdgQVYz4aW92tc73nxTssQCTjKnyGiWVpYe8whJaN05mZPeWPk06nllIkxLiys2/P+nZhVXOwlkcIMFv2JeDMYaGfstv7Z4s5q8/wKwVu1m2LZNpC7byo/00CtAkOcE7YrwuBVXTF5FEnIT/ujHmf7Z4r22ywX7fZ8t3AO5lhToBu2x5pwDl5RhjnjXGDDfGDG/dunWwv4uKEat2lfUXD6ZWuGFfjnd7/h9P5eyB7UMSV0OTnla2jsDfZq5mZ2YeJaW+iT09NZEnfj2Ud689wVvWNCX4Uc5rd/u+gXdukUpOQTHdbp9FTkFxBVc1DOMf/Zp7Z65h2bZMAJ+ED3DOoNA8T4PpvSPAC8AaY8w/XYc+BC6325cDH7jKJ4lIsoh0w7lhu8g2AWWLyEj7mJe5rlHKx5w1ezmQU77fd25BMc9+tcm7P+SeT6t8rNmr9ni305J02oVgDXe1rb/xndPE8/4P5etp5w7qwMBO6Xxy6xh+uvcsfrzrDDqkp9Cpear3Poq//KISMqbO5EPX/ZX/O7M3L11xnHf/3hmrAZi3bh+PfFrxNM/1zVc/7Wf7oaNVnvd/Z/YOyc8PpqZ/InApcJqI/GC/zgYeAE4XkfXA6XYfY8wqYDqwGvgEuMEY4+nzdR3wPM7N3Y3Ax3X5y6iGYVdmHldNW8KdH6wsd2zCk85UAJeN6gpAdn7ltcHiklLeXOTcYpr+m1G0aJRUx9E2XNVtXunTrilJCXGICH3bN2XH4TwmPhl46obJfl06tzxwDjec2oMebcqmf/jvYuf/dsVLi3n8iw0cLaz/Nf/Mo4Vc9uIixjw416f8F0N9b292bJZKy8bJIYkhmN47840xYowZZIwZYr9mGWMOGmPGGmN62u+HXNfcZ4w5xhjT2xjzsat8iTFmgD12o9EVGJSfw7mFfLfZuQE4a8UeMqbOZO46p+Vw4aaD3qaaG10Tgv3+7R8rbOd/fv5m73q4I7rF7kyaNVXTmSoWVTHHfqsmZQnt89+e7HPMcwM5JTGOXa61jPvdObtmwUSRIfd8FrB8bF+nH8y/Jw3hlStH8PUfTg1ZDDosUUWN9XuzGfq3z7jtLd+pez21Qk+t/ryhHWnTJIXfnt4LgHeW7uDa15YGfEx3+7+qvkGdmvnsvx/kegMXH9+10uOebrMPXzCYHm0a+xzbeP/ZAOQXlXLCA1/4HKvPA7cC9Wb61fDOpCXFc/aA9vx45xlMGNKRk3q19lnIpq5p0ldR4/R/fVXhsZ2ZeRTZPsvXnNQdwKdd9GhB4FGjnpkf/z1pSB1FGVvu+8UAn/0hnZsFdd3vz+jlvaFbUOz7v3Hvnz+sE9Vx3evLyJg6k2nfbqnWddEg0KfRB345kOV3nUFcnPjcOA8lTfoqKuzNyvfZv3fiAD7/7cn8ztbmT3zgC2bZWp5npGicq815j9/14HTV3Hwgl8tGdWXCEB0SUhP9O6R7p2OojoT4OG46rScAH/rd/PWsr3tM68CjeaH8m8vVo7v57N/1YfBjNKLBtG+3eMeV3HluP2+5iIR9HihN+iqicguKGf/oVxx//xxv2S1je/LrEV3o0aYxN5xa1nY/Y7mT9JvZGpF/zcj/Rt9Pe3PIKSimT7vYWve2rh3TunHVJwWQYvuYvzB/s0/5Z6v3AnDruF4VXnvruJ4+++MHtKO+ddt/deFW76fRv37kJPyTerVm8okZJCfEccUJGRGJS5O+qjPGGB6fs55l2w5XfbL13NebWLun7GPvgttP47bTe3nbNP3bNpMS4rzdLm8d15PbxvXyjhA9mFPIaY/MI2PqTPZl5fPe9zsBOLWPjvWoDc9I3Oq6cLjTdDPY3hcwxnDyQ3O54z2nV1bf9uUXavE4pXcb/vHLgd79zi3S+PTWk3zOycov4tWFW6NyBO93mw7yl/dXMvHJb9iwL8e7QlvXFmmICOvuPYu7f94/IrFp0ld15tWFW3nks58476lvgxpYU1pqeNQ1r8tt43rRPr38ZGgzbhrt3R7iurGYlpTALeN6cnq/tgAczC1kk12v9ae9OTzzpTP1QtsmKTX6fZRVw5yanBBPzzaNycp3mnPyi0rZerDsPky3VpV/ghjQsWwGz9aNk8vd8H1q7kb+8v5K3rdv7tHkV88uBJzn5Lh/fkkXO6/Q1LMCr0UcTpr0VZ2Yv/6Az1w4Fz+3sMpruv9pls/+DaceE/C8AR3T+eneszh/WCf+OqF87cjTn/mgazBXkWuiqlD2hIgFnhkzTzimZbWvbZqa6E36mXm+c+VXtXJZx2ZOBeDeiQOIixNEhB/vOsNba37VTri35WD0LdPo3xS1cmcWE4Z0oFEUrMkc+QhUvZdfVMIlL3znU/bjjiOVXrN0a1k/7jeuPp5e7ZpUekMrKSGOhy8YHPBYSzvg6sFPykZtevrzj++vK2TVlucNtHla9Qe2tW2azPfbMjHG8MqCrdW6tllaEpvuP9vnTTs9NZFXrxrBL576ltxCpxfQ419s4LZxvSL+5r7t4FFe/nYL89bto0frxqx3Tf8BcFxGdIwT0Zq+qrX+dzmDZpqnJfoMKskrLMEYQ2FxKdn5vnOy7zni1MrvOLsvJ/RoRatajD5s2dhJRutcXeJm2J4+Zw5oW+PHVY4+7Zy297MGVv8N9JRebdh9JJ91e7N92t7fvW5UUNcHSuQDO6aXK1uzJ/LjMU56aC4vfrOZTQdyWb8vhzvP7ecz4dwvj61e99RQ0Zq+qrb8ohL6/OUTRnVvSUarNO+L+cMbR9O5RRrXnXIMT8/bSN87P/G5zv0CWGdfpBcO70xtBZpPxzN5lf/gIlV9Pdo0Ye3fxgdcLL0qJ/ZsBcA3Gw56Zzvt064Jw7rWvNYb6BPhb15dyvw/nlbjxwyF7n5dUkMxY2ZNaNJX1eaZRGvBpoMssKMMn710GJ3tMoT+/bI98gpLSE6IIy5OWLjpEEO7NAv5gJR2TfUmbl2oScIHp12+a8s05q/fz9x1+wHfG/M1dUrv1syzjwew43BeJWeHXqAlJT2dEqqaXjrcNOmrarn9fyu8i2q4neFqO9+ZGfgFuHF/Dpe9uIjUxHh2Zub5zOJYV47v1oKs/GLW7M6ie+tGUXHjLNZ1aZHmTfgQuKZeXScc05J56/Zz27he/OvznwAiOgf/ip1l97CuGdONnm2b0LtdxV1SI0nb9FXQ8gpLAib8lycfF+DsMo/YG7DnPj6fQ7mF3jeFLL92/rpw/ak96NXW6dqnC6BHh9rcr6nI1aO789pVx3Pz2LLBe5sPRKYXz+YDucywcwl9eOOJ3HFOvzpptgwVrQapoLnnt3/v+hM4mFPI4M7NaN3E90XdpUUa2w4dZUzPVlxxQgZDu5Sv0bdqnMQrVx5f5zGO6dGKWXbkrvvjv4qcNFdb9p/P6VsnjxkXJ4y29wuGdW3O0q2HOe2RL5n3+1MqXKw9VE59eJ53u2eb6Kzdu2nSV0Hbl+0k/YoSuYexo3nunTiAri0DvwD/c+kw2qXXfXt7XJxwNED7qooc94jeoV2a1fnjt3StkbD7SH61k74xhgdnr2NEtxac2rtN1Re4XPifBT770XKztjLavKOCdsEz3wIwxc5yWZHEOOdpJa5lkZ+++Fifc+Lj6vapd8+E/rx+tfPJwTOhV4cQvKmo6nOvmlFSWvF5NeVe/nLH4apXpPK3YucRnp63kdvfXVHtaxdtrnzdgGikSV9VqaC4hN++9QOebtYdmpWfKsHt+cuHc+3Jx9C5Rdl5Zw1sz5YHzuGTW8dwRr+2lc67UhOXjcrgxB7Ox31P0v/Xr4bU6c9QNZOVV3bvxn8qhbow0bXq1P+9s5zDuYWVnF3epS8sAiDPfkIsLTVkTJ3Jb9/6odLrZrnm9v/zOX1Z9pfTq/VzI0WTvqrSf77cxP/s/CbBLKLRvXVjpp7VJ2BPij7tmvLsZcNJTgjdx+Bsm2R0acTo4HkTPuGYliH7nyy4vayP/tC/BV6dqiKe+DyVFM9Ar/8FmNMnp6CYo4XFLNt2mOtfXwY4Cf/qMd3rzfNN2/RVheau2+ezluldP+sX9CIakTSoUzqbDuSGpNeIqr5Mm1Qrm0q5tvwn6vvox138bHAHdmbmcfeHq3jgvIHl1pw9klfEFS8t8u6v3JnFwk0HeWh2xYuwD7ir/JKNl4ysfJWwaKM1/RiyaX8OGVNncuXLi30mJ6uIO+FP/80oJp/YrZKzo8ffzxvErJvH0Lye1Lwauh52Pv72YbzHctOb3wPw2sKtfLZ6L6c98mW5c05+aC7fb8v0KZv07EKfrp9rXdM7BFrS+6IRXWo8cC1SNOnHkJm2K+MXa/cx7N7POf/pbymu4M7aatfasr8Y2rFeLSqemhRPvw66cEq0uPvn/Xn3ulHeEduhcka/8vMsHbVTfDcOMEjPPY6jd9uye0yHcgu9PY7GP/q1N9kfLSzfK+x+v+Uk6wNN+g3cvmxnGcHth47yyGc/+RxbsvUw/e6cXW4N07cWb+Psx7727v9tYv17YqvokZoUX6u5doL1zCXDfPZnLN/FNDuzZ1pSPOtci/VsP3SU5a6ZYGfcPJrfn1HW/HRq77KFd/703goyps70Tizo0aJRUsRGANeGBPrIEk2GDx9ulixZEukw6qUHPl7LM19u5IRjWvLtRmeOnItGdOaXx3bi189/R2GxU8tvkpzAir+e6b0uY+pM77b/1LZKRbMftmcy8clvKjy+4b6zSIiPo9cdH3vXCWiaksDyu53n/+HcQn739o/c9bN+nPzQvICPcf8vBjKmZ6uQf3KpLRFZaowZ7l+uNf0Gavuho96VozwJH+DeiQMZntGCn+49ixF2fu/sgmLvJwK3LQ+cowlf1StDOjfjvetPqPD4m4u3A2ULw/Ru24RFd4zzHm/eKIkXrziOri0bVdhT7dfHd4n6hF8ZTfpRKCu/iMyjheXmoK/M9MXbueGNZZSUGgbcNZsxD84td847147yWa1o+rWjeGvKSABG3DeHyS8tYsfho4g4SxcqVR+1bOTbS6e7a4TufTNXs821ZOPs206q8EbskM7N+O3pzuvA3fRT32mXzSjzwvzN/G3Gau9+MHOJPPPlRh74eC0AG/fleNenPa1PG1btOsLerIIKm2nc883PXbef0f9w3iwyWtXfmoyKbf4LuX9002ge/2IDz3y5kSYpiVz72lIAxvWteoGdm8f25Jox3UlNimdw52ZsOVj9Eb/RRpN+lHEnfIB/fLKWp/1uULnd9tYPvOcaRLLW3qyadfMY+nVoSmFxKUUlpRU206QmxfPiFcO58mXf+yYVzZmjVLRzz/AhAo2SE5h6Vh8+XbWHTQdy2W/nkPpdkLV3z3w6Y3q2ZkzPOg837LR5J0rkFBR7b6AO69qcB88fRGpiPB+v3EOvP3/s0/PA43BuoTfhv3bV8dx+Vh/Aaaf0dFlMSoirck750/qUr/H0DMFweaXCIdU21/Rs05gvf1+2fOcQv8neqppOpKHSmn6UeGXBFu/29accw9i+bWmSnMB1ry+jsLiUx+as50nXpGVFJaV8smoPAC9eMZzRPVsxumcrfj6kQ41Wi5px02gKikton55Ki0ZJ9W7AiVIeTVIS+eJ3J9OxearPdB/uhd1TE+NpmhKb6S82f+soU1pqePmbLXRv1YhnLxtGDzsn91hXm+PiLYcoKill8eZD3P7eCra62hbd08H6D0cP1oAAi00rVV91b13+k+ot43ry1U/7Wb8vh7yiknrZx74uaPNOmGXlF/GX91eyZncWz3+9ielLtjP2n1+yL7uAwZ2beRM+OE0zC28fyw2nHsO+7AK+Xr+fXz//nU/CH9QpPWafvEpVR9OURP5XSXfOWKE1/TB6+ZvN3P2Rc6P21YVbyx2//pRjypW1S0/htD5teXLuRp+brVPP6kOLRkn8bFCH0AWsVAPTJCWRswe249hKFgFq6DTp18DaPVlc8vx3PHPJMIbbAU77swt48JO1TD6xGzNX7GLWij28e90JpCbGk5IYx5G8Im/C99e7bRMuGdmFnm0DzzE/zG8B8e//crpOJqZUDT11ccW94WJBlUlfRF4EzgX2GWMG2LIWwFtABrAFuNAYc9geux24CigBbjbGzLblw4CXgVRgFnCLifY5IPzkFZZQUFzClFeWciCnkPOfWcCVJ3bjve93cPioM5Dq7aU7vOcfa+f1/s3J3ZmzZh8Al47sym2n92LKK0tolpbI/ecNpE2T6t141YSvlKqpKufeEZGTgBzgFVfSfxA4ZIx5QESmAs2NMX8UkX7Am8AIoAPwOdDLGFMiIouAW4CFOEn/MWPMx1UFGOm5d4wx5BaWUFJqOOexr9lxOK9Wj1fTuWxenL+Ze2as5qrR3fjLuf1qFYNSquGraO6dKmv6xpivRCTDr3gCcIrdngbMA/5oy/9rjCkANovIBmCEiGwBmhpjFthgXgEmAlUm/Ui79rWlzF61t1z5jJtGc95T33rn8AD475SRfLvxIHPW7KVHm8Z88MMun2v+d/0JNZ7LZvKJGbRPT/Hp0aOUUtVV0zb9tsaY3QDGmN0i4ukz2BGnJu+xw5YV2W3/8oBEZAowBaBLly41DLH2NuzLLpfw37/hRBLihAEd01l0x1iG3OM04Wz++9mICCO7t+S3p/cit6CYcX3b0jwtiUte+A6gVjePRISzXAtAK6VUTdT1jdxA1VhTSXlAxphngWfBad6pm9CqZ8HGg7zm6mFzbJdmvDR5BOmpid6yZmlJPHXxsXRqnlqu22Sj5AR+NtjpWbPi7jMoKa1Xty+UUg1UTZP+XhFpb2v57YF9tnwH0Nl1Xidgly3vFKA8Ku3KzOOi55wPLIM7N+PiEV04f1ingE0zZwdR+26SkljlOUopFQ41HZz1IXC53b4c+MBVPklEkkWkG9ATWGSbgrJFZKQ4VeLLXNdEHXcN/+mLj+XC4zrrvPJKqQYhmC6bb+LctG0lIjuAu4AHgOkichWwDbgAwBizSkSmA6uBYuAGY4xnLb7rKOuy+TFRdhM3O7+IgXd/6t0/tXdrnr1sOInxOmhZKdVw6HKJwBNfrOfhT33Xj130p7G0qcHEZUopFQ1q3GWzITLG8MyXm/hs9R6Wbcv0lvdo05hfj+jCxKEdaaEDoJRSDVDMJP0N+3LYfSSPGT/u5q0l28sd/+J3JwecmU8ppRqSBp30jxYWs2TLYQxw+YuLfI6N7tGKZmmJXDW6G33bN9X545VSMaFBJn1jDE9/uZEHP1nnUz6sa3M6NEvl7+cNpHEVq0kppVRD1CAzn4gwd60zdCAhTmiWlsTLk4/ThUKUUjGvQSZ9gOcvO46C4hLtgaOUUi4NNumnpyUCOhJWKaXcdOSRUkrFEE36SikVQzTpK6VUDNGkr5RSMUSTvlJKxRBN+kopFUOifpZNEdkPbK3yxMBaAQfqMJya0jiiKwbQOPxpHL6iIY7axHAAwBgz3v9A1Cf92hCRJYGmFtU4YjsGjUPjqA9xhCoGbd5RSqkYoklfKaViSENP+s9GOgBL4ygTDTGAxuFP4/AVDXGEJIYG3aavlFLKV0Ov6SullHLRpK+UUjFEk75SISYiEukYokW0/C2iJY5I0KRfR0QkKtYmEJEm9nvMPqndouTvEDULO4hIpBeDjpacExX/ExFpZb+H7f8SLf+AahORESJyv4hE9HcQkVEi8hxwXITjOFZE3gGuAjARuEMvIkNE5BoRaRfun+0XRz8ROQki83dwxTFKRN4GHrYxRSTh2jjuATDGlEQohhEi8hrwdxEZGKnXrYgMt/+Th0RkdCT+J+JIE5E3gQ8gvP+Xepf0RaSpiDwJPAHsMMaURqo2JyLX4HSrWgZ8H6EnUEsReRx4ChiEXQ0tnLGISKKI/Ad4ATgZuE9Ejg/Xzw8Qx5vATSLyfyIyzB4L63NdRNrgPEdn4QyJvwW40h4L2/NVRC4HpgF/FpELbVnYPpWKSJyI3AU8D3yM8/y8ARgcrhhsHCIiDwDPADOAvcCNQJdwxgFORcQYc9TuthKR62yMYXmO1rukD/wJGAmcYYx5CiJam+sC3GGMedoYkx+hWtRDOH+CkTi1/Esh7DW6AUC6MWaYMeYSnOdVJOYt6W/jGAxcCxQBt4lImjGmNMyxDAZ+Msa8BDwC/A+YICK9jDEmjIl/J3AaMN7GgTGmOFw/3/7ddwBXGGNeB+4DugJhrSDZHPE1cLoxZhrwEmCA/eGMA5w3XRFpj/PGcxVwnYg0sxXYkOfkepH0RaSbiKTZ3Vdw/lFtROR8EXlYRCaJSMjfsW0cyXa7BU6yWyQip4nIbBH5k4icZ4+H7EVl40i1uzcaY2622/uB1SLSO1Q/2y8Gz6rzAlwoIun29x8JjBWRofbcUP8tPHE0AoaISLwx5iCQD/TDNnmFOI6LROSvIvJzW/Q9MFxEjjHG5AKLgSXAbyB0FRVXHBNs0RfAHmPMp8BWEfmbLQ9Zbd/GcI/rb/EG8IOIJNv/SzbQPlQ/3y8O79/CGDPTGHNYRMYAC4EM4F4ROT1McfzMxlFsjNkNdAO2AF8CU+1zJeSVk6hO+iKSISIf43w0fFVE+hljVuO8Y88GrgfWARcA/ycincIQxxsi0tcYcwg4CLwOTMRpXtkN3Ckig0PxovaL4zUR6e36mAhOzaUDcNSeX+dJzi+G1+3/ZBlODe4Z+3U/0Bm4x1OzDUMcfYAfgfnA0yLSHRgFvAccKyKtQhSHiMi1wB9wXsAPicjVQA5OBeUWe2om8DmQZmt5oY7jQRGZDDQyxhTb034D3CwibY0xRSGOYTPOvYzJQIIxptQYUyAiiUAnnNdtSFT0txDbyQHnf3GFMWYUznPm1/b5E+o4HrZxNBKRrsBmY8wO4DOcXPa2iCTbv1HoGGOi6gs7SthuPwHcbbdvBN4FugNJwOWu8/rhfFwbE4Y4brBxdAM6AvuAqa5z7wfuDFMc04H+fud/gVP797k2xP+TXnb/z8BJdrsl8BgwOUzPjf8CfXDe9B4DPgJuxmlmeQWID+FzdhrwK7s9DngNOAcYhtOmP84e6wt8CKSFMY6z/f5uzwMv2e2zwh2D/X+8Z7ebACPC/D+J8zuvO07FoFOY4ngdp6mtKc5N3I9w3gA/8vxdQv0VjTX9FPC52bQKwBjzBM6LaApO7WWa5wLj1P7bAdvCEMeTrjj247yIzndd1wb4NkxxjMCppbRxnf82TtNXvLHPtBDG4PmfXClOW2Q+cKE9dhDnTXF1HcVQVRwjgSuAXOM0d/3SGPMYsB7nDSi13KPVkIhcJiIn2yY+gDVARxFJMMZ8Dqy08ezHadp4VER6AGNxmsKSwhTHCmA0Ts0aAGPM1cDlInIYGCy1bEOuRgxd7fEWwFERuQLndTKwLj6RBhnHiTiVArczcFo8smsbQ5BxLMf5e/TCud+yCRhmjPkZ0Flsx4NQioq+5QC2Xe0PwDoR+coYM11EDgFDReQne9pKnCdwW+Cwve7nOB+htwCHRERqk+yCjGMVzk3cLsaYP4lIH3F6BpwC7LLHa6Uaf4+uOC+kfbasI9DR1MGN3GrE0BnnSTwLmCEiD+EkPc+TOlxxdMJpKz4ClNjnxp3ATGyTVy1iEJyKxRtAKbARaCROz4vtwECgB7AW51PHv4CWxpjXRKQzMBXnk8g1xpjMMMXxlicOYLtt8noYp3n0BmPMyjDG0BznNXoWcBFQAFxsjFlekxhqEUcrYIeInInTJLkL+IMx5kiY4piOc0P9beBWY0yh66HG1iaOoIXj40QQH4F6AN8BE4ChOF3ursf5+PcXnC5W84Hh9g/rab44AVgKTIxQHLfZ65rivKDPiOTfw17bjTr42F7NGN50/U+G4LQd/yLCz43eOE1P59VBDPH2ey/gNbudgHMfZxrOQJ8XcXpOpdvjLwP3uR4jKYJx3GO306llc0otYrjXbp+Ibe6IUBx/tduDgHMjFMc01/9E8GtyCvVXxGr6no+VxrlbfTyw1BjzgT32Ofbd0BjzNxHpbozZZI99i9OMgDHmW5zmhUjE8Q1ObQUg2xizFuedPBJx5NttMcZsxrmJFpEYjDE/AD/U5OfXURwF9tp1wC9rGUcCcA8QLyKzcN7cS+zjF4vIjTg37/vhvOFMxPm08XecGp+3mc/41ujCHcd39twjwKIIxbDAnvtNTX5+HcaxyJ67HKepJRJxlFD2PzE4HTDCJlKj4ibj9N31dB9bAVwkIhl2PwHnI9K/7P5me90UnAEuy6Igjqs8cdh/XCTj+L62cTS0/0kdxHEyzqfI5sAGG08RcKqIjADvm9I9wD+M0177LDBaRL6z181rCHFEQwwaRx0K58cKm5MaA+/jtMMvA/rY8kdxPrp/g3OnfSBOW2xbe/xWnL7Ox2kcdRtHNMQQTXHYxxwDXOrafwq4Dudm8VJbFofTlvs2kGHLmuHcU2kwcURDDBpH3X1F5oc6N0ABHgDestvxODckR9v9zjhtcMl2v867uWkc0RVDlMWRBiRT1mZ7MfB3u/0DcJPdHg68Wdc/P5riiIYYNI66+4pI844xxtO18lGgm4icaZzeJkeMMfPtsWtxelwU22tq1ftC44j+GKIsjqPGmAJT1gvqdMqG7E8G+orIDJxPIHXSpBStcURDDBpHHYr0uw5OT48vXfsjcAYtzALaaRzhjyMaYoiWOHA+ZcThTBbWw5b1wPmoPpowfVyPhjiiIQaNo/ZfEV0jV0TijDPJ0Ds4d7oLcIaqrzfGbNQ4wh9HNMQQZXF4BlM9jzNy80qc6TduMsZkxVIc0RCDxlEHIv2ug9M+9hXOrIw3axyRjyMaYoiyOEbidPebD1wVy3FEQwwaR+2+omFE7vU47V6nG2MKqjpZ44iZGKIpjh3AHcA/NY6oiEHjqIWINu9A2cf4iAahcURdDNEUh1INScSTvlJKqfCJxlk2lVJKhYgmfaWUiiGa9JVSKoZo0ldKqRiiSV8ppWKIJn2llIoh/w9nZnguTnE8LwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot(title=\"Nasdaq\", xlabel=\"\")" ] } ] }