diff --git a/ML_U3_1_Perceptron.ipynb b/ML_U3_1_Perceptron.ipynb index 487c60e..347708c 100644 --- a/ML_U3_1_Perceptron.ipynb +++ b/ML_U3_1_Perceptron.ipynb @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 84, "metadata": {}, "outputs": [], "source": [ @@ -82,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -167,18 +167,18 @@ "output_type": "execute_result", "data": { "text/plain": [ - "[]" + "[]" ] }, "metadata": {}, - "execution_count": 10 + "execution_count": 86 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAetUlEQVR4nO3dd5hU5fnG8e/DUq2ooFJDsdIUXVHEgqKCRgGxoYliQYyKICZGjUlM14T8xC6iIqgoligiFoolJhGQQbqIookKmLhKsBJpz++Pd1bWdZadZcqZ2XN/rmsud2YOc97jgXvOvnPmPubuiIhI7Vcn6gGIiEh+KPBFRGJCgS8iEhMKfBGRmFDgi4jERN2oB7AlTZo08TZt2kQ9DBGRojF37tyP3b1pqucKOvDbtGlDIpGIehgiIkXDzN6r6jlN6YiIxIQCX0QkJhT4IiIxocAXEYkJBb6ISExkJfDNbKyZfWRmi6t43szsFjNbbmYLzeyAbKxXRKQ2mTRvJT1ueJG2Vz9DjxteZNK8lVl9/Wwd4Y8D+mzh+eOBPZO3IcCdWVqviEitMGneSq55YhEr16zFgZVr1nLNE4uyGvpZCXx3fwVYvYVF+gH3ezALaGxmzbKxbhGR2mDk1GWsXb/xW4+tXb+RkVOXZW0d+ZrDbwF8UOH+iuRj32FmQ8wsYWaJsrKyvAxORCRqq9asrdHjWyNfgW8pHkt55RV3H+Pupe5e2rRpym8Hi4jUOs0bN6rR41sjX4G/AmhV4X5LYFWe1i0iUvCu7L03jeqVfOuxRvVKuLL33llbR74CfzJwTvJsnUOAT939wzytW0Sk4PXv2oLrB3SmReNGGNCicSOuH9CZ/l1Tzn5vlayUp5nZw0BPoImZrQCuA+oBuPto4FngBGA58BVwXjbWKyJSm/Tv2iKrAV9ZVgLf3c+s5nkHLs3GukREZOvom7YiIjGhwBcRiQkFvohITCjwRURiQoEvIhITCnwRkZhQ4IuIxIQCX0QkJhT4IiIxocAXEYkJBb6ISEwo8EVEYkKBLyISEwp8EZGYUOCLiMSEAl9EJCYU+CIiMaHAFxGJCQW+iEhMKPBFRGIiK4FvZn3MbJmZLTezq1M8f66ZlZnZ/ORtcDbWKyIi6aub6QuYWQlwO3AssAKYY2aT3f2NSos+4u5DM12fiIhsnWwc4XcDlrv7u+6+DpgI9MvC64qISBZlI/BbAB9UuL8i+Vhlp5jZQjN73MxaVfViZjbEzBJmligrK8vC8EREBLIT+JbiMa90/2mgjbt3AWYA46t6MXcf4+6l7l7atGnTLAxPREQgO4G/Aqh4xN4SWFVxAXf/xN2/Tt69GzgwC+sVEZEayEbgzwH2NLO2ZlYfGAhMrriAmTWrcLcvsDQL6xURkRrI+Cwdd99gZkOBqUAJMNbdl5jZb4CEu08GhplZX2ADsBo4N9P1iohIzZh75en2wlFaWuqJRCLqYYiIFA0zm+vupame0zdtRURiQoEvIhITCnwRkZhQ4IuIxIQCX0QkJhT4IiIxocAXEYkJBb6ISEwo8EVEYkKBLyISEwp8EZGYUOCLiMSEAl9EJCYU+CIiMaHAFxGJCQW+iEhMKPBFRGJCgS8iEhMKfBGRmFDgi4jERFYC38z6mNkyM1tuZleneL6BmT2SfH62mbXJxnpFRCR9GQe+mZUAtwPHAx2AM82sQ6XFLgD+6+57AKOAP2a6XhERqZlsHOF3A5a7+7vuvg6YCPSrtEw/YHzy58eBXmZmWVh3agsmwup3c/byIiLFKBuB3wL4oML9FcnHUi7j7huAT4FdUr2YmQ0xs4SZJcrKymo+mv99BlOugFsPhEcHwcq5NX8NEZFaKBuBn+pI3bdimfCg+xh3L3X30qZNm9Z8NA13gMvmwqHD4J2X4O6jYdyJ8NY08JSrFBGJhWwE/gqgVYX7LYFVVS1jZnWBHYHVWVh3ajs0g2N/DSMWw3G/D9M7D50Gd3SH+Q/BhnU5W7WISKHKRuDPAfY0s7ZmVh8YCEyutMxkYFDy51OBF93zcLjdcAc4dCgMXwAn3wVWByZdDDfvB/+4JUz/iIjERMaBn5yTHwpMBZYCj7r7EjP7jZn1TS52L7CLmS0HrgC+c+pmTpXUg/0GwsX/gB/8BZrsAdN/AaM6wrRfwGeVfyEREal9LB8H2lurtLTUE4lEbl581bxwlP/GJLAS6HI6HHoZ7LpvbtYnIpIHZjbX3UtTPRffb9o27wqn3QfD5kHpebD4CbjjEJhwOvzr7/qAV0RqnfgGfrmd2sAJI+GKN+Coa8NpnOO+H87uWTIJNm2MeoQiIlmhwC+3zc5w5E/DmT3fvxH+twYeGxTO559zD6xfG/UIRUQyosCvrF4jOOgCGJqA0++HbXaBZ34cPuB9+Qb48pOoRygislUU+FWpUwId+sHgGXDec9DyIHj5+hD8z/wEVv8z6hGKiNRI3agHUPDM4HuHhttHb8Krt8LccZC4N7whHDoMWhwQ9ShFRKqlI/ya2HUf6H87XL4oBP3yF+Duo0J1w9vTdWaPiBQ0Bf7W+Ka6YQkc97tQ3TDhVLjzUJj/sKobRKQgKfAz0XCH8GWtYfOh/+jw2KQfqbpBRAqSAj8b6taH/c+Ei18N1Q27tN9c3TD9l/DZh1GPUEREgZ9VZrDnMXDuFLjwJdijV/iQ96bOMOnS8KGviEhEdJZOrrQ4AE4bF07fnHUHvP4AzH8Q9uwNPYaHs35yeNEvEZHKdISfazu3DdUNI5ZAz5/BygSMOwHu6QVvPKXqBhHJGwV+vmy7C/S8Ci5fDN//P/hqNTx6DtxWquoGEckLBX6+1d8GDhocLsN42nhotFOyuqETvPzH8EYgIpIDCvyo1CmBjv1h8Atw7rPQ4kB4+Q9wYwd49kr477+iHqGI1DL60DZqZtCmR7h9tBRevQ0S94Vpng79ocew0N0vIpIhHeEXkl33TVY3LAxf6Fo+A8b0TFY3zFB1g4hkRIFfiHZoDsf+JpzZc+xv4ZN3YMIpcGcPVTeIyFZT4BeyhjuEKZ3hC6D/nYCH6oZb9g9f6FJ1g4jUQEaBb2Y7m9l0M3s7+d+dqlhuo5nNT94mZ7LOWKpbH/Y/K1nd8Djs3A6m/Tyc2TP9OlU3iEhazDOYFzazPwGr3f0GM7sa2Mndr0qx3Bfuvl1NX7+0tNQTicRWj69WW/k6vHpL+PKWlUCXM8K8/677RD0yEYmQmc1199KUz2UY+MuAnu7+oZk1A152971TLKfAz5XV/4SZt8O8B2HDWtirT6huaN1d1Q0iMZTLwF/j7o0r3P+vu39nWsfMNgDzgQ3ADe4+aQuvOQQYAtC6desD33vvva0eX6x8+QnMuRteGwNffQItSsP8/z4nhnP+RSQWMgp8M5sB7J7iqWuB8WkGfnN3X2Vm7YAXgV7u/k51A9cR/lZY9xXMnwAzbwtf3tq5HXQfGj4DqNco6tGJSI5FPqVT6c+MA6a4++PVvb4CPwObNsLSp+EfN8Oq12GbJnDwRaHWYZudox6diOTIlgI/09MyJwODkj8PAp5KsfKdzKxB8ucmQA/gjQzXK9Upr2648EU495lQ1/zS78NFWVTdIBJLmQb+DcCxZvY2cGzyPmZWamb3JJfZF0iY2QLgJcIcvgI/X8ygzWHwg8fgklnQ8eRQ3XBLV3jsPFg1L+oRikieZDSlk2ua0smRz1bBrDth7jj4+jNoe0Q4s6d9L53ZI1LkcjmlI8Voh+Zw3G9hxOJQ4fDx2/DgKTD6MFgwETauj3qEIpIDCvw4a7hjOLIfvjBUN2zaCE9eBDfvF1o7v/486hGKSBYp8GVzdcMlM+Gsx2CntjDtWrixY6hu+PzfUY9QRLJAgS+bmcFex8F5z4Sze9ofFeobbuoMT10KZcuiHqGIZECBL6m1OBBOHx8uxXjAObDoL3B7N3hoILw3U938IkVIgS9btnO7cNH1EYvhyKvhg9lwXx+491h4Y3KY9xeRoqDAl/Rs2wSOuiZclOWEP8OXZfDo2XDbQZAYC+vXRj1CEamGAl9qpv420O1CuOx1OG1cuEjLlBGhm/+vf4KvVkc9QhGpggJftk6dkvCt3QtfgkFTKlU3/BT+q5ZTkUJTN+oBSJEzg7aHh9t/3giXXkyMhTn3hC6fQ4dB8/2jHqWIoCN8yabdOsDJd4Zr8Ha/BN6aBmOOhPF9YfkMndkjEjEFvmTfji3guN/BFUvgmF/Dx29VqG54RNUNIhFR4EvuNNwRDrs8VDf0uwM2bYAnh8DN+6u6QSQCCnzJvbr1oesP4OKZcNajsFObzdUNM36l6gaRPFHgS/7UqQN79Q7VDYNfhPY9wxW5buoMTw2FsreiHqFIrabAl2i0PBBOvx+GJqDr2bDoMbj9IHj4TFU3iOSIAl+itUt7OPHG8A3eI6+G92dtrm5Y+rSqG0SySIEvhaFydcMXH8EjP1R1g0gWKfClsFSsbjj1vs3VDTd1hr+OVHWDSAYU+FKYSupCpwGbqxua7Q8v/S509jx3laobRLZCRoFvZqeZ2RIz22RmKS+am1yuj5ktM7PlZnZ1JuuUmCmvbvjh43Dxq9Chb6htuKUrPH4BfLgg6hGKFA3zDM6GMLN9gU3AXcBP3D2RYpkS4C3gWGAFMAc4093fqO71S0tLPZH4zktu0aR5Kxk5dRmr1qyleeNGXNl7b/p3bVGj15Dsyvo++XQlzL4TEuNg3efQrmfo7Gl/dHiDkLTo30rtZGZz3T3lAXhGR/juvtTdq7vuXTdgubu/6+7rgIlAv0zWW5VJ81ZyzROLWLlmLQ6sXLOWa55YxKR5K3OxOklDTvZJ5eqGj96EBwfA6MNV3ZAm/VuJp3zM4bcAPqhwf0XysawbOXUZa9d/+zS+tes3MnKqrsUalZzuk/LqhssXQr/bYdP6zdUNM29XdcMW6N9KPFUb+GY2w8wWp7ile5Se6nfsKueRzGyImSXMLFFWVpbmKoJVa1KfulfV45J7edkndRtA1x9WqG74Hkz9Wejmn/Fr+Pw/2VtXLaF/K/FUbR++ux+T4TpWAK0q3G8JrNrC+sYAYyDM4ddkRc0bN2Jlir+wzRs3qsnLSBbldZ+UVzfs1RtWJEJtw99HwczbYL+B0P0yaLpX9tdbhPRvJZ7yMaUzB9jTzNqaWX1gIDA5Fyu6svfeNKpX8q3HGtUr4cree+didZKGyPZJy1I44wG4bG6oblj4aLK64azwbd6Y07+VeMr0tMyTzWwF0B14xsymJh9vbmbPArj7BmAoMBVYCjzq7ksyG3Zq/bu24PoBnWnRuBEGtGjciOsHdNaZBxGKfJ+UVzdcvhiOvArenwlje8M95dUNm/IzjgIT+X6RSGR0Wmaubc1pmSJbtO5LmDchTPOseQ922QO6D4X9zoR6DaMenUjGcnZapkjRqb8tHDxkc3VD/e1gyuWhuuEVVTdI7abAl3gqr24Y8jIMehqadYEXy6sbroY170c9QpGsq/YsHZFazQzaHhFu/1kCr94Kc+6G18aEN4RDh4U3A5FaQEf4IuV26wgnj4bhC+CQi2HZ83DX4XB/P1j+gi7KIkVPgS9S2Y4toffvYcRiOOZX365uWPioqhukaCnwRarSqDEcNmJzdcPGdfDEhaGpc+Yd8PUXUY9QpEYU+CLVKa9uuGQWnPkI7NgKpl4DozrAC79RdYMUDQW+SLrq1IG9+8D5z8HgF6DtkfC3G+GmTjD5Mvj47ahHKLJFCnyRrfGt6oYfhrn921TdIIVNgS+SiV3aw4mjQnXDEVfC+6+G6oZ7j4OlU2Jb3SCFSYEvkg3bNYWjr4URS+D4kfD5h/DID+D2bjB3HKz/X9QjFFHgi2TVN9UN8+DUseH+08OT1Q1/hrX/jXqEEmMKfJFcKKkLnU4J1Q3nTE5WN/wWbuyo6gaJjKoVRHLJDNodGW7/XqzqBomUjvBF8mX3TjDgrgrVDc8lqxv6wzsvqrpBck6BL5Jv31Q3LElWN7wBD5wcwn/hY6pukJxR4ItE5ZvqhkXQ9zbYsA6eGByqG2bdqeoGyToFvkjU6jaAA85OVjdMDNUNz18NozqqukGySoEvUijq1IG9jw/VDRfMgLaHJ6sbOsPkYapukIwp8EUKUauD4IwHQ3XD/mfBgomhumHiD+D92VGPTopURoFvZqeZ2RIz22RmKS+am1zuX2a2yMzmm5muSi6Srl3aw0k3hQ94j7gS3vsHjD0uVDe8+YyqG6RGMj3CXwwMAF5JY9mj3H3/qq6mLiJb8K3qhj+F6oaJZyWrG8arukHSklHgu/tSd1+WrcGISDXqbwsHXxSqG065F+pvA08PU3WDpCVfc/gOTDOzuWY2JE/rFKm9SupC51NhyF9DdcPunTdXNzx/Daz5IOoRSgGqtlrBzGYAu6d46lp3fyrN9fRw91Vmtisw3czedPeU00DJN4QhAK1bt07z5UVi6lvVDYtCdcNrY2D2XaHLp8ew8GYgAphn4evcZvYy8BN3r/YDWTP7FfCFu/+5umVLS0s9kdBnvCI18umK8MWtueNg3RfQ7ijoMRza9QxvEFKrmdncqj4rzfmUjplta2bbl/8MHEf4sFdEcqFidUOv65LVDf0rVDdsiHqEEpFMT8s82cxWAN2BZ8xsavLx5mb2bHKx3YC/m9kC4DXgGXd/PpP1ikgaGjWGw69IVjfcChu+VnVDzGVlSidXNKUjkkWbNsHbU+EfN8P7M6FhYzhocDjrZ7tdox6dZEmkUzoiUiC+qW54vkJ1w//BqE7hqlwfL496hJJjCnyROCqvbhiaCNUN8x+G20pDdcMHr0U9OskRBb5InDXZI1ndsBiO+An86+9w77Fwb29VN9RCCnwRCXP4R/88nNnT54/w2SpVN9RCCnwR2azBdnDIj2BYsrqhXqNQ3XBzlzDfr+qGoqbAF5HvKq9uuOgVOOcp2K1TuBjLqE7w/M9U3VCkqq1WEJEYMwvf0G3Xc3N1w+zR4abqhqKjI3wRSc/unWHAGBi+AA7+ESx7FkYfFi7A/s5LUMDf6ZFAgS8iNdO4FfT5Qzizp9cv4T9LktUNR8Cix1XdUMAU+CKydRrtBIf/eHN1w/q18JcL4NauMGs0rPsy6hFKJQp8EclM3QZwwDlw6Wsw8GHYoQU8fxXc2AFe/B188VHUI5QkBb6IZEedOrDPCcnqhunQ5rBwFS5VNxQMBb6IZF+rbjBwQrK64UxVNxQIBb6I5E6TPeCkm8MHvIf/eHN1w9g+8Oazqm7IMwW+iOTedrtCr19srm74dCVMPBPuOBhevz909UvOKfBFJH8qVzfUbQiTL4ObOsPfboS1a6IeYa2mwBeR/KtY3XD2JNitI7zwaxjVUdUNOaRqBRGJjhm0PyrcPly4ubrhtbtCdcOhw2D3TlGPstbQEb6IFIZmXeCUu2H4fOg2BJZOgdE94IEB8O7Lqm7IAgW+iBSWxq2hz/VwxZJQ3fDvRXB/PxhzpKobMqTAF5HCVLG64aRbYN1Xqm7IUEaBb2YjzexNM1toZk+aWeMqlutjZsvMbLmZXZ3JOkUkZuo1hAMHJasbHoLtm4fqhlEdk9UNZVGPsGhkeoQ/Hejk7l2At4BrKi9gZiXA7cDxQAfgTDPrkOF6RSRu6tSBfb4PF0yF86fB93qE6oabOsHTl8Mn70Q9woKXUeC7+zR3L59QmwW0TLFYN2C5u7/r7uuAiUC/TNYrIjHX+uBkdcMc6HIGzH8Ibj0QHvkhfDAn6tEVrGzO4Z8PPJfi8RZAxZNqVyQfS8nMhphZwswSZWX6VU1EtqDJntD3ls3VDf98Be49JlQ3LHtO1Q2VVBv4ZjbDzBanuPWrsMy1wAZgQqqXSPFYledXufsYdy9199KmTZumsw0iEnffVDe8AX1ugE9XwMMDk9UND6i6IanaL165+zFbet7MBgEnAr3cU54ouwJoVeF+S2BVTQYpIpKWBtvBIRfDQYNhySR49WaYPDR8uHvwRVB6PjRKeW5JLGR6lk4f4Cqgr7t/VcVic4A9zaytmdUHBgKTM1mviMgWldSDLqfBRX+Ds5+EXffdXN0w9drwG0AMZTqHfxuwPTDdzOab2WgAM2tuZs8CJD/UHQpMBZYCj7r7kgzXKyJSPTNofzScMymE/94nwKw74eb94ImL4N+Lox5hXlnqWZjCUFpa6olEIuphiEhtsub9EPpzx8P6L6F9L+gxHNoeEd4gipyZzXX30lTP6Zu2IhIv5dUNIxbD0b9IVjf0DdUNi/9Sq6sbFPgiEk/b7AxH/CRZ3XBzqGp4/PxQ3TD7rlpZ3aDAF5F4q9cQDjwXLp0DZ0yA7ZvBcz9NVjf8vlZVNyjwRUQgVDfseyJcMK1CdcPIUN0wZUStqG7QBVBERCprfTC0ngAfvx0uyjLvQUjcF94QelwOLVN+JlrwdIQvIlKV8uqGyxfD4VeE6oZ7esHY42HZ80VX3aDAFxGpzva7hYuxjFgCva+HTz+Ah8+AOw4pquoGBb6ISLoabA/dL4Fh82DA3VBSP1Q33NQF/j4K1q6JeoRbpMAXEampknrQ5XT4UXl1wz4w41cwqlOyumFl1CNMSYEvIrK1vqlueAouegX27pOsbugSqhv+U1gtMgp8EZFsaLYfnHJPmO456EJY+jTceSg8eEr4sLcAamwU+CIi2bTT9+D4G5LVDT+HDxfA+JNgTM/IqxsU+CIiubDNznDEleGUzhNvgnVfJKsbDoDZYyKpblDgi4jkUr2GUHre5uqG7XaD564M1Q0v/QG+/DhvQ1Hgi4jkQ3l1w+DpcP5UaH0o/PWPIfjzVN2gagURkXxrfUi4lb0FMytWN5wUuvlzVN2gI3wRkag03Qv63hoqmg8bAf/8a6huuO/7sP5/WV+djvBFRKK2/e5wzHWhr+f1+6HszTD3n2UKfBGRQtFge+h+ac5eXlM6IiIxkdERvpmNBE4C1gHvAOe5+3fag8zsX8DnwEZgQ1UX2BURkdzJ9Ah/OtDJ3bsAbwHXbGHZo9x9f4W9iEg0Mgp8d5/m7uXfE54FtMx8SCIikgvZnMM/H3iuiuccmGZmc81syJZexMyGmFnCzBJlZbXn4sEiIlGrdg7fzGYAu6d46lp3fyq5zLXABmBCFS/Tw91XmdmuwHQze9PdX0m1oLuPAcYAlJaWRl8vJyJSS1Qb+O5+zJaeN7NBwIlAL/fU/Z/uvir534/M7EmgG5Ay8EVEJDcymtIxsz7AVUBfd/+qimW2NbPty38GjgMWZ7JeERGpOavioDy9P2y2HGgAfJJ8aJa7/8jMmgP3uPsJZtYOeDL5fF3gIXf/fZqvXwa8t5XDawLkr4Yut2rLttSW7QBtSyGqLdsBmW3L99y9aaonMgr8QmZmidpyCmht2Zbash2gbSlEtWU7IHfbom/aiojEhAJfRCQmanPgj4l6AFlUW7altmwHaFsKUW3ZDsjRttTaOXwREfm22nyELyIiFSjwRURiougD38z6mNkyM1tuZleneL6BmT2SfH62mbXJ/yirl8Z2nGtmZWY2P3kbHMU4q2NmY83sIzNL+eU6C25JbudCMzsg32NMVxrb0tPMPq2wT36Z7zGmy8xamdlLZrbUzJaY2fAUyxT8vklzO4piv5hZQzN7zcwWJLfl1ymWyW5+uXvR3oASQg9/O6A+sADoUGmZS4DRyZ8HAo9EPe6t3I5zgduiHmsa23IEcACwuIrnTyCU7BlwCDA76jFnsC09gSlRjzPNbWkGHJD8eXtCnXnlv2MFv2/S3I6i2C/J/8/bJX+uB8wGDqm0TFbzq9iP8LsBy939XXdfB0wE+lVaph8wPvnz40AvM7M8jjEd6WxHUfBQird6C4v0A+73YBbQ2Mya5Wd0NZPGthQNd//Q3V9P/vw5sBRoUWmxgt83aW5HUUj+f/4iebde8lb5LJqs5lexB34L4IMK91fw3Z3/zTIeuvs/BXbJy+jSl852AJyS/FX7cTNrlZ+hZV2621osuid/JX/OzDpGPZh0JKcFuhKOKCsqqn2zhe2AItkvZlZiZvOBj4Dp7l7lPslGfhV74Kd6p6v8DpnOMlFLZ4xPA208XF1sBpvf9YtNMeyPdL1O6C3ZD7gVmBTxeKplZtsBfwEud/fPKj+d4o8U5L6pZjuKZr+4+0Z3359w8ahuZtap0iJZ3SfFHvgrgIpHui2BVVUtY2Z1gR0pvF/Tq90Od//E3b9O3r0bODBPY8u2dPZZUXD3z8p/JXf3Z4F6ZtYk4mFVyczqEUJygrs/kWKRotg31W1Hse0XAA/XAn8Z6FPpqazmV7EH/hxgTzNra2b1CR9qTK60zGRgUPLnU4EXPfkJSAGpdjsqzaX2JcxdFqPJwDnJM0IOAT519w+jHtTWMLPdy+dTzawb4d/TJ1v+U9FIjvNeYKm731jFYgW/b9LZjmLZL2bW1MwaJ39uBBwDvFlpsazmV7UXQClk7r7BzIYCUwlnuox19yVm9hsg4e6TCX85HrBQ5byaEKYFJc3tGGZmfQlXFltNOGun4JjZw4SzJJqY2QrgOsKHUbj7aOBZwtkgy4GvgPOiGWn10tiWU4GLzWwDsBYYWIAHE+V6AGcDi5JzxgA/A1pDUe2bdLajWPZLM2C8mZUQ3pQedfcpucwvVSuIiMREsU/piIhImhT4IiIxocAXEYkJBb6ISEwo8EVEYkKBLyISEwp8EZGY+H9tNlzBtoti6gAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVqElEQVR4nO3dfbBcdZ3n8fc3NxDCBnlKRElikqkJ0Qw6BlsKxwd0QAiohHFQYcsRkJLVLUXIFLtQ7iJmakpHaglkN6tSswhYNUJEFgPiBlEeHCWamw0GgQ3GAOYmllyBUIPGkMB3/+gb7HT65p6b2w+3T79fVan0OX3o8/1xbz7pnO7P7chMJEndb0KnB5AkNYeBLkklYaBLUkkY6JJUEga6JJXExE6deOrUqTl79uxOnV6SutLatWt/l5nTGt3XsUCfPXs2/f39nTq9JHWliHhquPu85CJJJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklcSIgR4R10fE0xHxi2Huj4hYFhEbI2J9RBzX/DH3dvu6Lbz9Sz9kzmXf5e1f+iG3r9vSjtNK0uisXwFLj4UrD6v+vn5Fy05V5Bn6DcDCfdx/GjB36NeFwFfGPta+3b5uC5ff9jBbtm0ngS3btnP5bQ8b6pLGl/Ur4I6L4PnNQFZ/v+OiloX6iIGemQ8Az+7jkEXATVm1GjgsIl7brAEbuWrVBrbvfGmPfdt3vsRVqza08rQdlZl88XuP8fhv/63To0gq6gdLYOf2Pfft3F7d3wLNuIY+Hdhcsz0wtG8vEXFhRPRHRP/g4OB+n3Drtu2j2l8GW7ZtZ8Wazbxv2Y9Y+v3H2bHrpZH/I0md9fzA6PaPUTMCPRrsa/hBpZl5XWZWMrMybVrDHxZWyNGHTR7V/jKYcfjB3LP4RN73xtdy7Q9+yfuX/Strn3qu02NJ2pdDZ4xu/xg1I9AHgJk12zOArU143GFdeuo8Jh/Qt8e+yQf0cemp81p52o47csokrjl7AV8//638fscuzvrqT7hy5SO8sGNXp0eT1MhJV8ABdU80D5hc3d8CzQj0lcDHht7tcgLwfGb+pgmPO6wzF0znix98I9MPm0wA0w+bzBc/+EbOXNDwSk/pvGfeq7l78Ymc+7bZ3Pjgk5y69AHu3fB0p8eSVO9NH4YPLINDZwJR/f0Dy6r7WyAyG14d+dMBEd8E3g1MBX4LfB44ACAzvxoRAfwPqu+E+QNwfmaO+IPOK5VK+vPQx27tU8/xn7+9no1Pv8CiNx/NFe+fz5FTJnV6LEktEhFrM7PS8L6RAr1VDPTm2bHrJb5y369Yfu9GpkyayBUfmM+Zb55O9e9aSWWyr0C3KVoCkyb2cfHJx/Ddi97J7Kn/jktu+Tnn37CGgef+0OnRJLWRgV4ixxx1CLd+8q+48gPz+dkTz3LK0gf4+o+f4KWXO/OvMEntZaCXTN+E4Ly3z+HuS97FW2cfwRfueJSzvvoTC0lSDzDQS2rG4Qdzw/lv5ZqPvJknf/d7C0lSDzDQSywiOHPBdAtJUo8w0HuAhSSpNxjoPcRCklRuBnqPmTJpIlee8Rfc+sm/YvKBfZz/9TVcfPM6nnlhR6dHkzRGBnqPesusw/nuRe/gsyfN5bsP/4aTr76f/71ugE4VzSSNnYHewyZN7OOS91pIksrCQJeFJKkkDHQBFpKkMjDQtQcLSVL3MtC1FwtJUncy0DWsVwpJ51lIkrqBga4Rvef1FpKkbmCgqxALSdL4Z6BrVOoLSe9d+gC3r9tiIUkaBwx0jVptIWnWkQdz8S0PWUiSxgEDXfvNQpI0vhjoGhMLSdL4YaCrKSwkSZ1noKtpLCRJnWWgq+ksJEmdYaCrZSwkSe1loKulLCRJ7WOgqy0sJEmtZ6CrbSwkSa1loKvtdheSPm8hSWqqQoEeEQsjYkNEbIyIyxrc/7qIuDci1kXE+og4vfmjqkz6JgTnW0iSmmrEQI+IPmA5cBowHzgnIubXHfZfgBWZuQA4G/ifzR5U5WQhSWqeIs/Qjwc2ZuamzHwRuBlYVHdMAq8aun0osLV5I6rsLCRJzVEk0KcDm2u2B4b21boS+GhEDAB3AZ9pynTqKcMVkn5vIUkqpEigR4N99a9enQPckJkzgNOBb0TEXo8dERdGRH9E9A8ODo5+WvWE+kLSKRaSpEKKBPoAMLNmewZ7X1K5AFgBkJkPAgcBU+sfKDOvy8xKZlamTZu2fxOrJ/ypkPQ2C0lSQUUCfQ0wNyLmRMSBVF/0XFl3zK+BkwAi4g1UA92n4Bqzt8w6wkKSVNCIgZ6Zu4BPA6uAx6i+m+WRiFgSEWcMHfb3wCci4ufAN4Hz0j9xahILSVIx0ancrVQq2d/f35Fzq3u99HJy04NPctWqDQD8p1Pn8Xdvm03fhEYv9UjlExFrM7PS6D6bouoq9YWkK+94lA9ZSJIAA11danchaelH/pInLCRJgIGuLhYR/M2CGdyz+EROt5AkGejqfkdOmcS1FpIkA13l0aiQdJ+FJPUQA12lUl9IOm+okPTs71/s9GhSyxnoKqX6QtLJV99vIUmlZ6CrtHYXku78zDt53REWklR+BrpKb95rDuHbn9rzE5Ju8BOSVEIGunrCcIWkX1pIUokY6Oop9YWk05f9iGvusZCkcjDQ1XPqC0nX3GMhSeVgoKtnWUhS2Rjo6nkWklQWBrqEhSSVg4Eu1WhUSPrOQxaS1B0MdKlOfSHpszdbSFJ3MNClYVhIUrcx0KV9sJCkbmKgSwUMV0h6cdfLnR5NeoWBLhXUsJD0339kIUnjhoEujdLuQtL151V44Y8WkjR+GOjSfvrr1x/F3YtP5GMnzLKQpHHBQJfGYMqkiXxh0bEWkjQuGOhSE1hI0nhgoEtN0qiQ9PEb1rBl2/ZOj6YeYaBLTVZbSPrpE8/y3qvvt5CktjDQpRbYXUhadfG7qFhIUpsY6FILzTziYG60kKQ2MdClFhuukPR/f20hSc1VKNAjYmFEbIiIjRFx2TDHfDgiHo2IRyLiX5o7ptT96gtJf/sVC0lqrhEDPSL6gOXAacB84JyImF93zFzgcuDtmfkXwMUtmFUqBQtJapUiz9CPBzZm5qbMfBG4GVhUd8wngOWZ+RxAZvrdKe2DhSS1QpFAnw5srtkeGNpX6xjgmIj4cUSsjoiFjR4oIi6MiP6I6B8cHNy/iaUSsZCkZioS6NFgX/1320RgLvBu4BzgnyPisL3+o8zrMrOSmZVp06aNdlaplCwkqVmKBPoAMLNmewawtcEx38nMnZn5BLCBasBLKqi+kHTK1fdz40+etJCkwooE+hpgbkTMiYgDgbOBlXXH3A68ByAiplK9BLOpmYNKvaC2kPSW2Ufw+ZWPWEhSYSMGembuAj4NrAIeA1Zk5iMRsSQizhg6bBXwTEQ8CtwLXJqZz7RqaKnsLCRpf0SnXnypVCrZ39/fkXNL3eSZF3aw5M5H+c5DWznmqCl86W/fxHGvO7zTY6lDImJtZlYa3WdTVBrnLCSpKANd6hIWkjQSA13qIhaStC8GutSFdheSLrKQpBoGutSlJk3sY7GFJNUw0KUuN1wh6WULST3HQJdKoFEh6SwLST3HQJdKxEJSbzPQpZLZ/QlJ3/cTknqOgS6V1FQLST3HQJdKzkJS7zDQpR7QqJB0yS0PWUgqGQNd6iG1haQ712+1kFQyBrrUYywklZeBLvUoC0nlY6BLPcxCUrkY6JL2KiS9b9m/cu09v7SQ1GUMdEnAnoWkhce+hqX3PG4hqcsY6JL2MHXKJJadYyGpGxnokhqykNR9DHRJw7KQ1F0MdEkjspDUHQx0SYVYSBr/DHRJo7K7kHTF++ezepOFpPHEQJc0an0Tgo+/Yw53X2IhaTwx0CXtNwtJ44uBLmlMLCSNHwa6pKZoVEj6wh0WktrJQJfUVLsLSX93wixu+ImFpHYqFOgRsTAiNkTExoi4bB/HnRURGRGV5o0oqdtMmTSRJYuO5Vv/wUJSO40Y6BHRBywHTgPmA+dExPwGxx0CXAT8tNlDSupOldkWktqpyDP044GNmbkpM18EbgYWNTjuH4AvA39s4nySupyFpPYpEujTgc012wND+14REQuAmZl5574eKCIujIj+iOgfHBwc9bCSupeFpNYrEujRYN8rX4GImAAsBf5+pAfKzOsys5KZlWnTphWfUlIp1BaSjpt1uIWkJisS6APAzJrtGcDWmu1DgGOB+yLiSeAEYKUvjEoazswjDuamjx/P1R/+SzZZSGqaIoG+BpgbEXMi4kDgbGDl7jsz8/nMnJqZszNzNrAaOCMz+1sysaRSiAg+eNwM7rGQ1DQjBnpm7gI+DawCHgNWZOYjEbEkIs5o9YCSys1CUvNEp94+VKlUsr/fJ/GS/uSFHbv48v/5f3xj9VMcfehk/vFvjuXd817d6bHGlYhYm5kNL2nbFJU0btQWkg46YIKFpFEy0CWNO5XZR3DXZ99pIWmUDHRJ45KFpNEz0CWNaxaSijPQJY17jQpJH/ragxaS6hjokrpGbSHpV4MvWEiqY6BL6ioWkoZnoEvqShaS9magS+pqjT4h6f7He/OnuRrokrpefSHp3Ot/xuIeLCQZ6JJK45VC0l//OSt/3nuFJANdUqlMmtjH4lPmcedF7+i5QpKBLqmUXv+aV/VcIclAl1RawxWSNj5dzkKSgS6p9OoLSadfW85CkoEuqSf0QiHJQJfUU3YXkv7XuRX+rWSFJANdUk866Q1H8f2SFZIMdEk9q2yFJANdUs+rLyS9t0sLSQa6JLFnIWlGlxaSDHRJqvH617yK27q0kGSgS1Kdbi0kGeiSNIxuKyQZ6JK0D91USDLQJamAbigkGeiSNAonveEo7r7kXeOykGSgS9IoHXLQAeOykGSgS9J+Gm+FJANdksagUSHpghv7O1JIKhToEbEwIjZExMaIuKzB/Ysj4tGIWB8RP4iIWc0fVZLGr92FpP/6/vk8+KtnOlJIGjHQI6IPWA6cBswHzomI+XWHrQMqmfkm4Fbgy80eVJLGu74JwQUdLCQVeYZ+PLAxMzdl5ovAzcCi2gMy897M/MPQ5mpgRnPHlKTu0aiQ9O21Ay0/b5FAnw5srtkeGNo3nAuA7zW6IyIujIj+iOgfHBwfb/ORpFaoLSS9702v5Y0zDm35OScWmavBvoYXhSLio0AFOLHR/Zl5HXAdQKVSGf8/6UaSxmjqlEks/cib23KuIoE+AMys2Z4BbK0/KCJOBj4HnJiZO5ozniSpqCKXXNYAcyNiTkQcCJwNrKw9ICIWAF8DzsjMp5s/piRpJCMGembuAj4NrAIeA1Zk5iMRsSQizhg67CpgCvCtiHgoIlYO83CSpBYpcsmFzLwLuKtu3xU1t09u8lySpFGyKSpJJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSUxschBEbEQuBboA/45M79Ud/8k4CbgLcAzwEcy88nmjrqn29dt4apVG9i6bTtHHzaZS0+dx5kLprfylJI0au3MqhGfoUdEH7AcOA2YD5wTEfPrDrsAeC4z/xxYCvxTswetdfu6LVx+28Ns2badBLZs287ltz3M7eu2tPK0kjQq7c6qIpdcjgc2ZuamzHwRuBlYVHfMIuDGodu3AidFRDRvzD1dtWoD23e+tMe+7Ttf4qpVG1p1SkkatXZnVZFAnw5srtkeGNrX8JjM3AU8DxxZ/0ARcWFE9EdE/+Dg4P5NDGzdtn1U+yWpE9qdVUUCvdEz7dyPY8jM6zKzkpmVadOmFZmvoaMPmzyq/ZLUCe3OqiKBPgDMrNmeAWwd7piImAgcCjzbjAEbufTUeUw+oG+PfZMP6OPSU+e16pSSNGrtzqoi73JZA8yNiDnAFuBs4N/XHbMSOBd4EDgL+GFm7vUMvVl2v0Lsu1wkjWftzqookrsRcTpwDdW3LV6fmf8YEUuA/sxcGREHAd8AFlB9Zn52Zm7a12NWKpXs7+8f8wIkqZdExNrMrDS6r9D70DPzLuCuun1X1Nz+I/ChsQwpSRobm6KSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklUahY1JITRwwCTzXhoaYCv2vC43SLXlpvL60VXG/ZNWu9szKz4Q/D6ligN0tE9A/XmiqjXlpvL60VXG/ZtWO9XnKRpJIw0CWpJMoQ6Nd1eoA266X19tJawfWWXcvX2/XX0CVJVWV4hi5JwkCXpNLomkCPiIURsSEiNkbEZQ3unxQRtwzd/9OImN3+KZujwFoXR8SjEbE+In4QEbM6MWezjLTemuPOioiMiK5+q1uR9UbEh4e+xo9ExL+0e8ZmKvD9/LqIuDci1g19T5/eiTmbISKuj4inI+IXw9wfEbFs6P/F+og4rqkDZOa4/0X1k5J+BfwZcCDwc2B+3TH/Efjq0O2zgVs6PXcL1/oe4OCh25/q1rUWXe/QcYcADwCrgUqn527x13cusA44fGj71Z2eu8XrvQ741NDt+cCTnZ57DOt9F3Ac8Ith7j8d+B4QwAnAT5t5/m55hn48sDEzN2Xmi8DNwKK6YxYBNw7dvhU4KSKijTM2y4hrzcx7M/MPQ5urqX5wd7cq8rUF+Afgy8Af2zlcCxRZ7yeA5Zn5HEBmPt3mGZupyHoTeNXQ7UPZ+0Pou0ZmPkD1YziHswi4KatWA4dFxGubdf5uCfTpwOaa7YGhfQ2PycxdwPPAkW2ZrrmKrLXWBVT/xu9WI643IhYAMzPzznYO1iJFvr7HAMdExI8jYnVELGzbdM1XZL1XAh+NiAGqH3X5mfaM1hGj/fM9KoU+U3QcaPRMu/79lkWO6QaF1xERHwUqwIktnai19rneiJgALAXOa9dALVbk6zuR6mWXd1P919ePIuLYzNzW4tlaoch6zwFuyMz/FhFvA74xtN6XWz9e27U0p7rlGfoAMLNmewZ7/7PslWMiYiLVf7rt658+41WRtRIRJwOfA87IzB1tmq0VRlrvIcCxwH0R8STV644ru/iF0aLfy9/JzJ2Z+QSwgWrAd6Mi670AWAGQmQ8CB1H9QVZlVOjP9/7qlkBfA8yNiDkRcSDVFz1X1h2zEjh36PZZwA9z6FWILjPiWocuQXyNaph38/VVGGG9mfl8Zk7NzNmZOZvqawZnZGZ/Z8YdsyLfy7dTfeGbiJhK9RLMprZO2TxF1vtr4CSAiHgD1UAfbOuU7bMS+NjQu11OAJ7PzN807dE7/arwKF49Ph14nOor5p8b2reE6h9uqH4TfAvYCPwM+LNOz9zCtd4D/BZ4aOjXyk7P3Mr11h17H138LpeCX98ArgYeBR4Gzu70zC1e73zgx1TfAfMQcEqnZx7DWr8J/AbYSfXZ+AXAJ4FP1nxtlw/9v3i42d/LVv8lqSS65ZKLJGkEBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJfH/AeCz05k6tGBrAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" @@ -204,21 +204,29 @@ "# Geradengleichung berechnen und plotten\n", "weights = perceptron_AND.getWeights()\n", "print(weights)\n", - "x = list()\n", - "disc = list()\n", - "for i in range(len(train_input_AND)):\n", - " x.append(train_input_AND[i].dot(2**np.arange(train_input_AND[i].size)[::-1]))\n", - " sum = weights[0]\n", - " for j in range(len(train_input_AND[i])):\n", - " sum -= 2**j * train_input_AND[i,-j-1] * weights[j+1]\n", - " disc.append(sum)\n", - "plt.plot(x,labels_AND,'o')\n", - "plt.plot(x,disc)\n" + "#x = list()\n", + "#disc = list()\n", + "#for i in range(len(train_input_AND)):\n", + "# x.append(train_input_AND[i].dot(2**np.arange(train_input_AND[i].size)[::-1]))\n", + "# sum = weights[0]\n", + "# for j in range(len(train_input_AND[i])):\n", + "# sum -= 2**j * train_input_AND[i,-j-1] * weights[j+1]\n", + "# disc.append(sum)\n", + "#plt.plot(x,labels_AND,'o')\n", + "#plt.plot(x,disc)\n", + "\n", + "x_AND = [1-weights[1],1]\n", + "y_AND = [1+weights[0],1-weights[2]+weights[0]]\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(train_input_AND[(labels_AND==-1),0] , train_input_AND[(labels_AND==-1),1])\n", + "ax.scatter(train_input_AND[(labels_AND==1),0] , train_input_AND[(labels_AND==1),1])\n", + "plt.plot(x_AND,y_AND)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 87, "metadata": {}, "outputs": [ { @@ -232,18 +240,18 @@ "output_type": "execute_result", "data": { "text/plain": [ - "[]" + "[]" ] }, "metadata": {}, - "execution_count": 11 + "execution_count": 87 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debzVA/7H8den2yJJoYtWWfo1qLQchcgWZatkK1sJKVLMTIMxM5YZgzEzWkdCxESIEkqLkK1022uyxDAqw7WULRKf3x/fb+O6zr333M6553uW9/PxuA9n+Xa+n68v7879nu/5vs3dERGR3Fct6gFERCQ9FPgiInlCgS8ikicU+CIieUKBLyKSJ6pHPUB5GjRo4M2bN496DBGRrLF48eKP3b0w3nMZHfjNmzenqKgo6jFERLKGmb1X1nM6pCMikicU+CIieUKBLyKSJxT4IiJ5QoEvIpInUnKWjplNAE4GPnL3VnGeN2AkcCLwNdDf3ZekYt2S+aYtXc9ts95gw8bNNKpfm+HdWtKrXeOox8p72i+Zp6r3Sare4d8HdC/n+ROAFuHPQOCOFK1XMty0peu55vGVrN+4GQfWb9zMNY+vZNrS9VGPlte0XzJPOvZJSgLf3ecDn5azSE/gfg8sAOqbWcNUrFsy222z3mDzd9//5LHN333PbbPeiGgiAe2XTJSOfZKuY/iNgfdL3F8XPvYzZjbQzIrMrKi4uDgtw0nV2bBxc6Uel/TQfsk86dgn6Qp8i/NY3OYVdx/v7jF3jxUWxv12sGSRRvVrV+pxSQ/tl8yTjn2SrsBfBzQtcb8JsCFN65YIDe/Wkto1Cn7yWO0aBQzv1jKiiQS0XzJROvZJuq6lMx0YYmaTgU7AJnf/IE3rlghtO8NAZ4NkFu2XzJOOfWKp6LQ1s4eAo4AGwIfAdUANAHcfF56WOYbgTJ6vgQvcvcKrosViMdfF00REEmdmi909Fu+5lLzDd/e+FTzvwGWpWJeIiGwffdNWRCRPKPBFRPKEAl9EJE8o8EVE8oQCX0QkTyjwRUTyhAJfRCRPKPBFRPKEAl9EJE8o8EVE8oQCX0QkTyjwRUTyhAJfRCRPKPBFRPKEAl9EJE8o8EVE8kRKAt/MupvZG2a21syujvN8fzMrNrNl4c9FqViviIgkLunGKzMrAMYCxxGUlS8ys+nu/q9Siz7s7kOSXZ+IiGyfVLzD7wisdfd33H0LMBnomYLXFRGRFEpF4DcG3i9xf134WGmnmdkKM5tiZk3LejEzG2hmRWZWVFxcnILxREQEUhP4FucxL3X/SaC5u7cB5gITy3oxdx/v7jF3jxUWFqZgPBERgdQE/jqg5Dv2JsCGkgu4+yfu/m149y6gQwrWKyIilZCKwF8EtDCzvc2sJtAHmF5yATNrWOJuD2BNCtYrIiKVkPRZOu6+1cyGALOAAmCCu682sxuBInefDgw1sx7AVuBToH+y6xURkcox99KH2zNHLBbzoqKiqMcQEckaZrbY3WPxntM3bUVE8oQCX0QkTyjwRUTyhAJfRCRPKPBFRPKEAl9EJE8o8EVE8oQCX0QkTyjwRUTyhAJfRCRPKPBFRPKEAl9EJE8o8EVE8oQCX0QkTyjwRUTyhAJfRCRPpCTwzay7mb1hZmvN7Oo4z9cys4fD5xeaWfNUrFdERBKXdOCbWQEwFjgBOADoa2YHlFrsQuAzd98PuB24Ndn1luuTt+GHH6p0FSIi2SYV7/A7Amvd/R133wJMBnqWWqYnMDG8PQU41swsBev+uW+/hLu7wrjOsHIK/PB9laxGRCTbpCLwGwPvl7i/Lnws7jLuvhXYBOwW78XMbKCZFZlZUXFxceWnqb4DnHBrEPSPXQhjO8KyB+H7rZV/LRGRHJKKwI/3Tr10M3oiywQPuo9395i7xwoLCys/TUF1aHMmXLoAzpgI1WvDtMEwuj0svg+2bqn8a4qI5IBUBP46oGmJ+02ADWUtY2bVgXrApylYd9mqVYMDe8GgF6HvZNhxN3hyGIxqCwvHw3ffVOnqRUQyTSoCfxHQwsz2NrOaQB9geqllpgP9wtunA/PcPe47/JQzg5YnwMXz4NzHoF5TmDkcRraBV8bAlq/SMoaISNSSDvzwmPwQYBawBnjE3Veb2Y1m1iNc7B5gNzNbC/wS+Nmpm1XODPbrCgOegX5PQWFLmH0tjGgNL/4Nvvk87SOJiKSTpeuN9vaIxWJeVFRUdSv4z0KYfxusnQM71IdDBkOnS6D2LlW3ThGRKmRmi909Fu+5/P6mbbNOcO4UuPg52KszPH8z3N4a5t4AX30c9XQiIimV34G/TeP20PdBGPQytOgKL90eHOqZdS188d+opxMRSQkFfkl7toIz7oPLFsL+PWDBHTCiDcwYDpvWRT2diEhSFPjxFLaE3nfC5UXBOf1FE2BkW5g+FD79d9TTiYhsFwV+eXbdB3qOgaFLoUM/WP4QjO4AUwfDx29FPZ2ISKUo8BNRvxmc9DcYtiI4i2f1VBhzMEwZAB/+K+rpREQSosCvjJ0bQveb4YqV0HkYvDkL7jgUJp8DG5ZFPZ2ISLkU+Ntjp0I47oYg+Lv8Bv79Iow/EiadCe8vino6EZG4FPjJ2HFXOOZauHIlHPM7WLcI7ukK9/eEd1+OejoRkZ9Q4KfCDvWgy/DgHf9xfwyO6993Ikw4Ad6eBxn8bWYRyR8K/FSqtRN0HgpXrIDut8Jn78IDpwaFLG/OUvCLSKQU+FWhRm04ZBAMWwYn3w5ffQQPngl3doF/TVf9oohEQoFflarXgtgAuHwJ9PxHcCnmR86DOw5T/aKIpJ0CPx0KakC7c+Cy16D33YCXql/8LuoJRSQPKPDTqaA6tDkDBr8KZ95fon6xAxTdC1u/jXpCEclhSQW+me1qZnPM7K3wn3EvJG9m35vZsvCndBtW/qlWDQ7o+dP6xaeugFHtwvrFzVFPKCI5KNl3+FcDz7p7C+BZym6y2uzubcOfHmUsk39+Ur/4eHAJh5nDYeRB8Mpo1S+KSEolG/g9gYnh7YlAryRfLz+ZwX7HwgUzw/rFX8Ds36l+UURSKqmKQzPb6O71S9z/zN1/dljHzLYCy4CtwC3uPq2c1xwIDARo1qxZh/fee2+758tq778W1C++NTv4YlenwcGpnqpfFJFylFdxWGHgm9lcYM84T10LTEww8Bu5+wYz2weYBxzr7m9XNHiVd9pmgw1LYf5f4fWnoGZd6HgRHDoE6jSIejIRyUDlBX71iv6wu3ct54U/NLOG7v6BmTUEPirjNTaE/3zHzJ4H2gEVBr4AjdpBn0nw31XB4Z2XRsDCO4Pz+w+7HOrG+7tYROTnkj2GPx3oF97uBzxRegEz28XMaoW3GwCdAV1EvrL2bAVn3Bucy1+yfvHpX6t+UUQSkmzg3wIcZ2ZvAceF9zGzmJndHS6zP1BkZsuB5wiO4Svwt1fh//1Yv3jQWbD4vrB+8XLVL4pIuZL60Laq6Rh+Aja+Dy+PgCUPwA9bgw7eI34FDVpEPZmIRKC8Y/j6pm22q980rF9cDp0GweppQf3ioxfAh6ujnk5EMogCP1fs3BC6/zm4Jv/hVwSnc95xmOoXReR/FPi5ZqdC6Hp9EPxHXlWifvEM1S+K5DkFfq7acVc4+rdh/eLvYV1RUL84sQe8+1LU04lIBBT4uW6HetDl18E7/uP/BB+tgftOUv2iSB5S4OeLWjsFX9S6YgWc8Jef1i++8YyCXyQPKPDzTY3a0OmSsH5xRFC/+NBZcOcR8K8nVL8oksMU+Pmqei2IXVCifvFreOR81S+K5DAFfr7bVr84ZBGcdk/w2GMXBufyL52k+kWRHKLAl0C1Amh9Ogx+Bc58AGruCE9cCqPbQ9EE1S+K5AAFvvxUtWpwQA+45EXo+zDUKYSnrgzrF+9U/aJIFlPgS3xm0LI7XPQsnDcV6u8FM38TXKHz5VHw7ZdRTygilaTAl/KZwb7HwICZ0P9p2OMAmPP7oH5x/l/hm01RTygiCVLgS+KaHw7nPwEXzoEmMZj3xyD4n/szfP1p1NOJSAUU+FJ5TTvCOY/CwBeg+RHwwq1B8M+9Hr4sjno6ESmDAl+2X6O2Qf3i4Ffg/7oF9YsjWsMzv4Uv/hv1dCJSSlKBb2ZnmNlqM/vBzOJecD9crruZvWFma83s6mTWWZFpS9fT+ZZ57H3103S+ZR7Tlq6vytUJwB4HwukTgnP5D+wFC8eF9Yu/CgpaRCQjJPsOfxXQG5hf1gJmVgCMBU4ADgD6mtkBSa43rmlL13PN4ytZv3EzDqzfuJlrHl+p0E+XBi3g1HFw+WI4qA8snhiczqn6RZGMkFTgu/sad3+jgsU6Amvd/R133wJMBnoms96y3DbrDTZ/99NLAmz+7ntum1XRiJJSu+4NPUbB0KXQoT8sfxhGd4DHL4HiN6OeTiRvpeMYfmOg5O/168LH4jKzgWZWZGZFxcWV+wBww8b4Xwoq63GpYvWbwkl/Da7QechgWDMdxnaER/urflEkAhUGvpnNNbNVcX4SfZducR4r81q87j7e3WPuHissLExwFYFG9WtX6nFJk7p7QrebwvrFK+GtuSXqF5dGPZ1I3qgw8N29q7u3ivPzRILrWAc0LXG/CbBhe4atyPBuLaldo+Anj9WuUcDwbi2rYnVSWXUaQNfrgnf8R14N774I44+Cf54O778W9XQiOS8dh3QWAS3MbG8zqwn0AaZXxYp6tWvMzb1b07h+bQxoXL82N/duTa92ZR5BkijsuCscfQ1csQqO/QNsWAL3HBfUL/77RZWxiFQR8yT+5zKzU4HRQCGwEVjm7t3MrBFwt7ufGC53IjACKAAmuPtNibx+LBbzoqKi7Z5PssSWr4Ircr48KihkaXYodBkeXNLB4h0RFJGymNlid497mnxSgV/VFPh55rvNsOQBeHkEfL4eGncIgv//uiv4RRJUXuDrm7aSOWrUhk4Dg9M5TxkJX30MD/WBcUfA6mmqXxRJkgJfMk/1WsH5+5cvhl53wNbN8Gg/uONQWPGo6hdFtpMCXzJXQQ1oezZc9lpYv2jw+EVh/eI/Vb8oUkkKfMl8P6tfrANPXKb6RZFKUuBL9vhf/eJ8OPsRqLN7UL84si0sGKf6RZEKKPAl+5gFl2O+aC6cNy24ds8zV6l+UaQCCnzJXmaw79FwwQzoPyO4TPP/6hdvU/2iSCkKfMkNzTvD+dPgwrnQ5GCY9ye4vTXMu0n1iyIhBb7klqYHwzmPBMf59+kC8/8SvOOfc53qFyXvKfAlNzU8CM76Jwx+Nfim7iujwvrFa+DzD6KeTiQSCnzJbXscAKffA5ctggNPhYV3wsg28NQvYeN/op5OJK0U+JIfGuwHp94RfHu37dmw5P6gfvGJIfDpO1FPJ5IWCnzJL7vuHVynZ9gyiA2AFY+E9YsDoVhVmJLbFPiSn+o1gRNvC+sXL4U1T8LYTvBIP/jvqqinE6kSCnzJb6XrF9c+C+M6w0Nnw/olUU8nklIKfBH4sX7xypVw1DXw3ktw19Hwz9PgPwujnk4kJZIKfDM7w8xWm9kPZhb3gvvhcu+a2UozW2ZmajSRzFV7Fzjq6rB+8bqgZH3C8TDxFPj3fNUvSlZL9h3+KqA3MD+BZY9297ZlNbGIZJQddoYjfhkc6jn+puAD3YmnwITusHaugl+yUlKB7+5r3F2nNkjuqlkHDhsCw1bAiX+FTeuCwzx3HQOvz1DwS1ZJ1zF8B2ab2WIzG1jegmY20MyKzKyouFhfhZcMUWMH6HhxWL84CjZ/CpP7hvWLU1W/KFmhwsA3s7lmtirOT89KrKezu7cHTgAuM7MuZS3o7uPdPebuscLCwkqsQiQNqteEDv1gyGLoNQ62fgOP9od/HBKc0//91qgnFClThYHv7l3dvVWcnycSXYm7bwj/+REwFei4/SOLZICC6tC2L1y2EE6fELRyPX4xjD0Yljyg+kXJSFV+SMfM6phZ3W23geMJPuwVyX7VCqDVaTDo5eBibbXqwvQhMKo9LLpH9YuSUZI9LfNUM1sHHAo8bWazwscbmdmMcLE9gJfMbDnwGvC0uz+TzHpFMk61arD/KTDwBTj7Uai7Bzz9Sxh5ECy4A7Z8HfWEIphn8FkGsVjMi4p02r5kIXf49wvwwm3Bl7jqFMJhl0PsQqi1U9TTSQ4zs8Vlnf6ub9qKVAUz2OcouOBpuGAm7Nka5vwBRrQK/hJQ/aJEQIEvUtX2OgzOmwoXPQtNO8Fz2+oX/6T6RUkrBb5IujSJwdkPh/WLRwZF6yPCd/5ffhT1dJIHFPgi6dbwIDjrAbh0QVi/OBpGtIGZV8PnG6KeTnKYAl8kKrvv/2P9Yqve8Nr44Kyep65U/aJUCQW+SNQa7Ae9/gFDl0Dbc4Ivbo1qB09cBp+8HfV0kkMU+CKZYpfmcMoIGLY8OH1z5RQYE4PHLlb9oqSEAl8k09RrDCf+JbhC56GXwetPh/WL58N/V0Y9nWQxBb5Ipqq7Bxz/p+Ca/Ef8EtbOg3GHw0N9Yf3iqKeTLKTAF8l0dXaDY/8Q1i/+Ft57Jbge/wO94T8Lop5OsogCXyRb1N4FjroKrlwFXa+HD5bDhG5w38nwzgsqY5EKKfBFsk2tunD4lXDFCuj2Z/j4Lbi/RxD+b6l+UcqmwBfJVjXrBB/qDlse1i+uh0mnwV1HBx/0KvilFAW+SLYrWb/YYzRs/gwmnx18wLt6KvzwfdQTSoZQ4Ivkiuo1of35Qf3iqXcG5Svb6heXP6z6RUm6AOU2M3vdzFaY2VQzq1/Gct3N7A0zW2tmVyezThGpQEF1OKhPWL94L1SrAVMHBl/iWnI/bN0S9YQSkWTf4c8BWrl7G+BN4JrSC5hZATCWoMD8AKCvmR2Q5HpFpCLVCoJr9Ax6Cc6aBDvUg+mXw+j2sOhu+O6bqCeUNEsq8N19trtv+z1xAdAkzmIdgbXu/o67bwEmAz2TWa+IVEK1arD/yTDweThnCtRtCE//Cka1hVf/ofrFPJLKY/gDgJlxHm8MvF/i/rrwsbjMbKCZFZlZUXFxcQrHE8lzZtDiOLhwNpw/HXbbD2ZdAyPbwEsj4Nsvop5QqliFgW9mc81sVZyfniWWuRbYCkyK9xJxHivzfDF3H+/uMXePFRYWJrINIlIZZkEBS/+n4IJnYM82MPe6oIzlhb/A5o1RTyhVpHpFC7h71/KeN7N+wMnAsR6/EX0d0LTE/SaAWh5EMsFeh8J5j8O6xUED13M3BYUsHQfCIZcGl3WQnJHsWTrdgauAHu5e1oHARUALM9vbzGoCfYDpyaxXRFKsSQc4ezJc8iLsezS8+LfgHf/s36t+MYckewx/DFAXmGNmy8xsHICZNTKzGQDhh7pDgFnAGuARd1+d5HpFpCo0bANn3h/UL/7iRHh1TBD8M69S/WIOsPhHYTJDLBbzoqKiqMcQyV+fvA0v/h1WTAarFjRyHX4l7LJX1JNJGcxssbvH4j2nb9qKSNl22xd6jYXLl0C7c2HZpOA8/mmqX8xGCnwRqdgue8HJt8PQZXDwRbBqW/3iRfDR61FPJwlS4ItI4uo1hhNuDVq4Dh0Cr88IrtXzyPnwwYqop5MKKPBFpPJ22h2O/2NYv/grePs5uPMIeLBPcIqnZCQFvohsvzq7wbG/D4L/6Gvh/QVw9zHwwKnw3qtRTyelKPBFJHm168ORvwmCv+sNweGde7urfjHDKPBFJHVq1YXDrwiCv9vNP9Yv3nM8vDVHwR8xBb6IpF7NHeHQS4P6xZP+Bl98AJNOh/FHwZqn4Icfop4wLynwRaTq1NghOI3z8iXQYwx8swkePieoX1z1uOoX00yBLyJVr3pNaH8eDCmCU8fDD9/BlAvC+sXJql9MEwW+iKRPQXU46KzgWj1n3AcFNWHqJTCmAyyeqPrFKqbAF5H0q1YAB54aXJ2zz4NQexd4cmhw2YbX7lL9YhVR4ItIdKpVg1+cBBc/B+c8Bjs3ghm/hpEHwatjVb+YYgp8EYmeGbToCgNmBfWLDVrArN8Gl2Z+6XbVL6aIAl9EMkfJ+sUBs6BRW5h7PdzeCp6/VfWLSVLgi0hmanYInPsYXDwP9joMnv9z8I7/2Rvhq0+ini4rJVtxeJuZvW5mK8xsqpnVL2O5d81sZdiKpUYTEUlc4w7Q9yEY9BLse0xQyDKiNcz+HXzxYdTTZZVk3+HPAVq5exvgTeCacpY92t3bltXEIiJSrj1bw5kTw/rFk4IPdUe2gRm/gU3ro54uKyQV+O4+O+ysBVgANEl+JBGRcuz+CzjtruBLXK1Ph6J7grN6nhwGn70b9XQZLZXH8AcAM8t4zoHZZrbYzAaW9yJmNtDMisysqLi4OIXjiUhO2W1f6BnWL7Y/D5Y9CKPaw7RLVb9YhgpLzM1sLrBnnKeudfcnwmWuBWJAb4/zgmbWyN03mNnuBIeBLnf3+RUNpxJzEUnY5xvg5VGw+F74fgsc2Bu6/Bp23z/qydKqvBLzCgM/gRfvBwwCjnX3Cr8lYWbXA1+6+18rWlaBLyKV9uVH8OoYeO1u+O4r2L9HEPwND4p6srQoL/CTPUunO3AV0KOssDezOmZWd9tt4HhgVTLrFREp0067w3E3wpWroMtweOd5uLMLPHhW3tcvJnsMfwxQF5gTnnI5DoJDOGY2I1xmD+AlM1sOvAY87e7PJLleEZHy7bgrHPO7sH7xd/D+whL1i69EPV0kkj6kU5V0SEdEUubbL6BoArwyGr4qhr0OhyOHw95HBt/wzRFVdkhHRCRr1KoLnYfBsBXQ/Rb49G24vyfccxy8OTsv6hcV+CKSX2ruCIcMDusX/x58W/fBM2D8kbDmyZyuX1Tgi0h+ql4LDr4Qhm6rX/wcHj4XxnWGVY/lZP2iAl9E8ltBjR/rF3vfFQT9lAEwthMseyin6hcV+CIiENQvtjkzrF+cCNV3gGmDcqp+UYEvIlJStWpwYC8Y9CL0eejH+sVR7bK+flGBLyISjxn84sSgfvHcx6Bek7B+sQ28Mga2fBX1hJWmwBcRKY8Z7NcVBjwD/Z6EwpYw+9rgmvwv/j34sDdLKPBFRBJhBnt3CUJ/wGxo1A6evSEI/udvgc2fRT1hhRT4IiKV1axTWL/4HOzVGZ6/GW5vDXNvyOj6RQW+iMj2atwe+j4Ig16G/Y6Fl26HEa1g1rUZWb+owBcRSdaerYL6xcsWwv6nwIJ/BId6ZgyHTeuinu5/FPgiIqlS2BJ6jw++xNXmzOBibSPbZkz9ogJfRCTVdtsXeo6BoUuh/fk/1i9OHQwfr41sLAW+iEhVqd8MTv57cIXOTpfA6qkw9mCYciF8+K+0j6PAFxGpajs3hO43B2Ushw2FN5+BOw4NLtb2wfK0jZF04JvZH81sRdh4NdvMGpWxXD8zeyv86ZfsekVEss5OhXDcDUHwd/kNvDM/qF+cdCasq/qyp1SUmO/s7p+Ht4cCB7j7oFLL7AoUATHAgcVAB3cv95sKarwSkZz2zSZ4bTy8Ojb44tY+Rwc9vM07b/dLVmnj1bawD9UhCPTSugFz3P3TMOTnAN2TXbeISFbboV4Q8FesCorXP1wF950I954E321O+eqqp+JFzOwm4HxgE3B0nEUaA++XuL8ufCzeaw0EBgI0a9YsFeOJiGS2WjsF9YsdBwaXYv5oNdSonfLVJPQO38zmmtmqOD89Adz9WndvCkwChsR7iTiPxT2W5O7j3T3m7rHCwsJEt0NEJPvVqA2HDIIeo6vk5RN6h+/uXRN8vQeBp4HrSj2+DjiqxP0mwPMJvqaIiKRAKs7SaVHibg/g9TiLzQKON7NdzGwX4PjwMRERSZNUHMO/xcxaAj8A7wGDAMwsBgxy94vc/VMz+yOwKPwzN7r7pylYt4iIJCjp0zKrkk7LFBGpnCo9LVNERLKDAl9EJE8o8EVE8oQCX0QkT2T0h7ZmVkxw5s/2aAB8nMJxopQr25Ir2wHalkyUK9sByW3LXu4e91urGR34yTCzorI+qc42ubItubIdoG3JRLmyHVB126JDOiIieUKBLyKSJ3I58MdHPUAK5cq25Mp2gLYlE+XKdkAVbUvOHsMXEZGfyuV3+CIiUoICX0QkT2R94JtZdzN7w8zWmtnVcZ6vZWYPh88vNLPm6Z+yYglsR38zKw7L4peZ2UVRzFkRM5tgZh+Z2aoynjczGxVu5woza5/uGROVwLYcZWabSuyTP6R7xkSZWVMze87M1pjZajMbFmeZjN83CW5HVuwXM9vBzF4zs+XhttwQZ5nU5pe7Z+0PUAC8DewD1ASWE5Sol1zmUmBceLsP8HDUc2/ndvQHxkQ9awLb0gVoD6wq4/kTgZkELWiHAAujnjmJbTkKeCrqORPcloZA+/B2XeDNOP+NZfy+SXA7smK/hP+edwpv1wAWAoeUWial+ZXt7/A7Amvd/R133wJMBnqWWqYnMDG8PQU41sziVS5GKZHtyAruPh8or+ugJ3C/BxYA9c2sYXqmq5wEtiVruPsH7r4kvP0FsIaf90pn/L5JcDuyQvjv+cvwbo3wp/RZNCnNr2wP/ETK0f+3jLtvJSha3y0t0yUu0ZL308JftaeYWdP0jJZyCRfaZ4lDw1/JZ5rZgVEPk4jwsEA7gneUJWXVvilnOyBL9ouZFZjZMuAjYI67l7lPUpFf2R74iZSjJ1ygHqFEZnwSaO7ubYC5/Pi3frbJhv2RqCUE1y05CBgNTIt4ngqZ2U7AY8AV7v556afj/JGM3DcVbEfW7Bd3/97d2xL0fHc0s1alFknpPsn2wF8HlHyn2wTYUNYyZlYdqEfm/Zpe4Xa4+yfu/m149y6gQ5pmS7VE9llWcPfPt/1K7u4zgBpm1iDiscpkZjUIQnKSuz8eZ5Gs2DcVbUe27RcAd98IPA90L/VUSvMr2wN/EdDCzPY2s5oEH2pML7XMdKBfePt0YJ6Hn4BkkAq3o9Sx1B4Exy6z0XTg/PCMkEOATe7+QdRDbQ8z23Pb8VQz60jw/9Mn0U4VXzjnPcAad/97GYtl/L5JZDuyZb+YWaGZ1Q9v1wa6Aq+XWiyl+ZWKEvPIuPtWMxsCzCI402WCu682sxuBInefTvAfxwNmtpbgb8Y+0U0cX4LbMdTMegBbCbajf2QDl8PMHmu0ps4AAACJSURBVCI4S6KBma0DriP4MAp3HwfMIDgbZC3wNXBBNJNWLIFtOR0YbGZbgc1Anwx8M7FNZ+A8YGV4zBjgt0AzyKp9k8h2ZMt+aQhMNLMCgr+UHnH3p6oyv3RpBRGRPJHth3RERCRBCnwRkTyhwBcRyRMKfBGRPKHAFxHJEwp8EZE8ocAXEckT/w9YE/4fooiJbQAAAABJRU5ErkJggg==\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3gVZdrH8e+dQuihBaQ3QToCAamJLh0VlBUFewNRlBJfXd3iuq677uq7CaCgYhdXESuoSLMkdAi9Q+gBhCAQOiHwvH8kuy9iIAc4yeSc/D7XxcWZmceZ+yHJz8mcM/eYcw4REQl8IV4XICIi/qFAFxEJEgp0EZEgoUAXEQkSCnQRkSAR5tWBK1So4GrVquXV4UVEAtLixYv3OeeictrmWaDXqlWL5ORkrw4vIhKQzGzb+bbpkouISJBQoIuIBAkFuohIkFCgi4gECQW6iEiQyDXQzextM9trZqvOs93MbLSZpZjZCjNr6f8yc7BiIiQ0gWfLZP29YmK+HFZE5JLlcW75cob+LtDjAtt7AvWy/wwCXr38snKxYiJ8NRTSdwAu6++vhirURaTgyofcyjXQnXNJwP4LDOkDvO+yzAfKmFllfxWYo++eg1PHmXY6mnmnG2atO3U8a72ISEGUnVu/4Ofc8sc19KrAjrOWU7PX/YqZDTKzZDNLTktLu/QjpqfiHIzN7MOAU3/i6VMPcMgVg/TUS9+niEheOl8++TG3/BHolsO6HJ+a4Zwb55yLds5FR0XleOeqbyKrYQYTivyVQaFf8/Hp6+h68iVmRHS99H2KiOSlyGoXt/4S+CPQU4HqZy1XA3b5Yb/n1/kZCC9GMcvg9+Ef8kWRZygbcpSB6fcy5MMlpB0+maeHFxG5aNm59QvhxbLW+4k/An0ycHf2p13aAunOud1+2O/5NbsVbhwNkdUBo3nZU0zuV47Hu9Znxuo9dE1I5LPFqejxeiJSYJyTW0RWz1pudqvfDmG5hZ6ZfQRcC1QA9gB/BsIBnHOvmZkBr5D1SZhjwH3OuVy7bkVHR7u8aM6Vsvcwv/tsJYu3HSCmfhR/v7kJ1coW9/txRES8YGaLnXPROW7z6iw2rwId4MwZx/j523hx6joc8GT3q7irXS1CQ3K63C8iEjguFOhBeadoSIhxT/taTBsRQ+ta5Xj2qzX0e20uG/cc9ro0EZE8E5SB/h/Vyhbn3ftak3BbczbvO8r1o2cz+ruNZGSe8bo0ERG/C+pABzAzbm5RjZlxsXRvcgXxMzbQ+5XZLNtx0OvSRET8KugD/T8qlIzg5QEtePPuaA4eO0XfsXN4/us1HMvI9Lo0ERG/KDSB/h9dGlVielwMA9rU4M3ZW+g+Mok5Kfu8LktE5LIVukAHKF00nL/d3JQJg9oSFhLCHW8u4MlPl5N+7JTXpYmIXLJCGej/0bZOeb4d1onBsXX5bMlOuiQkMnVV3t4TJSKSVwp1oAMUDQ/lqZ4NmDSkA1ElIxj8wRIe/mAxew+f8Lo0EZGLUugD/T+aVI1k0qMdeLLHVXy3bi9d/pXIxEU71D5ARAKGAv0s4aEhPHLtlXw7rBMNrijNk5+t4K63FrL952NelyYikisFeg7qRpVkwqC2PH9TE5btOEj3kUm8OWszp8/obF1ECi4F+nmEhBh3tq3J9BExtK9bnue/WUvfV+ey/ie1DxCRgkmBnosqZYrx5j3RjB7Qgh37j3HDy7OIn7GBk5mnvS5NROQXFOg+MDN6N6/CzLhYbmhWhdHfbeSG0bNZsv2A16WJiPyXAv0ilCtRhITbruad+1pz9GQmv311Ln/5ajVHT6p9gIh4T4F+Ca67qiLT42K5q21N3pmzlW4JSSRtuIyHXouI+IEC/RKVjAjjuT5N+GRwOyLCQ7j77YU8PnE5B49leF2aiBRSCvTL1LpWOaYM7cSj113JpGU76RKfyDcrduuGJBHJdwp0PygaHsr/dL+KyY92pHJkMYZ8uIRB4xez55DaB4hI/lGg+1GjKqX54pH2/L5XA5I2pNElPpGPFm7X2bqI5AsFup+FhYYwKKYu04bH0LhKaZ7+fCW3v7GArfuOel2aiAQ5BXoeqVWhBB8NbMsLfZuyamc63Ucm8XriJjJP63mmIpI3FOh5yMwY0KYGM+JiiakfxQvfruPmsXNZs+uQ16WJSBBSoOeDKyKLMu6uVoy5vSW704/T+5XZvDRtHSdOqX2AiPiPAj2fmBnXN6vMzLhYbmpRlTE/bKLX6Fks2rrf69JEJEgo0PNZmeJF+N9+zXn//jZkZJ6h32vzeGbSKo6ofYCIXCYFukdi6kcxbXgM93Woxfj52+gWn8gP6/Z6XZaIBDAFuodKRITx5xsb8+ng9pSICOO+dxcxfMJS9h9V+wARuXgK9AKgVc2yfD20I8M61+OblbvpEp/IpGU7dUOSiFwUBXoBEREWyoiu9fn6sU5UL1ecYROW8cB7yew6eNzr0kQkQPgU6GbWw8zWm1mKmT2Vw/YaZvaDmS01sxVm1sv/pRYOV11Ris8fbs8fr2/IvE0/0y0hifHzt3FGzzMVkVzkGuhmFgqMAXoCjYABZtbonGF/BCY651oA/YGx/i60MAkNMR7sVIfpI2K4unoZ/vTlKvqPm8/mtCNelyYiBZgvZ+htgBTn3GbnXAYwAehzzhgHlM5+HQns8l+JhVf1csUZ/0AbXrylGet+OkSPUbMY+2MKp9Q+QERy4EugVwV2nLWcmr3ubM8Cd5pZKjAFeCynHZnZIDNLNrPktDQ94ccXZsat0dWZ+XgsnRtU5MWp6+nzyhxW7Uz3ujQRKWB8CXTLYd25F3QHAO8656oBvYDxZvarfTvnxjnnop1z0VFRURdfbSFWsVRRXr2zFa/d2ZK0IyfpM2YO//hW7QNE5P/5EuipQPWzlqvx60sqDwATAZxz84CiQAV/FCi/1KNJZWaOiOWWltV4LXETPUfNYv7mn70uS0QKAF8CfRFQz8xqm1kRst70nHzOmO1AZwAza0hWoOuaSh6JLB7OP29pxr8fvIbTZxz9x83n91+s5NCJU16XJiIeyjXQnXOZwKPANGAtWZ9mWW1mz5lZ7+xhjwMDzWw58BFwr9NdMXmuw5UVmDY8hoGdajNh4Xa6xScxc80er8sSEY+YV7kbHR3tkpOTPTl2MFq+4yC/+2wF6346zA3NKvNs78ZUKBnhdVki4mdmttg5F53TNt0pGiSaVy/D5Ec7Ete1PtNX76FLfCKfL0lV+wCRQkSBHkSKhIUwtHM9vhnakToVShA3cTn3vrOI1APHvC5NRPKBAj0I1atUik8Gt+fZGxuxaOt+uiUk8e6cLWofIBLkFOhBKjTEuLdDbaaPiCG6Vjme/WoN/V6fR8rew16XJiJ5RIEe5KqVLc5797Um/tbmbEo7Qq9Rs3n5u41kZKp9gEiwUaAXAmZG35bVmBkXS7fGlfjXjA30fmU2y3cc9Lo0EfEjBXohUqFkBK/c3pI37o7mwLEMbh47h799s4bjGWofIBIMFOiFUNdGlZgRF0v/NjV4Y9YWuo9MYm7KPq/LEpHLpEAvpEoXDefvNzdlwqC2hBjc/uYCfvfpCtKPq32ASKBSoBdybeuUZ+rwGB6KrcOnS1LpGp/I1FU/eV2WiFwCBbpQNDyUp3s2ZNKQDlQoGcHgDxbzyL8Xs/fwCa9LE5GLoECX/2pSNZJJj3bgie5XMXPtXrrGJ/FJ8g61DxAJEAp0+YXw0BCGXHcl3w7rRP1KJXni0xXc/fZCduxX+wCRgk6BLjmqG1WSjwe14683NWHJtgN0S0jirdlbOK32ASIFlgJdziskxLirbU1mxMXSrm55/vr1Gn776lzW/6T2ASIFkQJdclWlTDHeuieaUf2vZvv+Y9zw8iwSZmzgZKZuSBIpSBTo4hMzo8/VVZkxIoZeTSsz6ruN3DB6Nku2H/C6NBHJpkCXi1K+ZASj+rfg7XujOXoyk9++Ope/fLWaoyczvS5NpNBToMsl+U2DSkyPi+WutjV5Z85Wuo9MYtZGPRdcxEsKdLlkJSPCeK5PEz4Z3I4iYSHc9dZC/ueT5Rw8luF1aSKFkgJdLlvrWuWYMrQTQ66ryxdLd9IlPolvVuzWDUki+UyBLn5RNDyUJ7o3YPKjHbgiMoIhHy7hofGL2XNI7QNE8osCXfyqcZVIvnykA0/3bEDihjS6xCcyYeF2na2L5AMFuvhdWGgID8XWZerwGBpXKc1Tn6/k9jcWsHXfUa9LEwlqCnTJM7UrlODDB9vyQt+mrNqZTo9RSYxL2kTmaT3PVCQvKNAlT4WEGAPa1GBGXCwdr4zi71PW0ffVuazdfcjr0kSCjgJd8sUVkUV54+5WvHJ7C3YdPM6NL8/mf6et58QptQ8Q8RcFuuQbM+OGZlWYMSKW3ldX4ZUfUrh+9CySt+73ujSRoKBAl3xXtkQR4m+9mvfub8OJU2fo9/o8/jxpFUfUPkDksijQxTOx9aOYPiKGe9rV4v352+gWn8gP6/d6XZZIwPIp0M2sh5mtN7MUM3vqPGNuNbM1ZrbazD70b5kSrEpEhPFs78Z8Org9xSPCuO+dRYz4eBn7j6p9gMjFyjXQzSwUGAP0BBoBA8ys0Tlj6gFPAx2cc42B4XlQqwSxVjXL8s3QjgztXI+vlu+ia3wik5fv0g1JIhfBlzP0NkCKc26zcy4DmAD0OWfMQGCMc+4AgHNOvzfLRYsICyWua32+HtqRamWLMfSjpTz4XjK70497XZpIQPAl0KsCO85aTs1ed7b6QH0zm2Nm882sR047MrNBZpZsZslpaWq1KjlrcEVpPn+kA3+8viFzNu2ja3wSH8zfxhk9z1TkgnwJdMth3bk/WWFAPeBaYADwppmV+dV/5Nw451y0cy46KirqYmuVQiQ0xHiwUx2mD4+lWbVI/vjlKvq/MZ/NaUe8Lk2kwPIl0FOB6mctVwN25TBmknPulHNuC7CerIAXuSw1yhfn3w9ew4u/bcba3YfoMWoWY39M4ZTaB4j8ii+BvgioZ2a1zawI0B+YfM6YL4HrAMysAlmXYDb7s1ApvMyMW1tX57u4WH5zVUVenLqem8bMYdXOdK9LEylQcg1051wm8CgwDVgLTHTOrTaz58ysd/awacDPZrYG+AF4wjn3c14VLYVTxdJFee2uVrx2Z0v2Hj5JnzFz+OfUdWofIJLNvPpYWHR0tEtOTvbk2BL40o+d4m9T1jAxOZXaFUrwj75NuaZOea/LEslzZrbYORed0zbdKSoBKbJ4OC/e0pwPHriGzDNnuG3cfP7wxUoOnzjldWkinlGgS0DrWK8C04bH8GDH2ny0cDtd45OYuWaP12WJeEKBLgGveJEw/nhDIz5/pAORxcJ58P1kHvtoKfuOnPS6NJF8pUCXoHF19TJ89VhHRnSpz9RVu+kan8gXS1PVPkAKDQW6BJUiYSEM61KPKUM7UbtCCUZ8vJz73l3EzoNqHyDBT4EuQalepVJ8Mrg9f76xEQu37KdbfCLvz9uq9gES1BToErRCQ4z7OtRm2vAYWtYsyzOTVnPr6/NI2av2ARKcFOgS9KqXK87797fhX/2as3HvEXqNmsXL321U+wAJOgp0KRTMjN+2qsbMuFi6Nq7Ev2Zs4MaXZ7Mi9aDXpYn4jQJdCpWoUhGMub0l4+5qxYFjGdw0Zg5/n7KW4xlqHyCBT4EuhVK3xlcwfUQst7WuwbikzfQYlcTcTfu8LkvksijQpdCKLBbOC32b8tHAthhw+xsLeOqzFaQfV/sACUwKdCn02tUtz9ThMTwUW4eJyTvoGp/ItNU/eV2WyEVToIsARcNDebpnQyYN6Uj5khE8NH4xj/x7MXsPn/C6NBGfKdBFztK0WiSTH+3AE92vYubavXSNT+KT5B1qHyABQYEuco7w0BCGXHclU4Z2ol7Fkjzx6QrufnshO/Yf87o0kQtSoIucx5UVSzLxoXb8tU9jlmw7QLeEJN6evYXTah8gBZQCXeQCQkKMu9rVYnpcLG3rlOO5r9fw21fnsmHPYa9LE/kVBbqID6qWKcbb97ZmVP+r2fbzUa4fPYuRMzeQkan2AVJwKNBFfGRm9Lm6KjPjYunVtDIjZ27khpdnsXT7Aa9LEwEU6CIXrXzJCEb1b8Hb90Zz+EQmfV+dy3NfreFYRqbXpUkhp0AXuUS/aVCJ6SNiuOOaGrw9ZwvdEpKYvVHtA8Q7CnSRy1CqaDjP39SUjwe1pUhoCHe+tYAnPllO+jG1D5D8p0AX8YNr6pRnyrBOPHJtXT5fupPO8Yl8u3K312VJIaNAF/GTouGhPNmjAZMf7cAVkRE8/O8lPDQ+mb2H1D5A8ocCXcTPGleJ5MtHOvBUzwb8uD6NzvGJTFi4Xe0DJM8p0EXyQFhoCINj6zJ1eAyNKpfmqc9XcsebC9j281GvS5MgpkAXyUO1K5Tgo4Ft+dvNTViZmk73kUm8kbSZTD3PVPKAAl0kj4WEGHdcU5PpcTF0vLICf5uylr6vzmXt7kNelyZBRoEukk8qRxbjjbujeXlAC3YeOM6NL8/mX9PXczJTzzMV//Ap0M2sh5mtN7MUM3vqAuNuMTNnZtH+K1EkeJgZNzavwsy4WHpfXYWXv0/h+tGzWbxtv9elSRDINdDNLBQYA/QEGgEDzKxRDuNKAUOBBf4uUiTYlC1RhPhbr+bd+1pzPOM0t7w2j2cnr+boSbUPkEvnyxl6GyDFObfZOZcBTAD65DDur8CLgD50K+Kja6+qyLQRMdzTrhbvzdtKt4Qkfly/1+uyJED5EuhVgR1nLadmr/svM2sBVHfOfX2hHZnZIDNLNrPktLS0iy5WJBiVjAjj2d6N+XRwO4qGh3DvO4uI+3gZB45meF2aBBhfAt1yWPffOyTMLARIAB7PbUfOuXHOuWjnXHRUVJTvVYoUAq1qlmPKsE4M/c2VTF6+iy7xiXy1fJduSBKf+RLoqUD1s5arAbvOWi4FNAF+NLOtQFtgst4YFbl4EWGhxHW7iq8e60jVssV47KOlDHw/md3px70uTQKAL4G+CKhnZrXNrAjQH5j8n43OuXTnXAXnXC3nXC1gPtDbOZecJxWLFAINK5fm84fb84deDZmdso9u8Un8e8E2zuh5pnIBuQa6cy4TeBSYBqwFJjrnVpvZc2bWO68LFCmswkJDGBhTh2nDY2haLZI/fLGKAW/MZ8s+tQ+QnJlX1+eio6NdcrJO4kV84ZxjYvIOnv9mLRmZZxjepT4DO9UmLFT3BhY2ZrbYOZfjJW19N4gEADPjttY1mBkXy7VXRfHPqevoM2YOq3ame12aFCAKdJEAUql0UV6/K5pX72jJnkMn6TNmDv+cuo4Tp9Q+QBToIgGpZ9PKzIyLoW+Lqrz64yZ6jZrFwi1qH1DYKdBFAlSZ4kV4qV9zxj/QhozTZ7j19Xn88cuVHD6h55kWVgp0kQDXqV4U00fE8EDH2ny4YDvdEpL4ft0er8sSDyjQRYJA8SJh/OmGRnz2cHtKFQ3j/neTGfrRUn4+ctLr0iQfKdBFgkiLGmX5+rFOjOhSn29X7aZLfCJfLt2p9gGFhAJdJMgUCQthWJd6fDO0E7UqlGD4x8u4791F7Dyo9gHBToEuEqTqVyrFp4Pb88wNjViweT/d4hN5f95WtQ8IYgp0kSAWGmLc37E200fE0LJmWZ6ZtJrbxs0jZe8Rr0uTPKBAFykEqpcrzvv3t+F/+zVnw54j9Bo1izE/pHDq9BmvSxM/UqCLFBJmxi2tqjEzLpaujSrx0rT19H5lDitT1T4gWCjQRQqZqFIRjLmjJa/f1Yqfj5ykz5jZvDBlLccz1D4g0CnQRQqp7o2vYEZcLLe1rs7rSZvpMSqJuZv2eV2WXAYFukghFlksnBf6NuPDgdcAcPsbC3j68xWkH1f7gECkQBcR2tetwNRhMQyKqcPHi3bQLSGR6at/8rosuUgKdBEBoFiRUH7fqyFfDulA2eJFGDR+MUM+XELaYbUPCBQKdBH5hWbVyvDVYx35n271mbF6D13iE/lscaraBwQABbqI/Ep4aAiP/qYeU4Z1ol7Fkjz+yXLufnshO/Yf87o0uQAFuoic15UVSzLxoXY816cxS7YdoPvIJN6evYXTah9QICnQReSCQkKMu9vVYnpcLG1ql+O5r9dwy2tz2bjnsNelyTkU6CLik6plivHOva1JuK05W/cdpdfoWYyauZGMTLUPKCgU6CLiMzPj5hbVmBEXS88mlUmYuYEbX57Nsh0HvS5NUKCLyCWoUDKC0QNa8NY90aQfP0XfsXP469drOJaR6XVphZoCXUQuWeeGlZgRF8Pt19Tgrdlb6D4yidkb1T7AKwp0EbkspYqG8/xNTfl4UFvCQkK4860FPPHJctKPqX1AflOgi4hfXFOnPN8O68TD19bl86U76ZKQyLcrd3tdVqGiQBcRvykaHsrvejRg0pAOVCwVwcP/XsLg8YvZe+iE16UVCgp0EfG7JlUj+XJIB37XowHfr99Ll/hEJi7aofYBeUyBLiJ5Ijw0hIevrcvUYZ1oULk0T362gjvfWsD2n9U+IK/4FOhm1sPM1ptZipk9lcP2ODNbY2YrzOw7M6vp/1JFJBDViSrJhIFt+dvNTVi+I51uIxN5c9ZmtQ/IA7kGupmFAmOAnkAjYICZNTpn2FIg2jnXDPgUeNHfhYpI4AoJMe64piYz4mLoULcCz3+zlr5j57Dup0NelxZUfDlDbwOkOOc2O+cygAlAn7MHOOd+cM795/eo+UA1/5YpIsGgcmQx3rwnmtEDWpB64Dg3jJ5N/PT1nMzU80z9wZdArwrsOGs5NXvd+TwAfJvTBjMbZGbJZpaclpbme5UiEjTMjN7NqzAjLpYbm1dh9PcpXD96Nou37fe6tIDnS6BbDutyvPhlZncC0cBLOW13zo1zzkU756KjoqJ8r1JEgk65EkVIuO1q3rmvNcdOZnLLa/N4dvJqjp5U+4BL5UugpwLVz1quBuw6d5CZdQH+APR2zumZVSLik+uuqsj0uFjubluT9+ZtpVtCEokb9Bv8pfAl0BcB9cystpkVAfoDk88eYGYtgNfJCvO9/i9TRIJZyYgw/tKnCZ8ObkfR8BDueXshcROXceBohtelBZRcA905lwk8CkwD1gITnXOrzew5M+udPewloCTwiZktM7PJ59mdiMh5tapZjm+GduKx31zJ5GW76JqQyFfLd+mGJB+ZV/9Q0dHRLjk52ZNji0jBt3b3IX732QpWpKbTpWElnr+pCVdEFvW6LM+Z2WLnXHRO23SnqIgUSA0rl+bzh9vzh14NmZ2SRtf4RD5csJ0zuiHpvBToIlJghYWGMDCmDtOGx9CkaiS//2IlA96Yz5Z9R70urUBSoItIgVezfAk+HHgN/+jblDW7D9FjZBKvJW4i87SeZ3o2BbqIBAQzo3+bGsyMiyW2fhT/+HYdN42dw+pd6V6XVmAo0EUkoFQqXZTX72rF2Dta8lP6SXq/MocXp67jxCm1D1Cgi0jAMTN6Na3MzLgYbm5RlbE/bqLXqFks3FK42wco0EUkYJUpXoT/7dec9+9vQ8bpM9z6+jz+9OUqDp8onM8zVaCLSMCLqR/FtOEx3N+hNh8s2Ea3hCS+X7fH67LynQJdRIJCiYgwnrmxEZ893J6SEWHc/24ywyYs5ecjhae1lAJdRIJKyxpl+XpoR4Z1rseUlbvpmpDEpGU7C0X7AAW6iASdiLBQRnStzzdDO1GjXHGGTVjGA+8ls+vgca9Ly1MKdBEJWvUrleKzh9vzpxsaMW/Tz3RLSGL8vK1B2z5AgS4iQS00xHigY22mj4jh6upl+NOk1dw2bh6b0o54XZrfKdBFpFCoXq444x9ow0u3NGP9T4fpOWoWY35I4VQQtQ9QoItIoWFm9IuuzszHY+nSsCIvTVtP71fmsDI1ONoHKNBFpNCpWKooY+9oxWt3tmLfkZPcNHYOL3y7NuDbByjQRaTQ6tHkCmbGxdKvVTVeT9xMj5FJzNv0s9dlXTIFuogUapHFwvnHb5vx4YPXcMbBgDfm8/TnKzkUgO0DFOgiIkD7KyswbXgMg2Lq8PGi7XSNT2TGmsBqH6BAFxHJVqxIKL/v1ZAvHulA2eJFGPh+MkM+XELa4cBoH6BAFxE5R/PqZZj8aEce71qfGav30DUhkc8Wpxb49gEKdBGRHBQJC+GxzvWYMqwjdaNK8vgny7nnnUWkHjjmdWnnpUAXEbmAKyuW4pOH2vGX3o1ZvHU/3RKSeHfOFk4XwPYBCnQRkVyEhBj3tK/FtBExtK5Vjme/WkO/1+aycc9hr0v7BQW6iIiPqpUtzrv3tSbhtuZs3neU60fPZtTMjWRkFoz2AQp0EZGLYGbc3KIaM+Ni6d7kChJmbuDGl2ezbMdBr0tToIuIXIoKJSN4eUAL3rw7mvTjp+g7dg7Pf72GYxmZntWkQBcRuQxdGlVielwM/dvU4M3ZW+g+Mok5Kfs8qUWBLiJymUoXDefvNzdlwqC2hJpxx5sLePLT5aQfy9/2AQp0ERE/aVunPFOHxzA4ti6fLdlJl4REpq7anW/H9ynQzayHma03sxQzeyqH7RFm9nH29gVmVsvfhZ7ry6U76fCP76n91Dd0+Mf3fLl0Z14fUkQkV0XDQ3mqZwMmDelAVMkIBn+whIc/WMzewydgxURIaALPlsn6e8VEvx7bcruV1cxCgQ1AVyAVWAQMcM6tOWvMI0Az59xgM+sP3Oycu+1C+42OjnbJycmXVPSXS3fy9OcrOX5W7+Ji4aG80LcpN7Woekn7FBHxt1Onz/DGrM2MnLmRonaaP4a+Sz83A7PsAeHF4MbR0OxWn/dpZoudc9E5bfPlDL0NkOKc2+ycywAmAH3OGdMHeC/79adAZ7P/lux3L01b/4swBzh+6jQvTVufV4cUEblo4aEhPHLtlXw7rBMN2MKTJ+7jrlNPs/1MxawBp47Dd8/57Xi+BHpVYMdZy6nZ63Ic45zLBNKB8ufuyMwGmVmymSWnpaVdWsXAroPHL2q9iIiX6kaVZELIMzwf9hbLztRljav5/xvTU/12HF8CPacz7XOv0/gyBufcOOdctHMuOioqypf6clSlTLGLWi8i4rWQMlW5M+w7kiJG0CN00f9viKzmv0ev66UAAAT5SURBVGP4MCYVqH7WcjVg1/nGmFkYEAns90eBOXmi+1UUCw/9xbpi4aE80f2qvDqkiMjl6fwMhBejnJ3V/yW8WNZ6P/El0BcB9cystpkVAfoDk88ZMxm4J/v1LcD3Lg8bB9/Uoiov9G1K1TLFMKBqmWJ6Q1RECrZmt2a9ARpZHbCsvy/yDdHc5PopFwAz6wWMBEKBt51zfzOz54Bk59xkMysKjAdakHVm3t85t/lC+7ycT7mIiBRWF/qUS5gvO3DOTQGmnLPumbNenwD6XU6RIiJyeXSnqIhIkFCgi4gECQW6iEiQUKCLiAQJBbqISJBQoIuIBAkFuohIkPDpxqI8ObBZGrDND7uqAHjzvCdvFLb5QuGbs+Yb/C5nzjWdczk2w/Is0P3FzJLPd9dUMCps84XCN2fNN/jl1Zx1yUVEJEgo0EVEgkQwBPo4rwvIZ4VtvlD45qz5Br88mXPAX0MXEZEswXCGLiIiKNBFRIJGwAS6mfUws/VmlmJmT+WwPcLMPs7evsDMauV/lf7jw3zjzGyNma0ws+/MrGZO+wkUuc33rHG3mJkzs4D/mJsvczazW7O/zqvN7MP8rtGffPiermFmP5jZ0uzv615e1OkvZva2me01s1Xn2W5mNjr732OFmbW87IM65wr8H7KelLQJqAMUAZYDjc4Z8wjwWvbr/sDHXtedx/O9Diie/frhYJ9v9rhSQBIwH4j2uu58+BrXA5YCZbOXK3pddx7PdxzwcPbrRsBWr+u+zDnHAC2BVefZ3gv4FjCgLbDgco8ZKGfobYAU59xm51wGMAHoc86YPsB72a8/BTqbmeVjjf6U63ydcz84545lL84n6+HdgcqXry/AX4EXgRP5WVwe8WXOA4ExzrkDAM65vflcoz/5Ml8HlM5+HcmvH0YfUJxzSWQ9kvN8+gDvuyzzgTJmVvlyjhkogV4V2HHWcmr2uhzHOOcygXSgfL5U53++zPdsD5D1f/pAlet8zawFUN0593V+FpaHfPka1wfqm9kcM5tvZj3yrTr/82W+zwJ3mlkqWY+8fCx/SvPMxf6c58qnZ4oWADmdaZ/7eUtfxgQKn+diZncC0UBsnlaUty44XzMLARKAe/OroHzgy9c4jKzLLteS9RvYLDNr4pw7mMe15QVf5jsAeNc59y8zaweMz57vmbwvzxN+z6xAOUNPBaqftVyNX/869t8xZhZG1q9sF/p1pyDzZb6YWRfgD0Bv59zJfKotL+Q231JAE+BHM9tK1vXGyQH+xqiv39OTnHOnnHNbgPVkBXwg8mW+DwATAZxz84CiZDWxClY+/ZxfjEAJ9EVAPTOrbWZFyHrTc/I5YyYD92S/vgX43mW/8xCAcp1v9iWI18kK80C+tgq5zNc5l+6cq+Ccq+Wcq0XWewa9nXPJ3pTrF758T39J1pvfmFkFsi7BbM7XKv3Hl/luBzoDmFlDsgI9LV+rzF+TgbuzP+3SFkh3zu2+rD16/U7wRbxj3AvYQNY75X/IXvccWT/YkPXF/wRIARYCdbyuOY/nOxPYAyzL/jPZ65rzcr7njP2RAP+Ui49fYwPigTXASqC/1zXn8XwbAXPI+gTMMqCb1zVf5nw/AnYDp8g6G38AGAwMPuvrOyb732OlP76ndeu/iEiQCJRLLiIikgsFuohIkFCgi4gECQW6iEiQUKCLiAQJBbqISJBQoIuIBIn/A+PFQdg3EeOXAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" @@ -269,21 +277,19 @@ "# Geradengleichung berechnen und plotten\n", "weights = perceptron_OR.getWeights()\n", "print(weights)\n", - "x = list()\n", - "disc = list()\n", - "for i in range(len(train_input_OR)):\n", - " x.append(train_input_OR[i].dot(2**np.arange(train_input_OR[i].size)[::-1]))\n", - " sum = weights[0]\n", - " for j in range(len(train_input_OR[i])):\n", - " sum -= 2**j * train_input_OR[i,-j-1] * weights[j+1]\n", - " disc.append(sum)\n", - "plt.plot(x,labels_OR,'o')\n", - "plt.plot(x,disc)" + "\n", + "x_OR = [1-weights[1],1]\n", + "y_OR = [1+weights[0], 1-weights[2]+weights[0]]\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(train_input_OR[(labels_OR==-1),0] , train_input_OR[(labels_OR==-1),1])\n", + "ax.scatter(train_input_OR[(labels_OR==1),0] , train_input_OR[(labels_OR==1),1])\n", + "plt.plot(x_OR,y_OR)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 88, "metadata": {}, "outputs": [ { @@ -297,18 +303,18 @@ "output_type": "execute_result", "data": { "text/plain": [ - "[]" + "[]" ] }, "metadata": {}, - "execution_count": 13 + "execution_count": 88 }, { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAdW0lEQVR4nO3deZgV9Z3v8feXpsF2A4VGoVlVZBFka9HEJJqggkTFBRVNlEUvj5M4kxtnfNTrvUkm98k1GSZOkkky6tiocQMliqgobjHOJNF0s++KC9KA2oq40QLdfO8fv4O2ndPdp/ssdc6pz+t56vHUqR9V36Lw27/+1a++Ze6OiIgUv05RByAiIrmhhC8iEhNK+CIiMaGELyISE0r4IiIx0TnqAFrTs2dPHzhwYNRhiIgUjKVLl77r7uXJtuV1wh84cCA1NTVRhyEiUjDMbHNL2zSkIyISE0r4IiIxoYQvIhITSvgiIjGhhC8iEhMZmaVjZnOBs4B33H1Eku0G/BKYDOwCZrj7skwcW/LfwuVbmbNkI9t21tOnexnXThzCuWMqog4r9nRd4idTPfw7gUmtbD8TGJxYZgP/kaHjSp5buHwrNzy0mq0763Fg6856bnhoNQuXb406tFjTdYmnjCR8d38B2NFKkynA7zx4EehuZr0zcWzJb3OWbKR+b+MXvqvf28icJRsjikhA1yWucjWGXwFsabJem/jub5jZbDOrMbOaurq6nAQn2bNtZ327vpfc0HWJp1wlfEvyXdI3r7j7be5e6e6V5eVJnw6WAtKne1m7vpfc0HWJp1wl/FqgX5P1vsC2HB1bInTtxCGUlZZ84buy0hKunTgkoogEdF3iKlcJfxFwuQUnAR+4+/YcHVsidO6YCm46fyQV3cswoKJ7GTedP1KzQSKm6xJPlol32prZ/cCpQE/gbeCHQCmAu9+SmJb5a8JMnl3ATHdvsypaZWWlq3iaiEjqzGypu1cm25aRefjufkkb2x34biaOJSIiHaMnbUVEYkIJX0QkJpTwRURiQglfRCQmlPBFRGJCCV9EJCaU8EVEYkIJX0QkJpTwRURiQglfRCQmlPBFRGJCCV9EJCaU8EVEYkIJX0QkJpTwRURiQglfRCQmlPBFRGIiIwnfzCaZ2UYz22Rm1yfZPsPM6sxsRWK5MhPHFRGR1KX9ikMzKwF+A5wO1ALVZrbI3dc1azrf3a9O93giItIxmejhjwc2uftr7r4HmAdMycB+RUQkgzKR8CuALU3WaxPfNXeBma0yswVm1q+lnZnZbDOrMbOaurq6DIQnIiKQmYRvSb7zZuuPAgPd/XjgGeCulnbm7re5e6W7V5aXl2cgPBERgcwk/FqgaY+9L7CtaQN3f8/ddydW/xMYl4HjiohIO2Qi4VcDg81skJl1AaYBi5o2MLPeTVbPAdZn4LgiItIOac/ScfcGM7saWAKUAHPdfa2Z/RiocfdFwD+Y2TlAA7ADmJHucUVEpH3Mvflwe/6orKz0mpqaqMMQESkYZrbU3SuTbdOTtiIiMaGELyISE0r4IiIxoYQvIhITSvgiIjGhhC8iEhNK+CIiMaGELyISE0r4IiIxoYQvIhITSvgiIjGhhC8iEhNK+CIiMaGELyISE0r4IiIxoYQvIhITSvgiIjGRkYRvZpPMbKOZbTKz65Ns72pm8xPbXzKzgZk4roiIpC7thG9mJcBvgDOB4cAlZja8WbMrgPfd/Rjg34CfpXtcERFpn0z08McDm9z9NXffA8wDpjRrMwW4K/F5ATDBzCwDxxYRkRRlIuFXAFuarNcmvkvaxt0bgA+AHsl2ZmazzazGzGrq6uoyEJ6IiEBmEn6ynrp3oE340v02d69098ry8vK0gxMRkSATCb8W6NdkvS+wraU2ZtYZ6AbsyMCxRUQkRZlI+NXAYDMbZGZdgGnAomZtFgHTE5+nAs+5e9IevoiIZEfndHfg7g1mdjWwBCgB5rr7WjP7MVDj7ouAKuBuM9tE6NlPS/e4IiLSPmknfAB3XwwsbvbdD5p8/hS4MBPHEhGRjtGTtiIiMaGELyISE0r4IiIxoYQvIhITSvgiIjGhhC8iEhNK+CIiMaGELyISE0r4IiIxoYQvIhITSvgiIjGhhC8iEhNK+CIiMaGELyISE8WZ8BfMgj/9CnbppVoiIvsVX8Lf/RF8uA2e/j/w86Hw8FWwpRr0gi0RibmMvAAlr3Q9BGY9CW+vhZq5sHI+rLwfjhwJlVfAyAuh68FRRykiknOWzqtlzexwYD4wEHgDuMjd30/SrhFYnVh9093PSWX/lZWVXlNT0+H4gNDjX/0gVM+Ft1dDl0Ng1DSonAVHDE9v3yIiecbMlrp7ZdJtaSb8fwF2uPtPzex64DB3vy5Ju4/dvd3d6owk/P3cobYaqqtg7cPQuBv6fyn0+oefA527ZuY4IiIRymbC3wic6u7bzaw38Ly7D0nSLvqE39Qn78GKe8OQz/uvw4E9Ycy3oXImHDYw88cTEcmRbCb8ne7evcn6++5+WJJ2DcAKoAH4qbsvbGWfs4HZAP379x+3efPmDsfXpn374LU/hMS/cXH4LWDw6aHXP/h06FSSvWOLiGRBWgnfzJ4Bjkyy6UbgrhQTfh9332ZmRwHPARPc/dW2As9aDz+ZD7bCsrtg6V3w8VvQrT+Mmw5jL4eDe+UmBhGRNEU+pNPsz9wJPObuC9raf04T/n6Ne0Nvv7oKXv8jdCqFYWfDCVfAgJPBLLfxiIi0Q2sJP915+IuA6YnP04FHkhz8MDPrmvjcEzgZWJfmcbOnpBSGT4Hpi+DqpTB+Nrz6HNz5TfjtSfDSrfDpB1FHKSLSbun28HsADwD9gTeBC919h5lVAle5+5Vm9mXgVmAf4QfML9y9KpX9R9LDT2ZvPax5CGqqYOtSKD0QRk4NY/19RkcdnYjIZ7I2pJNteZPwm9q2IiT+1Qtg7y6oGBcS/3HnQZcDo45ORGJOCT8b6nfCqvlhrP/djXBANxj9rfBAV8/BUUcnIjGlhJ9N7rD5TyHxr38U9u2FQaeEm7xDJod7AiIiOdJawi++Wjq5ZgYDvxKWj9+BZb+DpXfCA5fDwUcmpnZOh24VUUcqIjGnHn427GuEV54OY/2vPA3WCYacGYZ7jvo6dCq+IqUikh/Uw8+1TiUwZFJY3n8j9PiX3Q0bHoPDBoXEP+bbcODhUUcqIjGiHn6uNOwOY/zVVfDmn6Gka5jZc8IV0PcEPdAlIhmhHn4+6Nw1zN0fORXeXpeo1T8PVs2DI0bCCbNg5EWq1S8iWaMefpR2fxxq9ddUwVv7a/VfHOb1q1a/iHSApmXmO3eorQmJf81DqtUvIh2mhF9Idu34vFb/jtdUq19E2kUJvxDt2wevPx9u8m58AnwfHHNauMk7+AzV6heRpHTTthB16gRHfyMsH2wND3Qtuwvunwbd+oUHusZcDoccEXWkIlIg1MMvJI17Q2+/pgpeex46dQ61+iuvCE/6amqnSOyph18sSkrDTdzh58C7m2DpHbD8nvBS9p5DwgNdo6ZBWfe29yUisaMefqHbWx8SfnUVbK0JtfpHXBDG+vuMiTo6Eckx9fCLWWkZjL40LNtXhsS/+kFYfjf0GRsS/3Hnq1a/iKiHX5Q+/QBWzg9j/XUbVKtfJEay+RLzC4EfAcOA8e6eNDub2STgl0AJcLu7/zSV/Xck4S9cvpU5SzaybWc9fbqXce3EIZw7Jqalid1h859D4l+3KFGr/2vhJu/Qb6pWv0ieyUT+yuaQzhrgfMI7a1s6eAnwG+B0oBaoNrNF7p7xF5kvXL6VGx5aTf3eRgC27qznhodWA8Qz6ZvBwJPD8vE7YZin5k54cHqo1T/28jC9s1vfqCMVib1c5K+0CrO7+3p339hGs/HAJnd/zd33APOAKekctyVzlmz87C9rv/q9jcxZ0laIMXBwL/jqP8L3VsClD0DvUfDCHPjFSLj/Utj0THjYS0QikYv8lYubthXAlibrtcCJLTU2s9nAbID+/fu360Dbdta36/tY6lQCx04My/ubQ63+5XfDxscTtfpnwuhvw0E9oo5UJFZykb/a7OGb2TNmtibJkmovPdnTQC3eOHD329y90t0ry8vLUzxE0Kd7Wbu+j73DBsBpP4Tvr4MLquDQPvD0D+DmYfDQbHjzpXAfQESyLhf5q82E7+6nufuIJMsjKR6jFujXZL0vsK0jwbbl2olDKCv9Yo2ZstISrp04JBuHKx6du4Q6/TMXw3deDOP6G5+AuWfALV8JUz13fxR1lCJFLRf5KxcvV60GBpvZIDPrAkwDFmXjQOeOqeCm80dS0b0MAyq6l3HT+SPjecO2o3oNg8lz4Jr1cPYvw/t4H78Gfj4MHrsG3l4bdYQiRSkX+SvdaZnnAf8OlAM7gRXuPtHM+hCmX05OtJsM/IIwLXOuu/8klf1rHn4ecIetS0Mvf+1D0PAp9DspPNA1fIpq9YvkGZVHlszYtQNW3Jeo1f8qHNgj1OofNxMOHxR1dCKCEr5k2r598PofwwNdGxYnavVPCA90HTtRtfpFIqRaOpJZnTrB0V8Py4fbQq3+pXfCvEvg0L4wbkZ4qEu1+kXyinr4khmNDfDyE2Gs/7U/hFr9Q88KY/0Dv6pa/SI5oh6+ZF9J4mUsw86G914N4/wr7oV1C6HnsYla/ZeoVr9IhNTDl+zZWw9rF4ax/tpq6FwGIy8IY/0VY6OOTqQoqYcv0Sgtg9GXhGX7ytDrX/VgeEtXnzEh8Y+4QLX6RXJEPXzJrU8/gFUPQPXtn9fqH3VpGPIpPzbq6EQKnqZlSv5JVqt/4FfDTd6hZ6lWv0gHaUhH8k+LtfpnwMFHJGr1z1CtfpEMUg9f8se+xlCXv7oKXnkq/FA4dlIY6z/6G2H+v4i0Sj18KQwt1upfDIcNDCUcxlymWv0iHaQevuS3hj2wfhHU3AGb/xtKusDwc8NYf78T9UCXSDPq4Uvh2l+rf+RUeGdDmNq58n5Y/QD0Og5OmAXHXwxdD4k6UpG8px6+FJ49n8DqB8NY/1uroMvBcPxFYaz/yBFRRycSKU3LlOKUtFb/iSHxD58CpQdEHaFIzinhS/FrXqu/7PBQq79yJhx+VNTRieSMEr7Ex9/U6m+EoyeEm7yDJ4YibyJFLGs3bc3sQuBHwDBgvLsnzc5m9gbwEdAINLQUjEjaktbqvwvmXQqHVjSp1X9k1JGK5Fy677QdBuwDbgX+qY2EX+nu77Zn/+rhS0YkrdX/zTDWP+hrmtopRSVrPXx3X584QDq7EcmuFmv1PwI9BofCbaMvgbLDoo5UJKty9ay6A0+Z2VIzm91aQzObbWY1ZlZTV1eXo/AkNnocDRN/Atesh3NvCS9kWXID/HwYLPxumPUjUqTaHNIxs2eAZAOeN7r7I4k2z9P6kE4fd99mZr2Ap4G/d/cX2gpOQzqSE9tXhZu8qx6EvZ9A79HhJu+IqarVLwUn67N02kr4zdr+CPjY3f+1rbZK+JJTn9Xqr4K69dC1WxjqqZwF5UOijk4kJa0l/KwP6ZjZQWZ2yP7PwBnAmmwfV6TdDugG4/8HfOcvMPMJGHx6SP6/GQ93ngVrHgq1fUQKVFoJ38zOM7Na4EvA42a2JPF9HzNbnGh2BPDfZrYS+CvwuLs/mc5xRbLKDAZ8GaZWhbH+CT+EnZthwUz4t+Pg2f8LO7dEHaVIu+nBK5FU7GuETc+Gsf6Xl4QfCoMnhrH+oyeoVr/kDVXLFElXpxI49oyw7Hwz1Opf9rswv7/7gFDCYcxlcFDPqCMVaZF6+CId1bAHNjwK1XOb1OqfEh7o6n+SHuiSSKiHL5INnbvAiAvC8oVa/Q9Cr+Fhds/xF8MBh0YdqQigHr5IZu35BFYvCGP921eGWv0jLwxj/UeOjDo6iQFVyxTJNXfYuiwk/jW/D7X6+44PiX/4uarVL1mjhC8SpV07wlBPzVx4b1OiVv+3wkvZexwddXRSZJTwRfKBe6jVX10FGx5P1Or/RrjJe+wk1eqXjNBNW5F8YAZHnRqWD7cnavXfCfO/FWr1j50eavUf2jvSMKV4qYcvEqXGBnj5yTDW/+pzYCWhVv8JV8CgUzS1U9pNPXyRfFXSGYadFZb3XoWld8Dye2D9IuhxTKJW/6Wq1S8ZoR6+SL7ZWw9rF4Zef201dD4gzPWvvAIqxqrXL61SD1+kkJSWhbLMoy/5Yq3+FfdC71Eh8Y+cCl0OijpSKTDq4YsUgk8/hFXzv1irf9S0MOTTa2jU0Uke0bRMkWLhDm/+JST+dY/Avr0w4CtwwiwYenYo9yCxpiEdkWKxv1b/gC/Dxz+F5XeHG70LZsFBvWDsZTBuBnTvH3WkkofUwxcpdPv2wavPhl7/K0vCd4PPCGP9x0wIpZ0lNtTDFylmnTqF1zEOPr1Zrf4nQ09/XKJW/8HlUUcqEUv3FYdzzGyDma0ys4fNrHsL7SaZ2UYz22Rm16dzTBFpRff+MOEH8P11MHUudOsPz/4z3DwMFlwBm/8c7gNILKU1pGNmZwDPuXuDmf0MwN2va9amBHgZOB2oBaqBS9x9XVv715COSAY0rdW/+0PV6i9yrQ3ppNXDd/en3L0hsfoi0DdJs/HAJnd/zd33APOAKekcV0TaoddQmPwv8I8b4OxfQUkpLP4n+PlQePR7Ya6/xEIm37w8C3giyfcVwJYm67WJ75Iys9lmVmNmNXV1dRkMTyTmuhwE46bD7D/Clc/BcefCynlw61fh9tNgxf2w99Ooo5QsajPhm9kzZrYmyTKlSZsbgQbg3mS7SPJdi+NI7n6bu1e6e2V5uW4yiWScGfQdB+f+Fq5ZDxP/H9S/DwuvgpuHwpIbQ10fKTptztJx99Na225m04GzgAme/IZALdCvyXpfYFt7ghSRLDnwcPjSd+Gk73xeq//F/4C//BqO+nqo2nnsmarVXyTSuopmNgm4DjjF3Xe10KwaGGxmg4CtwDTg0nSOKyIZ1mKt/m/DIX3CUNDY6arVX+DSnaWzCegKvJf46kV3v8rM+gC3u/vkRLvJwC+AEmCuu/8klf1rlo5IhJLW6p8cHugadEqY/y95R7V0RCQ9n9Xqvxfqd8DhR39eq//Aw6OOTppQwheRzNj7KaxbGMb6a/8aavUfd34Y668Yp1r9eUClFUQkM0oPCGWZR02Dt1aHxL/qAVh5Hxx5fEj8Iy9Urf48pR6+iKRnf63+mrnwzjroemiiVv8VqtUfAQ3piEj2ucObL4abvOsegcY9MODkMNY/7BzV6s8RJXwRya1P3g21+mvugJ2b4aByGHu5avXngBK+iESjea1+91Cr/4Qr4JjTVKs/C3TTVkSi8YVa/Vs+r9V/30WJWv0zYMzlqtWfI+rhi0huNeyBDY+Fm7xv/Bd0KoXh54SbvAO+rKmdaVIPX0TyR+cuMOL8sNRtDIl/xf2w5vdQPizc5B11MRzQLepIi456+CISvT2fhIRfXQXbV0DpQTByahjr7z0q6ugKim7aikjh2LoUqufCmgXQ8ClUVIbEf9x5UFoWdXR5TwlfRApP/fthqKdmLrz3CpQdBqO/FYZ8ehwddXR5SwlfRAqXO7z+Qniga8PjsK9BtfpboZu2IlK4zOCoU8Ly0Vst1Oq/HA7tE3WkeU89fBEpPI0N4UGu6qrwYJdq9X9GPXwRKS4lnWHoN8Oy47VQwmH5PbD+UdXqb4V6+CJSHPZ+Goq21VTBlpdiW6s/az18M5sDnA3sAV4FZrr7ziTt3gA+AhqBhpaCERHpsNIDwgNboy6Gt9aExK9a/V+Q7jttzwCec/cGM/sZgLtfl6TdG0Clu7/bnv2rhy8iadn9UajVXz0X3lkbi1r9rfXw07qz4e5PuXtDYvVFoG86+xMRyaiuh8AJV8Lf/QlmLYFjJ4UZPr89Ee6YDKsXhNo+MZGxMXwzexSY7+73JNn2OvA+4MCt7n5bK/uZDcwG6N+//7jNmzdnJD4RESBRq/+e8EDX/lr9Yy4LlTsPGxB1dGlL68ErM3sGODLJphvd/ZFEmxuBSuB8T7JDM+vj7tvMrBfwNPD37v5CW4FrSEdEsmbfPnj1uTDW//KTRVOrP62btu5+Whs7nw6cBUxIluwT+9iW+O87ZvYwMB5oM+GLiGRNp04w+LSw7NwCy+76vFZ/t/5QOaPoavWnNYZvZpOA64Bz3H1XC20OMrND9n8GzgDWpHNcEZGM6t4PvvG/4ftr4cI7w9DOsz+Gm4fBglnwxp/CbwAFLt0Hr34NdAWetjDH9UV3v8rM+gC3u/tk4Ajg4cT2zsB97v5kmscVEcm8ktJQlfO486Du5USt/vuKpla/HrwSEWnNnl0h4ddUwbbleV+rX9UyRUQyYeuykPhX/x4a6vOyVr8SvohIJtW/DyvnheJteVarXwlfRCQb3MOL2KurwovZ9zXAUaeGJ3mHTI6kVr+qZYqIZIMZDPpaWD56C5bdHZ7kfeAyOKQ3jJ0e6vXnSa1+9fBFRDKpsQFeeSqM9W96FqwTDDkzjPUPOjXrtfrVwxcRyZWSzuFlLEMnw47XYWmiVv+GxxK1+meG8f4IavWrhy8ikm0Nu0Ot/uoq2PIilHSFEeeHsf6+lRmt1a8evohIlDp3heMvCstba8IDXavmw8r7Q63+ylmhVn/Xg7Mahnr4IiJR2P1ReEFLzVx4e02o1X/8xWGsv9ewDu9W0zJFRPKVO2z5a7jJu/ZhaNwDA06Gyx4Ovxm0k4Z0RETylRn0PzEsE2+CFffAe5s6lOzbooQvIpIvDuoBJ38va7vP7oRQERHJG0r4IiIxoYQvIhITSvgiIjGhhC8iEhNK+CIiMaGELyISE0r4IiIxkdelFcysDtjcwT/eE3g3g+FEqVjOpVjOA3Qu+ahYzgPSO5cB7l6ebENeJ/x0mFlNS/UkCk2xnEuxnAfoXPJRsZwHZO9cNKQjIhITSvgiIjFRzAn/tqgDyKBiOZdiOQ/QueSjYjkPyNK5FO0YvoiIfFEx9/BFRKQJJXwRkZgo+IRvZpPMbKOZbTKz65Ns72pm8xPbXzKzgbmPsm0pnMcMM6szsxWJ5coo4myLmc01s3fMbE0L283MfpU4z1VmNjbXMaYqhXM51cw+aHJNfpDrGFNlZv3M7A9mtt7M1prZ37xloxCuTYrnURDXxcwOMLO/mtnKxLn8c5I2mc1f7l6wC1ACvAocBXQBVgLDm7X5DnBL4vM0YH7UcXfwPGYAv4461hTO5WvAWGBNC9snA08ABpwEvBR1zGmcy6nAY1HHmeK59AbGJj4fAryc5N9Y3l+bFM+jIK5L4u/54MTnUuAl4KRmbTKavwq9hz8e2OTur7n7HmAeMKVZmynAXYnPC4AJZmY5jDEVqZxHQXD3F4AdrTSZAvzOgxeB7mbWOzfRtU8K51Iw3H27uy9LfP4IWA9UNGuW99cmxfMoCIm/548Tq6WJpfksmozmr0JP+BXAlibrtfztxf+sjbs3AB8APXISXepSOQ+ACxK/ai8ws365CS3jUj3XQvGlxK/kT5jZcVEHk4rEsMAYQo+yqYK6Nq2cBxTIdTGzEjNbAbwDPO3uLV6TTOSvQk/4yX7SNf8JmUqbqKUS46PAQHc/HniGz3/qF5pCuB6pWkaoWzIK+HdgYcTxtMnMDgZ+D/xPd/+w+eYkfyQvr00b51Ew18XdG919NNAXGG9mI5o1yeg1KfSEXws07en2Bba11MbMOgPdyL9f09s8D3d/z913J1b/ExiXo9gyLZVrVhDc/cP9v5K7+2Kg1Mx6RhxWi8yslJAk73X3h5I0KYhr09Z5FNp1AXD3ncDzwKRmmzKavwo94VcDg81skJl1IdzUWNSszSJgeuLzVOA5T9wBySNtnkezsdRzCGOXhWgRcHliRshJwAfuvj3qoDrCzI7cP55qZuMJ/z+9F21UySXirALWu/vNLTTL+2uTynkUynUxs3Iz6574XAacBmxo1iyj+atzR/9gPnD3BjO7GlhCmOky193XmtmPgRp3X0T4x3G3mW0i/GScFl3EyaV4Hv9gZucADYTzmBFZwK0ws/sJsyR6mlkt8EPCzSjc/RZgMWE2yCZgFzAzmkjblsK5TAX+zswagHpgWh52JvY7GbgMWJ0YMwb4X0B/KKhrk8p5FMp16Q3cZWYlhB9KD7j7Y9nMXyqtICISE4U+pCMiIilSwhcRiQklfBGRmFDCFxGJCSV8EZGYUMIXEYkJJXwRkZj4/0x7tUgQlZQnAAAAAElFTkSuQmCC\n" + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAfg0lEQVR4nO3deXgUVdr+8e+TBQg7mIAKgYAEFQUEIrLIJijojKCILCqKC4iogDrOz3mdxZ/zzuiIihsIKG64gRuiiFHZZZMAyqZACFsAJYigEJYEzvtHt04MAQKpTidd9+e6uNJVdezzHBNuuqueVJtzDhERiXxR4S5ARESKhwJfRMQnFPgiIj6hwBcR8QkFvoiIT8SEu4BjiY+Pd0lJSeEuQ0SkVFmyZMlO51xCQcdKbOAnJSWRlpYW7jJEREoVM9t0rGM6pSMi4hMKfBERn1Dgi4j4hAJfRMQnFPgiIj6hwBcR8QkFvoiITyjwRUR8wpPAN7OXzGyHma08xnEzs2fMLN3MlptZcy/mPaHlk2Dk+fBQ1cDX5ZOKZVoRkcKavGwrbR+dQb0HptL20RlMXrY1ZHN59Qr/FaDbcY5fDiQH/wwCnvdo3mNbPgk+Ggp7tgAu8PWjoQp9ESkxJi/byl/eX8HW3ftxwNbd+/nL+ytCFvqeBL5zbg6w6zhDegCvuYCFQFUzO8OLuY9p+sOQs//3+3L2B/aLiJQAI1LXsD/n8O/27c85zIjUNSGZr7jO4dcCtuTZzgzu+x0zG2RmaWaWlpWVVbQZ92Se3H4RkWK2bff+k9pfVMUV+FbAvqM+TNc5N845l+KcS0lIKPBmb4VXpfbJ7RcRKWZnVo07qf1FVVyBnwkk5tmuDWwL6Yyd/w6x+f6nxcYF9ouIlAD3dz2buNjo3+2Li43m/q5nh2S+4gr8KcCNwW6dVsAe59z2kM7YpDdc+QxUSQQs8PXKZwL7RURKgKua1eKRno2pVTUOA2pVjeORno25qtlRZ7w9Yc4ddWbl5J/E7C2gIxAP/AD8A4gFcM6NMTMDniPQyZMN3OycO+7N7lNSUpzuhy8icnLMbIlzLqWgY558AIpzrt8JjjvgTi/mEhGRU6PftBUR8QkFvoiITyjwRUR8QoEvIuITCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE8o8EVEfEKBLyLiEwp8ERGfUOCLiPiEAl9ExCcU+CIiPqHAFxHxCQW+iIhPKPBFRHxCgS8i4hMKfBERn1Dgi4j4hAJfRMQnPAl8M+tmZmvMLN3MHijgeB0zm2lmy8xsuZld4cW8IiJSeEUOfDOLBkYBlwONgH5m1ijfsL8Ck5xzzYC+wOiizisiIifHi1f4LYF051yGc+4Q8DbQI98YB1QOPq4CbPNgXhEROQleBH4tYEue7czgvrweAm4ws0zgE+Dugp7IzAaZWZqZpWVlZXlQmoiI/MqLwLcC9rl82/2AV5xztYErgAlmdtTczrlxzrkU51xKQkKCB6WJiMivvAj8TCAxz3Ztjj5lcyswCcA5twAoB8R7MLeIiBSSF4G/GEg2s3pmVobARdkp+cZsBjoDmNm5BAJf52xERIpRkQPfOZcL3AWkAt8S6MZZZWYPm1n34LD7gIFm9g3wFjDAOZf/tI+IiIRQjBdP4pz7hMDF2Lz7/p7n8WqgrRdziYjIqdFv2oqI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE8o8EVEfEKBLyLiEwp8ERGfUOCLiPiEAl9ExCcU+CIiPqHAFxHxCQW+iIhPKPBFRHxCgS8i4hMKfBERn1Dgi4j4hAJfRMQnFPgiIj6hwBcR8QkFvoiITyjwRUR8QoEvIuITCnwREZ/wJPDNrJuZrTGzdDN74BhjepvZajNbZWZvejGviIgUXkxRn8DMooFRwKVAJrDYzKY451bnGZMM/AVo65z7ycxqFHVeOdqRI44DuYcpX6bI31YRiUBevMJvCaQ75zKcc4eAt4Ee+cYMBEY5534CcM7t8GBeyWfqiu10HDGLNxdtJvfwkXCXIyIljBeBXwvYkmc7M7gvr4ZAQzObZ2YLzaxbQU9kZoPMLM3M0rKysjwozV/qVC9Pnerl+Z8PVtD1qTl8tup7nHPhLktESggvAt8K2Jc/ZWKAZKAj0A940cyqHvUfOTfOOZfinEtJSEjwoDR/aZpYlXcGt2Zs/xY4YNCEJfQeu4Clm38Kd2kiUgJ4EfiZQGKe7drAtgLGfOicy3HObQDWEPgHQDxmZnQ973Q+G96ef119Pht2ZtNz9HzueH0JGVl7w12eiISRF4G/GEg2s3pmVgboC0zJN2Yy0AnAzOIJnOLJ8GBuOYaY6Ciuv6gus+/vyD1dGjJ7bRaXjZzD3yavJOuXg+EuT0TCoMiB75zLBe4CUoFvgUnOuVVm9rCZdQ8OSwV+NLPVwEzgfufcj0WdW06sQtkYhnVJZvb9nejXsg5vfrWZjiNm8vQX69h3MDfc5YlIMbKSelEvJSXFpaWlhbuMiJORtZcRqWuYtvJ7EiqVZXiXZPqkJBITrd/BE4kEZrbEOZdS0DH9LfeZ+gkVef6GFrx3RxuSTivPgx+spOtTc0hVR49IxFPg+1SLutWYdHtrxvVvAcDtE5Zw7ZgFLNmkjh6RSKXA9zEz47LzTid1eHv+fXVjNu3K5prn5zN4whLWq6NHJOLoHL78JvtQLi/O3cDY2es5kHuEfi0TGda5IQmVyoa7NBEppOOdw1fgy1F27j3IM9PX8eaizZSJiWJQ+/oMbFefCmV1jx6Rkk6BL6dkw859jEj9jk9WfE98xWBHz4WJxKqjR6TEUpeOnJJ68RUYfX0L3h/ShvrxFfjr5JV0HTmHT1eqo0ekNFLgywk1r1ONibe34oUbU4iKMga/voReYxaQtnFXuEsTkZOgwJdCMTMubVSTT4e145GejdmyK5teYxYw6LU00neoo0ekNNA5fDkl2YdyGT93A2PnZLA/5zB9LkxkeJdkalQqF+7SRHxNF20lZHbuPciz09fxRrCjZ2C7+gxsX5+K6ugRCQsFvoTcxp37GJG6hqkrthNfsQzDujSkrzp6RIqdunQk5JLiKzDq+uZ8MKQN9RMq8rffOnq2q6NHpIRQ4IunmtWpxsRBrRh/UwrRUcbg15dyzfPzWayOHpGwU+CL58yMzufWZNqwdvznmsZs3b2fa8csYKA6ekTCSufwJeT2HzrMS/M28Pys9ezPOUzvlETu6ZJMjcrq6BHxmi7aSonw496DPDsjndcXbiI2OoqB7eoxqMNZ6ugR8ZACX0qUjTv3MeKzNUxdvp3TKpRhWJdk+rWso44eEQ+oS0dKlKT4Coy6rjmT72xLgxoV+fuHq7hs5Bw+WaGOHpFQUuBL2FyQWJW3B7XipQEpxEYbQ95YSs/n5/PVBnX0iISCAl/Cysy45JyaTBvWnseuacK23fvpPXYBt72aRvqOX8JdnkhE0Tl8KVF+7egZM2s9+w7lBu/R05Ca6ugRKRRdtJVSZ9e+Qzw7Yx2vL9xETFQUt7Wrx6D29alULjbcpYmUaCG/aGtm3cxsjZmlm9kDxxnXy8ycmRVYjMivqlcowz+uPI/p93akS6OaPDsjnY4jZvHq/I0cyj0S7vJESqUiB76ZRQOjgMuBRkA/M2tUwLhKwFBgUVHnFP+oc1p5nu3XjCl3tSW5ZkX+MWUVl46czdTl6ugROVlevMJvCaQ75zKcc4eAt4EeBYz7J/AYcMCDOcVnmtSuylsDW/HygAspFxPNnW8u5arR81mU8WO4SxMpNbwI/FrAljzbmcF9vzGzZkCic+7j4z2RmQ0yszQzS8vKyvKgNIkkZkanc2rwybB2PNarCT/sOUCfcQu57dXFrPtBHT0iJ+JF4FsB+357r21mUcBI4L4TPZFzbpxzLsU5l5KQkOBBaRKJoqOM3imJzLq/I3/udjaLMnbR9ak5PPDecn74WW8gRY7Fi8DPBBLzbNcGtuXZrgScD8wys41AK2CKLtxKUZWLjWZIxwbM/nMnBrSpx3tLM+kwYiaPp67hlwM54S5PpMQpclummcUAa4HOwFZgMXCdc27VMcbPAv7knDtuz6XaMuVkbf4xm8c/W8OUb7ZRvUIZhl7SgOsuqkuZGP1+ofhHSNsynXO5wF1AKvAtMMk5t8rMHjaz7kV9fpHCqnNaeZ7p14yP7rqYc06vxEMfrebSkbP5ePk2dfSIoF+8kgjlnGP22iwenfYd333/C01rV+GBy8+l9Vmnhbs0kZDS3TLFd8yMjmfXYOrQdozo1YQdvxyk3wsLueWVxaxVR4/4lF7hiy8cyDnMy/M2MnpWOvsO5tKrRW3uvfRsTq+ie/RIZNG9dESCftp3iOdmpjNhwSaiouCWtvUY3PEsKusePRIhFPgi+WzZFejo+fDrbVQrH8vdlyRzQyt19Ejpp3P4IvkkVi/P030DHT2NzqzMwx+vpsuTs/nom20cOVIyXwSJFJUCX3ytce0qvH7rRbx6S0vKl4nm7reWcdXoecxfvzPcpYl4ToEvvmdmdGiYwNSh7Xji2qbs/OUg172wiJtf/orvvv853OWJeEbn8EXyOZBzmFfnb+S5mensPZhLr+a1ufeyhpxRJS7cpYmckC7aipyC3dmHGDUznVfnb8IMbrm4Hneoo0dKOAW+SBFs2ZXNk5+v5YNlW6lWPpa7LknmhlZ1KBsTHe7SRI6iLh2RIkisXp6RfS7g47sv5rwzq/DPYEfPh19vVUePlCoKfJFCOr9WFV6/7SJeu6UlFcvGMuztr+kxah7z09XRI6WDAl/kJLVvmMDUuy/myd5N2bXvENe9uIgB6uiRUkCBL3IKoqKMns1rM/2+DvzPFeewdNNPXP70XP70zjds270/3OWJFEgXbUU8sDv7EKNnreeVeRsxg5vbBjp6qsSpo0eKl7p0RIpJ5k/ZPPnZWj74eitV4mK5q1MD+reuq44eKTbq0hEpJrWrlefJYEdP41pV+N+p39L5CXX0SMmgwBcJgfPOrMKEWy9iwq0tqVwu0NHTfdSXzFNHj4SRAl8khNolJ/Dx3Rczsk9TftqXw/UvLuKml77i2+3q6JHip8AXCbGoKOPqZoGOngevOJevt+zmimfmct+kb9iqjh4pRrpoK1LM9mTnMHpWOi/P3wjAzW2TGNKhAVXKq6NHik5dOiIl0Nbd+3niszV8sGwrlcv9t6OnXKw6euTUqUtHpASqVTWOJ3tfwNS729E0sSr/+iTQ0TN5mTp6JDQU+CJh1ujMyrx2S0tev/UiqpaPZfjEr7nyuS/5cp06esRbngS+mXUzszVmlm5mDxRw/F4zW21my81supnV9WJekUhycXI8H911MU/3vYDd2TncMH4R/ccvYtW2PeEuTSJEkQPfzKKBUcDlQCOgn5k1yjdsGZDinGsCvAs8VtR5RSJRVJTR44JazPhTB/76h3NZnrmHPz77JfdO/JrMn7LDXZ6Ucl68wm8JpDvnMpxzh4C3gR55BzjnZjrnfv1pXQjU9mBekYhVNiaa29rVZ86fO3F7+7P4eMV2LnliNv/+5Fv2ZOeEuzwppbwI/FrAljzbmcF9x3IrMK2gA2Y2yMzSzCwtKyvLg9JESrcqcbE8cPk5zPpTR7o3PZMX5mbQfsRMxs1Zz4Gcw+EuT0oZLwLfCthXYIuBmd0ApAAjCjrunBvnnEtxzqUkJCR4UJpIZDizahyPX9uUT4a2o1mdqvz7k+/o/MRs3l+aqY4eKTQvAj8TSMyzXRvYln+QmXUBHgS6O+cOejCviO+ce0ZlXrm5JW/cdhHVKsRy76Rv+OOzXzJ3nd4Ry4l5EfiLgWQzq2dmZYC+wJS8A8ysGTCWQNjv8GBOEV9r2yCeKXcGOnp+PpBD//Ff0X/8IlZuVUePHFuRA985lwvcBaQC3wKTnHOrzOxhM+seHDYCqAi8Y2Zfm9mUYzydiBTSrx090+/rwN/+2IgVWwMdPfeoo0eOQbdWEIkQe/bnMGb2el76cgPOwU1t6nJnpwZULV8m3KVJMdK9dER8ZNvu/Yz8fC3vLs2kUtkY7uzUgJvaJOkePT6he+mI+MiZVeMYcW1Tpg1rR4u61XhkWqCj570lmRxWR4+vKfBFItQ5p1fm5Ztb8ubAi6heoQz3vRPo6Jm9NouS+s5eQkuBLxLh2pwVz4d3tuWZfs3YezCHm176iv7jv1JHjw8p8EV8ICrK6N70TL64twN//2MjVm0LdPQMf3sZW3apo8cvdNFWxId+PpDDmFnrGR/s6LmxdaCjp1oFdfSUdurSEZECbd8T7OhZkkmFYEfPAHX0lGrq0hGRAp1RJY7HejVl2rD2XJhUnUenfUenx2fxrjp6IpICX0Q4+/RKvDTgQt4a2Ioalcryp3e+4Q/PzGXWmh3q6IkgCnwR+U3rs05j8p1tee66ZmQfOsyAlxdz/YuLWJGpjp5IoMAXkd8xM/7YJNDR848rG/Hd979w5XNfMvQtdfSUdrpoKyLH9fOBHMbODnT0HD7i6N8qibsvUUdPSaUuHREpsu/3HGDk52t5Z8kWKpSN4Y6OZ3FL23rq6Clh1KUjIkV2epVy/KdXEz4d3p6WSdV57NM1dHp8FpPStqijp5RQ4IvISWlYsxLjB1zI24MCHT1/fnc5Vzw9l5nq6CnxFPgickpa1Q909Iy6rjkHcg9z88uLue6FRSzP3B3u0uQYFPgicsrMjD80OYPP7+nA/+9+Hmt++IXuz83j7reWsflHdfSUNLpoKyKe+eVADuPmZPDC3AwOH3Hc0Koud1+STHV19BQbdemISLH64ecDPPXFWiYu3kKFMjEMDnb0xJVRR0+oqUtHRIpVzcrleKRnE1KHt+ei+qcxIjXY0bNYHT3hpMAXkZBJrlmJF29KYeKgVtSsUo4/vxfo6Jnx3Q/q6AkDBb6IhNxF9U9j8pA2jL6+OQdzD3PLK2n0e2Eh32xRR09xUuCLSLEwM65ofAaf39uBh3ucx7of9tJj1DzuenMpm37cF+7yfMGTwDezbma2xszSzeyBAo6XNbOJweOLzCzJi3lPZPKyrbR9dAb1HphK20dnMHnZ1uKYVkSOIzY6ihtbJzHr/o4MvaQB07/dQZcnZ/PQlFX8uPdguMsrfssnwcjz4aGqga/LJ4VsqiJ36ZhZNLAWuBTIBBYD/Zxzq/OMGQI0cc4NNrO+wNXOuT7He96idulMXraVv7y/gv05h3/bFxcbzSM9G3NVs1qn/Lwi4q0dPx9g5BfrmLh4M+XL/PcePb7o6Fk+CT4aCjn7/7svNg6ufAaa9D6lpwx1l05LIN05l+GcOwS8DfTIN6YH8Grw8btAZzMzD+Y+phGpa34X9gD7cw4zInVNKKcVkZNUo3I5HunZmM/uaU/rswIdPR0fn8nExZsjv6Nn+sO/D3sIbE9/OCTTeRH4tYAtebYzg/sKHOOcywX2AKflfyIzG2RmaWaWlpWVVaSitu3ef1L7RSS8GtSoxAs3pvDO4NacWTWO//feCi5/eg7Tv43gjp49mSe3v4i8CPyCXqnn/+4UZgzOuXHOuRTnXEpCQkKRijqzatxJ7ReRkuHCpOq8f0cbnr++OTmHHbe+mkafcQv5OhI7eqrUPrn9ReRF4GcCiXm2awPbjjXGzGKAKsAuD+Y+pvu7nk1cvvt0x8VGc3/Xs0M5rYh4wMy4vPEZfHZPe/7Z4zwysvZy1ah53PnGUjbujKCOns5/D5yzzys2LrA/BLwI/MVAspnVM7MyQF9gSr4xU4Cbgo97ATNciN+jXdWsFo/0bEytqnEYUKtqnC7YipQysdFR9G+dxKz7OzG0czIzvouwjp4mvQMXaKskAhb4WoQLtifiyb10zOwK4CkgGnjJOfcvM3sYSHPOTTGzcsAEoBmBV/Z9nXMZx3tO3UtHRPLb8fMBnpq+jomLtxAXG83gDvW55eJ6lC8TE+7SSgzdPE1EIkr6jr089ul3fLb6B2pUKsu9lzakV4vaxETrd0l18zQRiSgNalRk3I0pvDu4NbWrxfHA+yvo9vRcvlgdwR09HlDgi0iplZJUnffuaMOYG1pw5IjjttfS6DN2Ics2/xTu0kokBb6IlGpmRrfzTyf1nvb871Xnk7FzH1ePns+QN5awIZI6ejygc/giElH2HczlhbkZjJuTwaHcI1x3UR2Gdk4mvmLZcJdWLHTRVkR8Z8cvB3j6i3W8vXgL5WKiuL3DWdzWLvI7ehT4IuJb67MCHT2pqwIdPcO7NKR3SuR29KhLR0R866yEioztn8J7d7QmsXp5/ueDFXR9ag6frfredx09CnwR8YUWdavz7uDWjO3fAgcMmrCE3mMXsNRHHT0KfBHxDTOj63mn89nw9vzr6vPZsDObnqPnc8frS8jI2hvu8kJO5/BFxLf2HczlxbkbGDtnPYdyj9CvZaCjJ6FS6e3o0UVbEZHjyPrlIM9MX8ebX22mXEwUg9oHOnoqlC19HT0KfBGRQsjI2suI1DVMW/k9CZXKMrxLMn1SEktVR4+6dERECqF+QkWev6EF793RhqTTyvPgByvp+tQcUiOko0eBLyKST4u61Zh0e2vG9W8BwO0TlnDtmAUs2VS6O3oU+CIiBTAzLjvvdFKHt+ffVzdm065srnl+PoMnLGF9Ke3o0Tl8EZFCyD4U7OiZvZ4DuUfo1zKRYZ0blriOHl20FRHxyM69wY6eRZspExPFoPb1Gdiufonp6FHgi4h4bMPOfYxI/Y5PVnxPfMVgR8+FicSGuaNHXToiIh6rF1+B0de34P0hbagfX4G/Tl5J15Fz+HRlye3oUeCLiBRB8zrVmHh7K164MYWoKGPw60voNWYBaRt3hbu0oyjwRUSKyMy4tFFNPh3Wjkd6NmbLrmx6jVnAoNfSSN9Rcjp6dA5fRMRj2YdyGT93A2PnZLA/5zB9LkxkeJdkalQqF/K5ddFWRCQMdu49yLPT1/FGsKNnYLv6DGxfn4oh7OhR4IuIhNHGnfsYkbqGqSu2E1+xDMO6NKRviDp6QtalY2bVzexzM1sX/FqtgDEXmNkCM1tlZsvNrE9R5hQRKW2S4isw6vrmfDCkDfUTKvK33zp6thdrR09R/3l5AJjunEsGpge388sGbnTOnQd0A54ys6pFnFdEpNRpVqcaEwe1YvxNKURHGYNfX8o1z89ncTF19BQ18HsArwYfvwpclX+Ac26tc25d8PE2YAeQUMR5RURKJTOj87k1mTasHf+5pjFbd+/n2jELGPLGkpC/2i/qlYOazrntAM657WZW43iDzawlUAZYf4zjg4BBAHXq1CliaSIiJVdMdBR9LqxD96a1eGneBvYdzMXMQjvniQaY2RfA6QUcevBkJjKzM4AJwE3OuSMFjXHOjQPGQeCi7ck8v4hIaRRXJpo7OzUolrlOGPjOuS7HOmZmP5jZGcFX92cQOF1T0LjKwFTgr865hadcrYiInLKinsOfAtwUfHwT8GH+AWZWBvgAeM05904R5xMRkVNU1MB/FLjUzNYBlwa3MbMUM3sxOKY30B4YYGZfB/9cUMR5RUTkJOkXr0REIohujywiIgp8ERG/UOCLiPiEAl9ExCdK7EVbM8sCNnn0dPHATo+eq6Tz01pB641kfloreLfeus65Am9fU2ID30tmlnasq9aRxk9rBa03kvlprVA869UpHRERn1Dgi4j4hF8Cf1y4CyhGfloraL2RzE9rhWJYry/O4YuIiH9e4YuI+J4CX0TEJyIm8M2sm5mtMbN0Mzvqs3XNrKyZTQweX2RmScVfpXcKsd57zWx18IPjp5tZ3XDU6ZUTrTfPuF5m5sys1LbzFWatZtY7+P1dZWZvFneNXirEz3IdM5tpZsuCP89XhKNOL5jZS2a2w8xWHuO4mdkzwf8Xy82suacFOOdK/R8gmsDHJtYn8BGK3wCN8o0ZAowJPu4LTAx33SFebyegfPDxHZG+3uC4SsAcYCGQEu66Q/i9TQaWAdWC2zXCXXeI1zsOuCP4uBGwMdx1F2G97YHmwMpjHL8CmAYY0ApY5OX8kfIKvyWQ7pzLcM4dAt4m8AHreeX9wPV3gc4W6g+QDJ0Trtc5N9M5lx3cXAjULuYavVSY7y/AP4HHgAPFWZzHCrPWgcAo59xPAM65Aj9prpQozHodUDn4uAqwrRjr85Rzbg6w6zhDehD4sCjnAp8OWDX4aYKeiJTArwVsybOdGdxX4BjnXC6wBzitWKrzXmHWm9etBF41lFYnXK+ZNQMSnXMfF2dhIVCY721DoKGZzTOzhWbWrdiq815h1vsQcIOZZQKfAHcXT2lhcbJ/t0/KCT/TtpQo6JV6/n7TwowpLQq9FjO7AUgBOoS0otA67nrNLAoYCQworoJCqDDf2xgCp3U6EnjnNtfMznfO7Q5xbaFQmPX2A15xzj1hZq2BCcH1Hgl9ecUupDkVKa/wM4HEPNu1Ofpt329jzCyGwFvD4721KskKs17MrAvwINDdOXewmGoLhROttxJwPjDLzDYSOPc5pZReuC3sz/KHzrkc59wGYA2BfwBKo8Ks91ZgEoBzbgFQjsCNxiJRof5un6pICfzFQLKZ1Qt+aHpfAh+wnlfeD1zvBcxwwaskpdAJ1xs8xTGWQNiX5nO8cIL1Ouf2OOfinXNJzrkkAtcsujvnSuNnZBbmZ3kygYvymFk8gVM8GcVapXcKs97NQGcAMzuXQOBnFWuVxWcKcGOwW6cVsMc5t92rJ4+IUzrOuVwzuwtIJXDV/yXn3CozexhIc85NAcYTeCuYTuCVfd/wVVw0hVzvCKAi8E7w2vRm51z3sBVdBIVcb0Qo5FpTgcvMbDVwGLjfOfdj+Ko+dYVc733AC2Z2D4HTGwNK64s1M3uLwKm4+OA1iX8AsQDOuTEErlFcAaQD2cDNns5fSv+/iYjISYqUUzoiInICCnwREZ9Q4IuI+IQCX0TEJxT4IiI+ocAXEfEJBb6IiE/8H0vOArrQRMwkAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" @@ -334,16 +340,14 @@ "# Geradengleichung berechnen und plotten\n", "weights = perceptron_XOR.getWeights()\n", "print(weights)\n", - "x = list()\n", - "disc = list()\n", - "for i in range(len(train_input_XOR)):\n", - " x.append(train_input_XOR[i].dot(2**np.arange(train_input_XOR[i].size)[::-1]))\n", - " sum = weights[0]\n", - " for j in range(len(train_input_XOR[i])):\n", - " sum -= 2**j * train_input_XOR[i,-j-1] * weights[j+1]\n", - " disc.append(sum)\n", - "plt.plot(x,labels_XOR,'o')\n", - "plt.plot(x,disc)" + "\n", + "x_XOR = [1-weights[1],1]\n", + "y_XOR = [1+weights[0], 1-weights[2]+weights[0]]\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(train_input_XOR[(labels_XOR==-1),0] , train_input_XOR[(labels_XOR==-1),1])\n", + "ax.scatter(train_input_XOR[(labels_XOR==1),0] , train_input_XOR[(labels_XOR==1),1])\n", + "plt.plot(x_XOR,y_XOR)" ] }, { @@ -357,26 +361,29 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Antwort:" + "**Antwort:**\n", + "Das Bias stellt einen Schwellwert dar. \n", + "Die Summe der Produkte von Eingabewerten und ihren Gewichtungen müssen diesen Schwellwert überschreiten, damit das Perzepton einen Effekt hat." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**Aufgabe 4:** Wenden Sie das Perzeptron auf das Problem der Banknotenklassifizierung der letzten Übung an. Wählen und berechnen Sie dafür wieder zwei geeignete Merkmale der Trainingsbanknoten (Momentenberechnung auf den Farbkanälen mit `banknotes[i].compute_feature(moment, color)`). Mit welcher Genauigkeit (engl. *accuracy*) werden die Testbanknoten klassifiziert? Wie sind die erreichten Ergebnisse des Perzeptrons im Vergleich zum linearen Klassifikator der letzten Übung zu bewerten?" + "**Aufgabe 4:** Wenden Sie das Perzeptron auf den Iris-Datensatz der letzten Übung an.\n", + "Wählen Sie dazu wieder zwei Merkmale und zwei Zielklassen des Datensatzes. Wie gut funktioniert Ihr Perzeptron?\n" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 89, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAfMklEQVR4nO3df5xddX3n8debENcokIiZWsgPo67SWkSQ0YBYDaUWURBUVqX+aFg1tItUqg/LSl1Q1m7X5bH+QKoh8iNS2VAWETGrslaxgErsBDERoi4okABLBkHAyiIJn/3jnEkmN/fec++c+d5z5p738/GYx8w9v+7nfgPzmfPrfRQRmJlZc+1RdQFmZlYtNwIzs4ZzIzAzazg3AjOzhnMjMDNruD2rLqBf8+fPjyVLllRdhpnZjLJ+/foHImKk3bwZ1wiWLFnC2NhY1WWYmc0oku7qNM+HhszMGs6NwMys4dwIzMwazo3AzKzh3AjMzBrOjcDMrOHcCMzMGs6NwMx6s+EK+OSB8JF52fcNVwxu2ynf22beDWVmVoENV8BX/xKeeCx7/fDm7DXAQW9Ou+2U722A9wjMrBffOmfnL+IJTzyWTU+97ZTvbYAbgZn14uEt/U2fzm2nfG8D3AjMrBdzF/Y3fTq3nfK9DXAjMLNeHHUWzJ6z67TZc7Lpqbed8r0NcCMws14c9GY47jyYuwhQ9v2486bnZG3RtlO+twGgiKi6hr6Mjo6GY6jNzPojaX1EjLab5z0CM7OGcyMwM2s4NwIzs4ZzIzAzazg3AjOzhkvWCCQtknSdpE2SbpX0vi7LvlTSdkknpqrHrDbqGqC29v3w0X3hI3Oz72vfX3VFNiApQ+e2AR+IiJsl7Q2sl/TNiLht8kKSZgEfB65NWItZPdQ1QG3t+2Hsop2vY/vO18d+opqabGCS7RFExH0RcXP+86PAJmBBm0VPA74EbE1Vi1lt1DVAbf3q/qbbUBnIOQJJS4BDgHUt0xcAbwBWFqy/QtKYpLHx8fFUZZqlV9cAtdje33QbKskbgaS9yP7iPz0iHmmZ/SngjIju/7VFxKqIGI2I0ZGRkVSlmqVX1wA1zepvug2VpI1A0myyJnBZRFzVZpFR4HJJdwInAp+VdELKmswqVdcAtUOX9zfdhkqyk8WSBFwEbIqItmebIuI5k5ZfDayNiKtT1WRWuYkTwt86JzscNHdh1gSqDlCbOCG8fnV2OEizsibgE8WNkCx0TtIrgBuAjcCT+eQzgcUAEbGyZfnVZI3gym7bdeicmVn/uoXOJdsjiIgbAfWx/PJUtZiZWWe+s9jMrOHcCMzMGs6NwMys4dwIzMwazo3AbNCKQue6zS+zbuq6U65f16C+1Ab0uVOGzplZq6LQuW7zYerrlr1Poey2y6xf16C+1Ab4ub1HYDZIRaFz3eaXWTd13SnXr2tQX2oD/NzeIzAbpKLQuamE0pVZt1dlt11m/boG9aU2wM/tPQKzQSoKnes2v8y6ZZXddpn16xrUl9oAP7cbgdkgFYXOdZtfZt3Udadcv65BfakN8HP70JDZIBWFzvUSSldm3VR1p1y/rkF9qQ3wcycLnUvFoXNmZv3rFjrnQ0NmZg3nRmBm1nBuBGZmDedGYGbWcG4EZmYNl6wRSFok6TpJmyTdKul9bZZ5m6QN+df3JL04VT1mVqDKULlhNgPGJeV9BNuAD0TEzZL2BtZL+mZE3DZpmV8Ar4qIhyQdA6wCliasyczaqTJUbpjNkHFJtkcQEfdFxM35z48Cm4AFLct8LyIeyl/eBAz5PeNmNVVlqNwwmyHjMpBzBJKWAIcA67os9i7g6x3WXyFpTNLY+Pj49Bdo1nRVhsoNsxkyLskbgaS9gC8Bp0fEIx2WOZKsEZzRbn5ErIqI0YgYHRkZSVesWVNVGSo3zGbIuCRtBJJmkzWByyLiqg7LHARcCBwfEb9MWY+ZdVBlqNwwmyHjkvKqIQEXAZsi4hMdllkMXAW8IyJ+lqoWMytw0JvhuPNg7iJA2ffjzusvVK7M+sNqhoxLstA5Sa8AbgA2Ak/mk88EFgNExEpJFwJvAu7K52/rFIo0waFzZmb96xY6l+zy0Yi4EVDBMu8G3p2qBjMzK+Y7i83MGs6NwMys4dwIzMwazo3AzKzh3AjMhklRwFm3+WXWnY7aZqoh+Fx+eL3ZsCgKOOs2H6a+bpND6Ybkc3mPwGxYFAWcdZtfZt3pqG2mGpLP5T0Cs2FRFHA2lQC0Muv2U9tMNSSfy3sEZsOiKOCs2/wy605HbTPVkHwuNwKzYVEUcNZtfpl1p6O2mWpIPpcPDZkNi4mTk986Jzs0MXdh9gtpYnrR/LLrlqltphqSz5UsdC4Vh86ZmfWvW+icDw2ZmTWcG4GZWcO5EZiZNZwbgZlZw6V8VOUiSddJ2iTpVknva7OMJJ0n6XZJGyS9JFU9ZmbWXso9gm3AByLi94HDgFMlvbBlmWOA5+dfK4DPJazHbHqUDWdLHe5m/Uk93jPg3zPloyrvA+7Lf35U0iZgAXDbpMWOBy6N7BrWmyTNk7Rfvq5Z/ZQJdpuO+Ta9Uo/3DPn3HMg5AklLgEOAdS2zFgCbJ73ekk8zq6ey4Wypw92sP6nHe4b8eyZvBJL2Ar4EnB4Rj7TObrPKbne4SVohaUzS2Pj4eIoyzXpTNtgtRTCcTV3q8Z4h/55JG4Gk2WRN4LKIuKrNIluARZNeLwTubV0oIlZFxGhEjI6MjKQp1qwXZcPZUoe7WX9Sj/cM+fdMedWQgIuATRHxiQ6LXQO8M7966DDgYZ8fsForG86WOtzN+pN6vGfIv2fK0LkjgHcAGyXdkk87E1gMEBErga8BrwVuB34DnJywHrPyyga7TUcwnE2f1OM9Q/49HTpnZtYADp0zM7OO3AjMzBqup3MEkkaA9wBLJq8TEf8+TVlmZjYovZ4s/gpwA/BPwPZ05ZiZ2aD12gieFhFnJK3EzMwq0WsjWCvptRHxtaTVmA2DDVd0v1xw7fth/WqI7aBZcOhyOLbTrTZ9bntYNfVzD0jXRiDpUbLIBwFnSnoceCJ/HRGxT/oSzWaQopCxte+HsYt2Lh/bd74uagYzJMBs2jX1cw9Q16uGImLviNgn/75HRMyZ9NpNwKxVUcjY+tXt1+s0vZ9tD6umfu4B6unyUUnf6mWaWeMVhYxFh2stOk3vZ9vDqqmfe4C6NgJJT5X0TGC+pGdI2jf/WgLsP4gCzWaUopAxzWo/v9P0frY9rJr6uQeoaI/gFGAM+D3gZmB9/vUV4O/TlmY2AxWFjB26vP16nab3s+1h1dTPPUBdTxZHxKeBT0s6LSI+M6CazGauopCxiRPCU7lqaIYEmE27pn7uAeoaOifpjd1W7vCMgaQcOmdm1r9uoXNF9xEcl3//HeDlwLfz10cC3wEG3gjMzGx6FR0aOhlA0lrghRMPjZG0Hz5HYGY2FHpNH13S8uSw+4EXJKjHzMwGrNeIie9IuhZYQ3an8VuB65JVZWZmA9PTHkFEvBe4AHgxcDCwKiJO67aOpIslbZX04w7z50r6qqQfSbpVkh9TaWZWgZ6fWZxfIdTPyeHVwPnApR3mnwrcFhHH5c87+KmkyyLit328h1kSd1xyCs++6wpmxZNs1x7c9ew387yTL8hmlgmNg2oD1LrVXrauMuunHhOH1nVVFDp3Y0S8YlL43I5ZFITORcT1+R3IHRcB9pYkYC/gQWBbr4WbpXLHJafw3DsvRwIEe/Ikz73zcu64BJ438vSph8ZBtQFq3QLvFh9Wrq4ynyv1mDi0rlDSh9fnjWBtRBzYZt7ewDVkdy3vDbwlIv5X0TZ9H4Gltu0jz2BPntx9Onuwp9Q+F0iz4OwHizf+yQOzX0St5i6Cv2p7FHX6fHTfzrXvs3+5usp8rtRjUuWY10jph9dLOkfSH0t6+jTWdTRwC1lm0cHA+ZLa7mFIWiFpTNLY+Pj4NJZgtrtZsXsT2DG9TGgcVBug1q32snWVWT/1mDi0rlCvl4/eCfwpMCbpB5L+u6TjS773ycBVkbkd+AXZ3sFuImJVRIxGxOjIyEjJtzXrbrva/2+xXXuUC42DagPUutVetq4y66ceE4fWFer1qqGL8wfVHwl8Efh3+fcy7gaOApD0LOAA4Oclt2lW2l3PfjOtR0wjsumlQuOg2gC1brWXravM+qnHxKF1hXq6akjShcALyW4kuwE4kSyNtNs6a4BlZBHWW4CzgdkAEbES+M/AakkbyU4+nxERD0ztY5hNn+edfAF3XMKuVw0tmXTVEEz9qqEqA9R6Cbybal1lPlfqMXFoXaGeThZL+jLZsfzbgH8Gro+ISv5698liM7P+lQmdAyAi3pBv6PfJTvJeJ2lWRPggm5nZDNfroaFjgT8EXgk8gyyF9IaEdZmZ2YD0emfxMcD1wKcj4t6E9ZiZ2YD1emjo1ImfJR0bEWvTlWRmZoPUc9bQJOcAbgRWrRpnx1z9w3s499qfcu+vHmP/eXP44NEHcMIhC6ouy6yjqTQCTXsVZv2ocXbM1T+8hw9dtZHHnsju4r3nV4/xoas2ArgZWG31emfxZKdMexVm/fjWOTubwIQnHsumV+zca3+6owlMeOyJ7Zx77U8rqsisWFH6aNuH10taCNU8vN6sztkx9/7qsb6mm9VBrw+vbyfww+utCnMXdkiTrP62lv3nzeGeNr/09583p83SZvXQ08PrzWrlqLN2PUcAtcmO+eDRB+xyjgBgzuxZfPDoAyqsyqy7nk8WS3od8AfAUyemRUT1B2WteWqcHTNxQthXDdlM0mvW0ErgaWTpoxeShc79ICLelba83TlryMysf6UfTAO8PCLeCTwUER8FDgcWTVeBZmZWnV4bwcTB2N9I2h94AnhOmpLMzGyQej1HsFbSPOBcsucQBNkhIjMzm+F6bQT/LSIeB74kaS3ZCeP/l64sMzMblF4PDX1/4oeIeDwiHp48zczMZq6iO4t/F1gAzJF0CDtzhvYhu4qo27oXA8cCWyPiwA7LLAM+RfYIywci4lV9VW+NVTbYrcpguKENpatxEKB1V3Ro6GhgObAQmPxQ1keAMwvWXQ2cD1zabmZ+zuGzwGsi4m5Jv9NDvWalg92qDIYb2lC6GgcBWrGuh4Yi4gsRcSSwPCKOnPR1fFHOUERcDzzYZZE/Ba6KiLvz5bf2W7w1U9lgtyqD4YY2lK7GQYBWrNdzBN+VdJGkrwNIeqGksjeTvQB4hqTvSFov6Z2dFpS0QtKYpLHx8fGSb2szXdlgtyqD4YY2lK7GQYBWrNdGcAlwLbB//vpnwOkl33tP4FDgdWSHoP6TpBe0WzAiVkXEaESMjoyMlHxbm+k6Bbj1GuxWdv0yqnzvpDoF/tUgCNCK9doI5kfEFcCTABGxDdjefZVCW4BvRMS/RsQDZM9EfnHJbVoDfPDoA5gze9Yu0/oJdiu7fhlVvndSR52VBf9NVpMgQCvW630E/yrpmWQ3kiHpMODhku/9FeB8SXsCTwGWAp8suU1rgLLBblUGww1tKF2NgwCtWK+hcy8BPkOWPnorMAKcGBEbuqyzBlgGzAfuB84mu0yUiFiZL/NB4GSyPY0LI+JTRbU4dM7MrH/dQud63SO4Dfgy8BvgUeBqsvMEHUXESUUbjYhzyWIrzMysIr2eI7gU+D3gv5DtGTwf+IdURZmZ2eD0ukdwQERMPpF7naQfpSjIzMwGq9c9gh/mJ4gBkLQU+G6akszMbJB63SNYCrxT0t3568XAJkkbgYiIg5JUZ2ZmyfXaCF6TtAobSinD1Zb+7Te5/9Hf7nj9rL2fwrq/eXXP712mtg9fvZE16zazPYJZEictXcTHTnjRzgWKwtcczmY109Plo3Xiy0dnhtZwNchunPq7N76odDNobQITJppB0XuXqe3DV2/kizfdvdv0tx+2OGsGreFrkN1Yddx52S/7ovlmiUzHM4vN+pIyXK1dE5g8vei9y9S2Zt3m7tOLwtcczmY15EZgSdQ52K1Mbds77EHvmF4UvuZwNqshNwJLos7BbmVqmyV1n14UvuZwNqshNwJLImW42rP2fkrX6UXvXaa2k5Yu6j69KHzN4WxWQ24ElsQJhyzg7974IhbMm4OABfPmTMuJYoB1f/Pq3ZrB5KuGit67TG0fO+FFvP2wxTv2AGZJO08UQ3bC97jzYO4iQNn3ySeCi+abVcBXDZmZNYCvGjIzs47cCMzMGs6NwMys4dwIzMwazo3AzKzheg2d65uki4Fjga0RcWCX5V4K3AS8JSKuTFWPtZcyGK6swnC3Loo+V9G26zwuyTgMr7GSNQJgNXA+2dPN2pI0C/g4cG3COqyD1vC1e371GB+6aiNA5b/0WsPdtkfseF3UDIo+V9G26zwuybSG4T28OXsNbgYNkOzQUERcDzxYsNhpwJeAranqsM5SBsOVVRju1kXR5yradp3HJRmH4TVaZecIJC0A3gCs7GHZFZLGJI2Nj4+nL64hqgyGK1IY7tZF0ecq2nadxyUZh+E1WpUniz8FnBER24sWjIhVETEaEaMjIyMDKK0ZqgyGK1IY7tZF0ecq2nadxyUZh+E1WpWNYBS4XNKdwInAZyWdUGE9jZMyGK6swnC3Loo+V9G26zwuyTgMr9FSnizuKiKeM/GzpNXA2oi4uqp6mmjixGcdr46ZOCE8lauGij5X0bbrPC7JTJwQ9lVDjZQsdE7SGmAZMB+4HzgbmA0QEStbll1N1ggKLx916JyZWf+6hc4l2yOIiJP6WHZ5qjrMzKw731lsZtZwbgRmZg3nRmBm1nBuBGZmDVfZ5aPWuyoD0N72+e/z3Tt2JoUc8bx9uew9hwPFwW1l53f73EVj0sjQOLMpciOouSoD0FqbAMB373iQt33++zxnZK+uwW1FwW5lgt+ArmPSyNA4sxJ8aKjmqgxAa20Ck6cXBbeVnd/tcxeNSSND48xK8B5BzdU1AK0ouK3s/Kl87ol5dR0zs7ryHkHN1TUArSi4rez8bp+7aEzqOmZmdeVGUHNVBqAd8bx9O04vCm4rO7/b5y4ak0aGxpmV4ENDNVdlANpl7zm861VD0Dm4rSjYbTqC3zrNa2RonFkJyULnUnHonJlZ/7qFzvnQkJlZw7kRmJk1nBuBmVnDuRGYmTWcG4GZWcMlu3xU0sXAscDWiDiwzfy3AWfkL38N/EVE/ChVPdZeyvC2ssFvKYPjHEpntlPK+whWA+cDl3aY/wvgVRHxkKRjgFXA0oT1WIuicLYy4W1lg99SBsc5lM5sV8kODUXE9UD71LJs/vci4qH85U3AwlS1WHspw9vKBr+lDI5zKJ3ZrupyjuBdwNc7zZS0QtKYpLHx8fEBljXcisLZyoS3lQ1+Sxkc51A6s11V3ggkHUnWCM7otExErIqI0YgYHRkZGVxxQy5leFvZ4LeUwXEOpTPbVaWNQNJBwIXA8RHxyypraaKU4W1lg99SBsc5lM5sV5WFzklaDFwFvCMiflZVHU1WFM5WJrytbPBbyuA4h9KZ7SpZ6JykNcAyYD5wP3A2MBsgIlZKuhB4E3BXvsq2ToFIkzl0zsysf91C55LtEUTESQXz3w28O9X7m5lZbyo/WWxmZtVyIzAzazg3AjOzhnMjMDNruMY8s7ipIWMpQ+XMbDg0ohE0NWQsZaicmQ2PRhwaamrIWMpQOTMbHo1oBE0NGUsZKmdmw6MRjaCpIWMpQ+XMbHg0ohE0NWQsZaicmQ2PRpwsbmrIWMpQOTMbHslC51Jx6JyZWf+6hc414tCQmZl15kZgZtZwbgRmZg3nRmBm1nBuBGZmDZfs8lFJFwPHAlsj4sA28wV8Gngt8BtgeUTcnKqelD589UbWrNvM9ghmSZy0dBEfO+FFA1k/dWhct+07sM5sOKS8j2A1cD5waYf5xwDPz7+WAp/Lv88oH756I1+86e4dr7dH7Hjdyy/zMuunDo3rtn3AgXVmQyLZoaGIuB54sMsixwOXRuYmYJ6k/VLVk8qadZv7mj6d66cOjeu2fQfWmQ2PKu8sXgBM/m23JZ92X+uCklYAKwAWL148kOJ6tb3DDXmdpk/n+qlD46ayfQfWmc08VZ4sVptpbX/7RcSqiBiNiNGRkZHEZfVnltp9jM7Tp3P91KFx3bbvwDqz4VFlI9gCLJr0eiFwb0W1TNlJSxf1NX06108dGtdt+w6sMxseVR4augZ4r6TLyU4SPxwRux0WqruJE7pTveqnzPqpQ+N62b6vGjKb+ZKFzklaAywD5gP3A2cDswEiYmV++ej5wGvILh89OSIK0+QcOmdm1r9uoXPJ9ggi4qSC+QGcmur9zcysN76z2Mys4dwIzMwazo3AzKzh3AjMzBrOjcDMrOHcCMzMGm7GPbxe0jhwV4lNzAcemKZypptr619d6wLXNhV1rQtmfm3Pjoi2GT0zrhGUJWms000VVXNt/atrXeDapqKudcFw1+ZDQ2ZmDedGYGbWcE1sBKuqLqAL19a/utYFrm0q6loXDHFtjTtHYGZmu2riHoGZmU3iRmBm1nBD2QgkPVXSDyT9SNKtkj7aZpl/I+kfJd0uaZ2kJTWqbbmkcUm35F/vHkRt+XvPkvRDSWvbzKtkzHqsrcoxu1PSxvx9d3tYhjLn5eO2QdJLalTbMkkPTxq3swZU1zxJV0r6iaRNkg5vmV/lmBXVVtWYHTDpPW+R9Iik01uWmdK4VfmEspQeB/4oIn4taTZwo6SvR8RNk5Z5F/BQRPxbSW8FPg68pSa1AfxjRLx3APW0eh+wCdinzbyqxqyX2qC6MQM4MiI63dBzDPD8/Gsp8Ln8+6B0qw3ghog4dmDVZD4NfCMiTpT0FOBpLfOrHLOi2qCCMYuInwIHQ/ZHEXAP8OWWxaY0bkO5RxCZX+cvZ+dfrWfFjwe+kP98JXBU/tS0OtRWCUkLgdcBF3ZYpJIx67G2OjseuDT/t78JmCdpv6qLqoqkfYBXAhcBRMRvI+JXLYtVMmY91lYHRwF3RERrysKUxm0oGwHsOIxwC7AV+GZErGtZZAGwGSAitgEPA8+sSW0Ab8p37a6UVPwk++nxKeCvgSc7zK9szCiuDaoZM8ga+f+WtF7Sijbzd4xbbks+bRCKagM4PD9U+XVJfzCAmp4LjAOX5If6LpT09JZlqhqzXmqDwY9Zq7cCa9pMn9K4DW0jiIjtEXEwsBB4maQDWxZp95fsQP4y76G2rwJLIuIg4J/Y+Vd4MpKOBbZGxPpui7WZlnzMeqxt4GM2yRER8RKy3fJTJb2yZX5l/61RXNvNZBk0LwY+A1w9gJr2BF4CfC4iDgH+FfiPLctUNWa91FbFmO2QH656PfA/281uM61w3Ia2EUzId+u+A7ymZdYWYBGApD2BucCDdagtIn4ZEY/nLz8PHDqAco4AXi/pTuBy4I8kfbFlmarGrLC2isZs4r3vzb9vJTtm+7KWRXaMW24hcG8daouIRyYOVUbE14DZkuYnLmsLsGXSnvCVZL98W5epYswKa6tozCY7Brg5Iu5vM29K4zaUjUDSiKR5+c9zgD8GftKy2DXAn+U/nwh8OwZwd10vtbUc03s92QnSpCLiQxGxMCKWkO12fjsi3t6yWCVj1kttVYxZ/r5Pl7T3xM/AnwA/blnsGuCd+RUdhwEPR8R9dahN0u9OnOeR9DKy3wm/TFlXRPxfYLOkA/JJRwG3tSxWyZj1UlsVY9biJNofFoIpjtuwXjW0H/CF/Mz6HsAVEbFW0jnAWERcQ3Yy6B8k3U72V+1ba1TbX0p6PbAtr235gGrbTU3GrJfaqhqzZwFfzn8v7An8j4j4hqQ/B4iIlcDXgNcCtwO/AU6uUW0nAn8haRvwGPDWQTR34DTgsvwwx8+Bk2syZr3UVtWYIelpwKuBUyZNKz1ujpgwM2u4oTw0ZGZmvXMjMDNrODcCM7OGcyMwM2s4NwIzs4ZzIzBjR3rp/j0st1rSiW2mL5HUev/AdNS1TNLLi97frAw3ArPMcqCwEVRgGfDyooXMynAjsKGU/4X+E0lfmBRE9zRJh0r65zyE7VpJ++V/YY+S3UR0i6Q5ks6S9C+Sfixp1cSdpD2+9yxJ5+brb5B0Sj59maTvaGfW/WWT7lB9bT7tRmV58muVPe/hz4G/yuv6w/wtXinpe5J+7r0Dmw5uBDbMDgBW5UF0jwCnkoWEnRgRhwIXA38bEVcCY8DbIuLgiHgMOD8iXhoRBwJzgH6y599Fdmv/S4GXAu+R9Jx83iHA6cALyZIuj5D0VOAC4JiIeAUwAhARdwIrgU/mdd2Qb2M/4BV5Tf+171ExazGsERNmAJsj4rv5z18EzgQOBL6Z/yE+C+iUw3KkpL8meyjJvsCtZAmnvfgT4KBJf63PJXtQyG+BH0TEFgBlUeRLgF8DP4+IX+TLrwE6RUYDXB0RTwK3SXpWjzWZdeRGYMOsNT/lUeDWiDi83cIT8r/QPwuMRsRmSR8BntqyzFKyv+IBzgI2TJ4NnBYR17ass4zsCXUTtpP9P9jvw30mb2MgDway4eZDQzbMFmvn82ZPAm4CRiamSZqtnQ8VeRTYO/954pf+A5L2IgsZ20VErMsP1xych95Ndi1ZKNns/H1eoPYPN5nwE+C52vkM6MmP/5xcl1kSbgQ2zDYBfyZpA9nhnc+Q/VL/uKQfAbew84qc1cDK/HDN42TPNNhI9tCRf+nzfS8kiy6+Ob+k9AK67H3n5yT+A/ANSTcC95M9/Q2yw1FvaDlZbDatnD5qQyn/63ptfrK39iTtFRG/zq8i+nvg/0TEJ6uuy5rBewRm9fCefG/kVrKTyxcULG82bbxHYGbWcN4jMDNrODcCM7OGcyMwM2s4NwIzs4ZzIzAza7j/DzHjDMmaoTwXAAAAAElFTkSuQmCC\n" }, "metadata": { @@ -416,7 +423,7 @@ "X_train, X_test, y_train, y_test = (\n", " train_test_split(X, y, test_size=.2, random_state=np.random.seed(42)))\n", "\n", - "# Scatterplot der ausgewählten Merkmale und Klassen\n", + "# Scatterplot der ausgewählten Merkmale und Klie das Perzeptron auf das Problem der Banknotenklassifizierung der letzten Übung an. Wählen und berechnen Sie dafür wieder zwei geeignete Merkmale der Trainingsbanknoten (Momentenberechnung auf den Farbkanälen mit `banknotes[i].compute_feature(moment, color)`). Mit welcher Genauigkeit (engl. *accuracy*) werden die Testbanknoten klassifiziert? Wie sind die erreichten Ergebnisse des Perzeptrons im Vergleich zum linearen Klassifikator der letzten Übung zu bewerten?assen\n", "fig, ax = plt.subplots()\n", "ax.scatter(X[(y==-1),0] , X[(y==-1),1])\n", "ax.scatter(X[(y==1),0] , X[(y==1),1])\n", @@ -426,26 +433,42 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 96, "metadata": {}, - "outputs": [], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.38 -0.12 0.14]\n" + ] + } + ], "source": [ "# Perzeptron auf Iris-Datensatz trainieren und anwenden\n", - "# Dein Code kommt hierhin:" + "# Dein Code kommt hierhin:\n", + "percepton_iris = Perceptron(2, 100, 0.1)\n", + "percepton_iris.fit(X_train,y_train)\n", + "\n", + "weights = percepton_iris.getWeights()\n", + "print(weights)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**Aufgabe 5:** Welchen Einfluss haben die Hyperparameter *Epoche* und *Lernrate* auf die Klassifizierung der Banknoten? Lassen sich die vorherigen Ergebnisse noch verbessern?" + "**Aufgabe 5:** Welche(n) Nachteil(e) könnte die symmetrische Aktualisierungsfunktion in Bezug\n", + "auf das Anlernen der Gewichte haben?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Antwort:" + "**Antwort:** \n", + "- Ausreißer haben einen großen Effekt auf die Gewichtung\n", + "- Die Lernfähigkeit lässt nach" ] } ],