From c3152659a5160a1ef6ed3d38b28b04d444eec5a2 Mon Sep 17 00:00:00 2001 From: paul-loedige Date: Tue, 9 Nov 2021 16:30:36 +0100 Subject: [PATCH] first run --- exercise.ipynb | 51 +++++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 44 insertions(+), 7 deletions(-) diff --git a/exercise.ipynb b/exercise.ipynb index 3146107..2e5a91b 100644 --- a/exercise.ipynb +++ b/exercise.ipynb @@ -56,9 +56,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEGCAYAAACZ0MnKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhXElEQVR4nO3df3ScZZ338fc3pVAD3UdIu2uflky6HtgDpdgfsYDYRbRA+SXKI2Ibal2xQZb647iglK6Ww9mwz/OgiwdXwdZF2TZWAe2iriyl+1DXH8Ca0vJLQFqahLQV0lSgECm0+T5/3DPhzmQmuZPMzH3PzOd1zpzMXHPPzHeSdr5zXd/rum5zd0RERKKoiTsAEREpH0oaIiISmZKGiIhEpqQhIiKRKWmIiEhkh8UdQLFNmjTJGxoa4g5DRKSsbNmyZa+7T85ur/ik0dDQQFtbW9xhiIiUFTPryNWu4SkREYlMSUNERCJT0hARkcgqvqaRy5tvvklXVxevv/563KFUvQkTJjBt2jTGjx8fdygiEkFVJo2uri4mTpxIQ0MDZhZ3OFXL3enp6aGrq4vp06fHHY6IRJDI4Skz+ysz2xa6vGJmnzez681sV6j9vNE8/+uvv05dXZ0SRszMjLq6OvX4RAqptRUaGqCmJvjZ2lrQp09kT8PdnwFmAZjZOGAXsAH4G+Bmd//qWF9DCSMZ9HcQKaDWVmhuht7e4HZHR3AboKmpIC+RyJ5Glg8AO9w955xhERFJW7nyrYSR0dsbtBdIOSSNjwHrQ7eXm9ljZna7mR2d6wFm1mxmbWbW1t3dXZooRUTi1tk5svZRSHTSMLPDgQ8Cd6WbbgXeSTB0tQf4Wq7Huftqd29098bJkwetgh+5Ao8RvvTSS3zrW98a1WO//vWv05v9TWII3/ve91i+fPmQx2zevJnf/OY3o4pHRBKkvn5k7aOQ6KQBnAs84u4vALj7C+5+yN37gDXAvKJHkBkj7OgA97fGCMeQOEqZNKJQ0hCpEC0tUFs7sK22NmgvkKQnjUWEhqbMbErovg8DTxQ9giKMEV577bXs2LGDWbNmcc0113DTTTfx7ne/m5NPPplVq1YB8Nprr3H++efzrne9i5NOOokf/vCH3HLLLezevZszzzyTM888M+/zf/e73+X444/njDPO4Ne//nV/+09/+lNOOeUUZs+ezYIFC3jhhRdob2/ntttu4+abb2bWrFn88pe/zHmciCRYZjRkyRJ429ugrg7MIJWC1asLVgQHgrnySbwAtUAP8D9CbWuBx4HHgJ8AU4Z7nrlz53q23/3ud4Pa8jJzD/oYAy9m0Z8jy86dO33GjBnu7n7ffff5smXLvK+vzw8dOuTnn3++/+IXv/C7777bP/WpT/U/5qWXXnJ391Qq5d3d3Xmfe/fu3X7sscf6iy++6AcOHPD3vOc9ftVVV7m7+759+7yvr8/d3desWeNf+MIX3N191apVftNNN/U/R77jimVEfw8RGWjdOvfa2oGfT7W1QfsYAG2e4zM1kVNuAdy9F6jLaltS8kDq64MhqVztBbBx40Y2btzI7NmzAXj11Vd59tlnmT9/PldffTVf+tKXuOCCC5g/f36k53v44Yd53/veR6aWc+mll/L73/8eCBY1XnrppezZs4c33ngj74K6qMeJSAIMNRpSyB5GWtKHp+JX5DFCd2fFihVs27aNbdu2sX37di6//HKOP/54tmzZwsyZM1mxYgU33HBD5OfMt/bhM5/5DMuXL+fxxx/n29/+dt5FdVGPE5EEKMGMqTAljeE0NQVjgqlUwcYIJ06cyP79+wE455xzuP3223n11VcB2LVrFy+++CK7d++mtraWyy67jKuvvppHHnlk0GNzOeWUU9i8eTM9PT28+eab3HXXXf33vfzyy0ydOhWAO+64I2c8Qx0nIglUghlTYYkdnkqUpqaCdvPq6uo4/fTTOemkkzj33HNZvHgxp512GgBHHXUU69atY/v27VxzzTXU1NQwfvx4br31VgCam5s599xzmTJlCg888MCg554yZQrXX389p512GlOmTGHOnDkcOnQIgOuvv55LLrmEqVOncuqpp7Jz504ALrzwQj7ykY9wzz338I1vfCPvcSKSQC0tA1eBQ8FnTIVZUO+oXI2NjZ595r6nnnqKE044IaaIJJv+HiKj0Noa1C06O+GYY4K2ffuCHkZLy5i/6JrZFndvzG5XT0NEpNxk7zHV0xP0LtauLUrxO0xJo4ydcsopHDhwYEDb2rVrmTlzZkwRiUhJlHjGVJiSRhl7+OGH4w5BROJQ4hlTYZo9JSJSbko8YypMSUNEpFxktgvp6AiWAIQVccZUmJKGiEg5CG+eCsGGIZnEUYw9pvJQ0ojBWHa5Pe+883jppZeGPOYrX/kKmzZtGtXzD0XbrIvEKFfx2z1IGO3tJUkYoKQRSaFPuTtU0sgsxMvn5z//OW9/+9uHPOaGG25gwYIFow1vTJQ0RIokxuJ3mJLGMIpwOo1BW6Nv3ryZM888k8WLF/dPl/3Qhz7E3LlzmTFjBqtXr+5/bENDA3v37qW9vZ0TTjiBZcuWMWPGDM4++2z+9Kc/AfCJT3yCu+++u//4VatWMWfOHGbOnMnTTz8NQHd3N2eddRZz5szhiiuuIJVKsXfv3kGxapt1kYSIsfg9QK6tbyvpMtat0VOp3Dujp1KRn2KQ8Nbo7u4PPPCA19bW+nPPPdff1tPT4+7uvb29PmPGDN+7d286nmBr9J07d/q4ceN869at7u5+ySWX+Nq1a93dfenSpX7XXXf1H3/LLbe4u/s3v/lNv/zyy93d/aqrrvIbb7zR3d3vvfdeBwZtuV6qbda1NbrIENate+uDKPtUDQXYAj0fym1r9KQoVY9w3rx5A7Ygv+WWW9iwYQMAzz//PM8++yx1dQN2imf69OnMmjULgLlz59Le3p7zuS+++OL+Y3784x8D8Ktf/ar/+RcuXMjRRw8+3bq2WReJWfbK70zxO1PLKMB2ISOl4alhlKpHeOSRR/Zf37x5M5s2beLBBx/k0UcfZfbs2Tm3Jz/iiCP6r48bN46DBw/mfO7MceFjPOKeY9pmXSRGCSl+hyU2aZhZu5k9bmbbzKwt3XaMmd1vZs+mfw7+elxgxTidxnDbm7/88sscffTR1NbW8vTTT/PQQw+N/sXyeO9738udd94JBCeC+uMf/zjoGG2zLhKzhBS/wxKbNNLOdPdZ/tZOi9cC/+nuxwH/mb5dVEU4ncaArdGvueaaQfcvXLiQgwcPcvLJJ/PlL3+ZU089dQzvILdVq1axceNG5syZw7333suUKVOYOHHigGPC26wvWLCAOXPm9N+X2T59/vz5TJo0qb/9wgsvZMOGDf2F8HzHiUgESSl+hyR2a3Qzawca3X1vqO0Z4H3uvsfMpgCb3f2vhnoebY2e24EDBxg3bhyHHXYYDz74IFdeeSXbtm2LJRb9PUSyZLY9z6z8Dn9O19aWZCFfOW6N7sBGM3Pg2+6+GvgLd98DkE4cf57rgWbWDDQD1MeYkZOss7OTj370o/T19XH44YezZs2auEMSEUhk8TssyUnjdHffnU4M95vZ01EfmE4wqyHoaRQrwHJ23HHHsXXr1rjDEJFswxW/Y5bYmoa7707/fBHYAMwDXkgPS5H++eIYnr8QYcoY6e8gkiWBxe+wRCYNMzvSzCZmrgNnA08APwGWpg9bCtwzmuefMGECPT09+sCKmbvT09PDhAkT4g5FJH6Z/YryfS4lZKg9qcNTfwFsSK8ROAz4vrv/h5n9FrjTzC4HOoFLRvPk06ZNo6uri+7u7oIFLKMzYcIEpk2bFncYIvHKrmNkK9G251EkdvZUoeSaPSUikiiZc2TkElPxuxxnT4mIVId89QqzRBS/wxJZ0xARqSoJXMSXj5KGiEhcEnD61pFS0hARiUNCTt86UqppiIjEIeGL+PJRT0NEJA4JX8SXj5KGiEiBZUoVNTXBzwGnhy6TRXz5aHhKRKSAstfpdXQEtwGaKJ9FfPlocZ+ISAHlW6eXSkE7ee7MHBDzDrZhWtwnIlICeUsVHX1AnoSRwEV8+aimISJSQHnX6TFEgTvhdYwwJQ0RkQI677wc6/R4jRauy/2AMqhjhClpiIgUSGsr3HHHwIlRRh9L+S5NrB/8gAQv4stHNQ0RkQLJuV6PGn7OBcBnBt6R8EV8+ainISJSIHmL4GTVLMpsSCpMSUNEpEAiFcHLcEgqLJFJw8yONbMHzOwpM3vSzD6Xbr/ezHaZ2bb05by4YxURAaC1lZZXP0strw1oHlAEz0ytLdOEAcmtaRwE/s7dH0mfK3yLmd2fvu9md/9qjLGJiAyUXgbe1NsL7GUlN9JJPfV00sJ1bxXBy2hqbT6JTBruvgfYk76+38yeAqbGG5WISB6hCngT63PPlCrjOkZYIoenwsysAZgNPJxuWm5mj5nZ7WZ2dJ7HNJtZm5m1dXd3lypUEalWQ+1Ma1b2dYywRCcNMzsK+BHweXd/BbgVeCcwi6An8rVcj3P31e7e6O6NkydPLlW4IlJthtuxNpWCvr6yr2OEJXJ4CsDMxhMkjFZ3/zGAu78Qun8N8LOYwhORape9nW22ChmOypbInoaZGfAvwFPu/k+h9imhwz4MPFHq2ESkymV6F5ddlj9hVNBwVLak9jROB5YAj5vZtnTbdcAiM5sFONAOXBFHcCJSpYbrXUBZ7Vg7GolMGu7+K8By3PXzUsciItIv1z4h2SpgWu1QEjk8JSKSKJkhqXwnUMqo0DpGmJKGiMhQMkNSwyWMCq5jhCVyeEpEJDGGG5Kqra2KZJGhnoaISC5RhqSqpHcRpp6GiEi2KLOkyvR8GGOlnoaISEaUNRhQFQXvfJQ0RERABe+INDwlItWttTUodg+XLKBqh6TClDREpHpFqV1kVPGQVJiGp0Sk+kStXWRU+ZBUmHoaIlJdRtq7ULIYQD0NEakO6l0UhJKGVJ/Mh0dNDUyaFFyyrzc0BMeVMJQSvWR1ijozCoLexbp1FXXipEJS0pDyFyUJZK6bwZIlwYeHO/T0BJfs6x0dwXFmwz/nKD/xw59jmZdsblbiKCj1LgrOPN9pCitEY2Ojt7W1xR2GjFVmWmRnJxxzTNC2b19wff9+eOONeOODIMG4Q11dcHvfvmCb7JaWnB9C+Xao0KzOMQpPoc38TYaj2sUgZrbF3Ruz28uup2FmC83sGTPbbmbXxh2PFFHmW+JwvYMkJAx468MpX4+loQH+9m/7e0WdHX05n6azs2QRV57sYagoCUO9ixEpq6RhZuOAbwLnAicSnMnvxHijkoLKlSgg2n/+pMrE3tEBt97an/zqyZ0d6mu6NEY1UiMdhgLVLkaprJIGMA/Y7u7PufsbwA+Ai2KOScaqEhNFBC1cRy2vDWir5TVaDn0xdz1FlfKB8v27iUK9i1Ert6QxFXg+dLsr3TaAmTWbWZuZtXV3d5csOBmBuBOFpc8mXFcXXMzeuh6+v4iaWM9qlpGiHaOPFO2sZhlNrB9yqKvVFtMw7nlqrI8Ga6d10merI5lkT3j45CdH/u9GvYuxc/eyuQCXAN8J3V4CfGOox8ydO9clIdatc0+l3MHdLPhZiMv48e51dcFz1tUNfz2VCmKJEmuU5yz0+xniso5FXsurA5predXXsTi4MdL3mUS5fvdj+R1nHleuv4+YAG2e63M4V2NSL8BpwH2h2yuAFUM9RkkjIdatc6+tHduHZuY/fxI/GAv9QZfnkmJnzrtS7Cy/31lYsb5QJPG9lolKSRqHAc8B04HDgUeBGUM9RkkjZuEPgzL/lhjOC5HDyX7QlVeO6cPROJT718Sh0f1es5NJJr7R9M6i/A5K1VOrrY3930u5q4ikEbwPzgN+D+wAVg53vJJGDMb6rTFBiSIjV0dpzJ9Lo+idjLinUchLrkSToKG7JP67KWcVkzRGelHSKLHRDkMl/D98vs5SKlWEFxsimeSvaSwqzQfzGC/rWOQpdrpxyFPsHFvc4VpWQv/dlDMlDSmu0QxDJTxRhOX7smxWwiDSv+N1LPZUTWfog3dx7MkgasIYc8Iro38z5U5JQ4pnhL2LdSzy1Ljn3egrm//7Je1pjFSJivBjvYxoaK1cCvgVTElDCm8UvYt14z/htYe/OfDbZhnULItS0yi2hCWTYYv46kUkipKGFNZIehehD4NU3f7kfmMfxqhmTyVRvtlM+WZPFSLRmA3d0yjrX2hlypc0tMutjEx4B9EoUqkBu7zW1AQfFdnMoC/3/n2SBEPtMjzc9fROv600DTphnjaXTa58u9zqdK8SXQFOk1lfnzvf1NcXKEYpjqamMX+yZx6dyT1D7BovCVZue09JHAp4IpuWliCfhNXWBu1S+Zqagm2f+vq0/VO5Uk9DhlaA3kVY5i592xQpT6ppyNDynV4uW1btQkTKW8WcuU9KILwF9XAJQ1tNi1QVDU/JQCMZjlLvQqTqKGnIQCtXDp8wNE9SpGppeEoC6SGp1o730MBOajhEAztpZdFbx5jpNJkiVU49DekfkmrtvYhm1tDLkQB00EAzawBoSv0mqFuISFVTT6OaZa2/WMmN/Qkjo5cjWWn/WwspRARQT6N65Sh4d5J7WXanH6vhKBEBEtjTMLObzOxpM3vMzDaY2dvT7Q1m9icz25a+3BZzqOUtR8G7ns6ch9anrBQRiUgZSFzSAO4HTnL3kwlO67oidN8Od5+Vvnw6nvDKXGZIKsf6ixauo5bXBrRpiw8RCRs2aZjZcjM7uhTBALj7Rnc/mL75EDCtVK9d8TJDUnkW7DWxntUsIzWuC8M1UUpEBonS03gH8Fszu9PMFppZKccqPgncG7o93cy2mtkvzGx+vgeZWbOZtZlZW3d3d/GjLBfDrcGoraVp3fm0H5xGn5sWeYvIIJH2nkonirOBvwEagTuBf3H3HaN6UbNNBMko20p3vyd9zMr0a13s7m5mRwBHuXuPmc0F/g2Y4e6vDPVa2nsqJN/JLECru0VkgDGdTyP9of0H4A/AQeBo4G4zu9/dvzjSYNx9wTDBLgUuAD6QPoMU7n4AOJC+vsXMdgDHA8oIw8mcQGeohKE1GCISwbBJw8w+CywF9gLfAa5x9zfNrAZ4Fhhx0hjm9RYCXwLOcPfeUPtkYJ+7HzKzvwSOA54r5GtXpOH2klKlW0RGIEpPYxLBENGA6qm795nZBUWI6Z+BI4D70+WTh9Izpf4auMHMDgKHgE+7+74ivH5lGaqOoSEpERkhnU+jUg13Lm+dlFtEhqBzhFeTKNub66TcIjIKSVzcJ2MVYWqt6hgiMhpKGpWoM/d2IIC2NheRMVHSqCSZLUKGm1qrhCEio6SaRqXQ1FoRKQH1NCrFcFNrNSQlIgWgnkalyFfHMNNqbxEpGPU0yt1wdQxNrRWRAlJPo5ypjiEiJaaeRjlTHUNESkw9jXKmOoaIlJh6GuVIdQwRiYl6GuVGdQwRiZF6GmWktRUalp5BTe9+GthJK4sGHqA6hogUmXoaZaK/g3FoGgAdNNDMGgCaWK86hoiUhHoaZSLXRKlejmQlNwY3VMcQkRJIXNIws+vNbJeZbUtfzgvdt8LMtpvZM2Z2TpxxllpnR+6idyf1qmOISMkkdXjqZnf/arjBzE4EPgbMAP4nsMnMjnf3Q3EEWFKtrdTbfDp8cG+iftxu1TFEpGQS19MYwkXAD9z9gLvvBLYD82KOqTRWrqTFr6WW1wY011ovLXdMU8IQkZJJatJYbmaPmdntZnZ0um0q8HzomK502yBm1mxmbWbW1t3dXexYi6+zkybWs5plpGjH6CNFO6t9mfKFiJRULEnDzDaZ2RM5LhcBtwLvBGYBe4CvZR6W46lyDvS7+2p3b3T3xsmTJxfjLZRG1iK+JtbTznT6GEc702lK/Tre+ESk6sRS03D3BVGOM7M1wM/SN7uAY0N3TwN2Fzi05NAiPhFJoMQNT5nZlNDNDwNPpK//BPiYmR1hZtOB44D/LnV8JaPNCEUkgZI4e+r/mtksgqGnduAKAHd/0szuBH4HHASuquiZU9qMUEQSKHFJw92XDHFfC1AdYzL19dDRkbtdRCQmiRueqnqZ4ndHR9CrCFMdQ0RipqSRJJnid6aH4f5W4lAdQ0QSIHHDU1UtV/HbPUgYqmOISAKop5Ek+Yrf+dpFREpMSSNJ8hW5VfwWkYRQ0kgCFb9FpEwoacRNxW8RKSMqhMdNxW8RKSPqacRNxW8RKSNKGnFT8VtEyoiSRtxaWoJid5iK3yKSUEoaccnMmFqyBN72NqirCwrgKn6LSIKpEB6H7HNl9PQEvYu1a5UsRCTR1NOIQ64ZU729QbuISIIpacRBM6ZEpEwlLmmY2Q/NbFv60m5m29LtDWb2p9B9t8Uc6uhpxpSIlKnE1TTc/dLMdTP7GvBy6O4d7j6r5EEVWkvL4PN/a8aUiJSBxPU0MszMgI8C6+OOpSAys6VqaoLaxdKlwUwpzZgSkTKSuJ5GyHzgBXd/NtQ23cy2Aq8Af+/uv8z1QDNrBpoB6pMw5JM9W6qjA+64Q4lCRMqOuXvpX9RsE/COHHetdPd70sfcCmx396+lbx8BHOXuPWY2F/g3YIa7vzLUazU2NnpbW1tB4x+xzA622bS/lIgklJltcffG7PZYehruvmCo+83sMOBiYG7oMQeAA+nrW8xsB3A8EHNGiECzpUSkQiS1prEAeNrduzINZjbZzMalr/8lcBzwXEzxjYxmS4lIhUhq0vgYgwvgfw08ZmaPAncDn3b3fSWPbDS0v5SIVIhEFsLd/RM52n4E/Kj00YxBa2swU6qzE445Jthjat++oIfR0qIiuIiUnUQmjYqg/aVEpAIldXiq/Gl/KRGpQEoaxaIZUyJSgZQ0ikUzpkSkAilpFItmTIlIBVLSKDSdkU9EKphmTxWSZkyJSIVTT6OQ0jOmWllEAzup4RANvU/S+rmH445MRKQglDQKqbOTVhbRzBo6aMCpoYMGmnv+kdbWuIMTERk7JY1Cqq9nJTfSy5EDmns5UsszRKQiKGkUUksLneSeUqvlGSJSCZQ0CiE0Y6q+ZlfOQ7Q8Q0QqgZLGWGVmTHV0gDstfV+iltcGHKLlGSJSKZQ0xiprj6km1rOaZaTGdWl5hohUHK3TGKscxYom1tPU9wPo64shIBGR4lFPY6y0x5SIVJFYkoaZXWJmT5pZn5k1Zt23wsy2m9kzZnZOqH2umT2evu8WM7PSR56D9pgSkSoSV0/jCeBi4L/CjWZ2IsGpXmcAC4FvZc4LDtwKNBOcG/y49P3xa2oKihaplPaYEpGKF0vScPen3P2ZHHddBPzA3Q+4+05gOzDPzKYAf+buD7q7A/8KfKh0EeeQmWZbUxMUw1taghpGe7sShohUrKQVwqcCD4Vud6Xb3kxfz27PycyaCXol1BejtpC9MWFHR3AblDBEpKIVradhZpvM7Ikcl4uGeliONh+iPSd3X+3uje7eOHny5JGGPjydylVEqlTRehruvmAUD+sCjg3dngbsTrdPy9EeD53KVUSqVNKm3P4E+JiZHWFm0wkK3v/t7nuA/WZ2anrW1MeBe2KLUtNsRaRKxTXl9sNm1gWcBvy7md0H4O5PAncCvwP+A7jK3Q+lH3Yl8B2C4vgO4N6SB56habYiUqUsmIxUuRobG72tra3wT9zaGtQwOjuDHkZLi4rgIlIxzGyLuzdmtydt9lT5aGpSkhCRqpO0mkayhddmNDSg0/GJSLVRTyMqrc0QEVFPIzKtzRARUdKITGszRESUNCLT2gwRESWNyLQ2Q0RESSMybYEuIqLZU8PSIj4RkX5KGkPRNFsRkQE0PDUUTbMVERlASWMommYrIjKAksZQNM1WRGQAJY2haJqtiMgAShpD0TRbEZEBNHtqONoCXUSkX1xn7rvEzJ40sz4zawy1n2VmW8zs8fTP94fu22xmz5jZtvTlz4sWoLZAFxHJKa6exhPAxcC3s9r3Ahe6+24zOwm4D5gaur/J3YtwGr4Qrc0QEckrlp6Guz/l7s/kaN/q7rvTN58EJpjZESUNTmszRETySnIh/H8BW939QKjtu+mhqS+bmeV7oJk1m1mbmbV1d3eP7FW1NkNEJK+iJQ0z22RmT+S4XBThsTOA/wNcEWpucveZwPz0ZUm+x7v7andvdPfGyZMnjyxwrc0QEcmraDUNd18wmseZ2TRgA/Bxd98Rer5d6Z/7zez7wDzgXwsR6wAtLQNrGqC1GSIiaYkanjKztwP/Dqxw91+H2g8zs0np6+OBCwiK6YWntRkiInmZu5f+Rc0+DHwDmAy8BGxz93PM7O+BFcCzocPPBl4D/gsYD4wDNgFfcPdDw71WY2Ojt7UVd8KViEilMbMt7t44qD2OpFFKShoiIiOXL2kkanhKRESSTUlDREQiU9IQEZHIlDRERCSyii+Em1k30BF3HCM0iWAfrmqi91wd9J7LR8rdB62OrvikUY7MrC3XrIVKpvdcHfSey5+Gp0REJDIlDRERiUxJI5lWxx1ADPSeq4Pec5lTTUNERCJTT0NERCJT0hARkciUNBLOzK42M89sDV/JzOwmM3vazB4zsw3prfIrkpktNLNnzGy7mV0bdzzFZmbHmtkDZvaUmT1pZp+LO6ZSMLNxZrbVzH4WdyyFoqSRYGZ2LHAWUC3nmr0fOMndTwZ+T7BNfsUxs3HAN4FzgROBRWZ2YrxRFd1B4O/c/QTgVOCqKnjPAJ8Dnoo7iEJS0ki2m4EvAlUxW8HdN7r7wfTNh4BpccZTRPOA7e7+nLu/AfwAGPY0yOXM3fe4+yPp6/sJPkinxhtVcaXPQno+8J24YykkJY2EMrMPArvc/dG4Y4nJJ4F74w6iSKYCz4dud1HhH6BhZtYAzAYejjmUYvs6wZe+vpjjKKiinSNchmdmm4B35LhrJXAdwVkLK8pQ79nd70kfs5JgOKO1lLGVkOVoq4repJkdBfwI+Ly7vxJ3PMViZhcAL7r7FjN7X8zhFJSSRozcfUGudjObCUwHHjUzCIZpHjGzee7+hxKGWHD53nOGmS0lOAf8B7xyFxF1AceGbk8DdscUS8mY2XiChNHq7j+OO54iOx34oJmdB0wA/szM1rn7ZTHHNWZa3FcGzKwdaHT3ctwpMzIzWwj8E3CGu3fHHU+xmNlhBIX+DwC7gN8Ci939yVgDKyILvv3cAexz98/HHE5JpXsaV7v7BTGHUhCqaUiS/DMwEbjfzLaZ2W1xB1QM6WL/cuA+goLwnZWcMNJOB5YA70//bbelv4VLmVFPQ0REIlNPQ0REIlPSEBGRyJQ0REQkMiUNERGJTElDREQiU9IQEZHIlDRERCQyJQ2REjKzd6fPFzLBzI5Mn1vipLjjEolKi/tESszM/oFgP6K3AV3u/o8xhyQSmZKGSImZ2eEE+029DrzH3Q/FHJJIZBqeEim9Y4CjCPbZmhBzLCIjop6GSImZ2U8IztY3HZji7stjDkkkMp1PQ6SEzOzjwEF3/376XOG/MbP3u/v/izs2kSjU0xARkchU0xARkciUNEREJDIlDRERiUxJQ0REIlPSEBGRyJQ0REQkMiUNERGJ7P8D4L4OV0e0FhEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", @@ -109,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -210,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -244,9 +267,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "TypeError", + "evalue": "unsupported operand type(s) for *: 'float' and 'NoneType'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mweights_ridge\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0my_training_ridge\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnorm_train_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0my_test_ridge\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnorm_test_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36meval\u001b[0;34m(Phi, w)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0mEvaluates\u001b[0m \u001b[0myour\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \"\"\"\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mPhi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for *: 'float' and 'NoneType'" + ] + } + ], "source": [ "# Let's do it on polynomial degree 10 and see the results\n", "\n", @@ -967,7 +1004,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" } }, "nbformat": 4,