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Announcements

* The Exam will take place on 23.02.2022 at 18:00. The place will be the Audimax, and
potentially further rooms "next to it" if needed.

* According to the survey, we fixed the date for the exercise/recap sessions to Thursday, 17:00

virtually. - First session will be next week and it will be "Exercise 0: Organization and Intro to
scientific python"

« We'll close the exercise group assignment next Tuesday evening and might re-assigin people
who are in groups of < 3, to form groups of 3.
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Learning Outcomes

« Get familiar with matrix computations and matrix calculus
« Understand the regression problem

« What do we mean with “linear representation”?

* Be able to derive the least squares solution

 What is the use of regularization in ridge regression?
 How to extend linear regression to non-linear function?
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Today's Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra
« Vectors, Matrices and manipulation of those

Linear Regression:

« Least-Squares Solution

* Generalized Linear Regression Models
 Ridge Regression
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Supervised Learning

Training data includes targets

— Regression:
* Learn continuous function
« Example: line

— Classification:

« Learn class labels ¢ o A A
. . o %o, A
- Example: Digit recognition T s \Aa T,
P A A‘AA

e\ A L AA
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Unsupervised Learning

Trainings data does not include target values

Model the data

Clustering:

Dimensionality

reduction:
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Reinforcement Learning

.

Environment

E

» No supervisor, but reward signal

» Selected actions also influence future states
j Re War
ter

Not part of this lecture! Interpre
% &5
Agent
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Today's Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra
« Vectors, Matrices and manipulation of those

Linear Regression:

« Least-Squares Solution

* Generalized Linear Regression Models
 Ridge Regression
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Vectors

* Avector is a multi-dimensional quantity 8o+

37 10
Joe 72 Mary |30
175 61
[ 25 66
Carol 65 Brad e7 ]
121 155

« Each dimension contains different information (Age, Height, Weight...)
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Some notation

« Vectors will always be represented as bold symbols

1
r=1 x=| 2
N——

scalar 4

VG;OI'
1
« Avector g is always a column vector = | 2
4

- Atransposed vector z” is always arow vector ' =[1 2 4 ]
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What can we do with vectors?

« Multiplication by scalars

« Addition of vectors 4

1 2 3 :
2|+ |1 |=|3| | T
4 4 8

L 1
o 1 2 3 K s
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Scalar products and length of vectors

« Scalar (Inner) products:
— Sum the element-wise products

1 2
v= |2 |, w=/|4
4 8

(vyw)=1-24+2-4+4+4.8=42

* Length of a vector
— Square root of the inner product with itself

1
o]l = (v,0)% = (12 + 22 +4%)7 = V21
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Matrices

A matrix is a rectangular array of numbers arranged in rows and columns.

X = A:[

= D
-J W W

1 3 5 4

2 3 7 2 ]
— X isa3x2matrixand A a2 x 4 matrix
— Dimension of a matrix is always num rows times num columns
— Matrices will be denoted with bold upper-case letters (A,B,W)
— Vectors are special cases of matrices

1
r=| 2 ' =[1 2 4]
4 ', IXSEatrix
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Matrices in Machine Learning

* In many cases, our data set can be represented as matrix, where single samples are

vectors
37 10 25 66
Joe: 1 = 72 Mary: o = | 30 Carol: x5 = 65 Brad: x4 = 67
175 61 121 175

 Most typical representation:
— Each row represent a data sample (e.g. Joe) _ _ _
mm) XISanum samples x num entries matrix
— Each column represents a data entry (e.g. age)

(2T ] [ 37 72 175 ]
. xd | | 10 30 61
T2l | T 25 65 121
T
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What can you do with matrices?

«  Multiplication with scalar

Lo t)elE T T

3M:3[1 0 1

« Addition of matrices
3 4 5 1 2 1 4 6 6
M+N_[1 0 1]+[3 1 1]_[4 1 2]
« Matrices can also be transposed

3 4 5
1 0 1
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Multiplication of a vector with a matrix

1
- o [3 4 5 _[3-14+44.0+5-2] [ 13
Matrix-Vector Product: u_Wv_ll 0 1] l0]{1'1+0'0+1'2]{ 3}

+  Thinkofitas: | Wi+ Wn L =] nwr + - o,

S

ﬁr/ N——

4
— Hence: ’U,:’Ul’wl-l—----l—funwnzlli):|_|_0[0]_l_gl

— o
| I |
I
1
H
W
| I |

— We sum over the columns w; of W weighted by v;
* Vector needs to have same dimensionality as number of columns!
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Multiplication of a matrix with a matrix

 Matrix-Matrix Product:

[ 3-1+4-0+5-2 3-0+4-3+5-4

3 4 5
U—WV—{ ] —[1-1+0-0+1-2 1-0+0-3+1-4]—{

1 0 1

O =
= W O

« Think of it as: W[vl,_,_,vn]:lwvl,...,qun]:U
N—— S——

~ vy u1 Up,

"

\%

— Hence: Each column u; = Ww, in U can be computed by a matrix-vector product
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Multiplication of a matrix with a matrix

« Dimensions: mxn-nxj=mx]j
w v U

— Number of columns of left matrix must match number of rows of right matri

- Non-commutative (in general): VW # WV
- Associative: V(WX)= (VW)X

« Transpose Product: (VW)T = wlv?®
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Important special cases

« Scalar (Inner) product: 1

wlv = [wy,...,w) ; =wivy + -+ +wuv, = (W, v)
Un

— The scalar product can be written as vector-vector product
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Important special cases

X11

?

« Compute row/column averages of matrix X —

Xn,l

\__

le

?

Xn,m _

n (samples) xm (entries)

— Vector of row averages (average over all entries per sample)

1 m 1 1
m Zi:l Xl,i m m
: =X X = Xa, witha=
1 m ] 1 1
m Zi:l X”ﬂ m ™m

— Vector of column averages (average over all samles per entry)

1< 1 — 1 1
zxi,l,...,zxi,m] [ e -
nizl nizl T n
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Matrix Inverse

scalar matrices

. Definition: w-w L =1 Wwl=1 wlw=I
1 0
« Unit Element: Identity matrix, e.g., 3 X 3: I=|0 1
0 O

* Verify it!

vl

|
—t
— D=
1
I
H
|
WD o
o |
L=
L 1

o[ ]|

2 1 1 0
L lelen

 Note: We can only invert quadratic matrices (num rows = num cols)
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Calculus

We also need to talk about derivatives...

“The derivative of a function of a real variable measures the sensitivity to change of a
guantity (a function value or dependent variable) which is determined by another
quantity (the independent variable)” (Wikipedia)

Function: f(x)
Derivative: of (m)
ox

Minimum/Maximum: 8f(:n) =0
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Matrix Calculus

Derivatives of a scalar function w.r.t a vector

Derivatives of a vector-valued function w.r.t a vector...

Yields the gradient vector:

Example: Quadratic form

Yields a matrix (the Jacobian)

Example: Linear form

Va f

Vexlx =2z

Vaof =

V,Az = AT

Vexrl Az = 2Ax

Oxy

[ Of1(=)
8:1’;1

0fi ()
Oxg
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Matrix Calculus

Derivatives of a scalar function w.r.t. a matrix...

ESR
11 1d
* ...Is again a matrix Vw/f = ag(v‘;/V) =
of (W) of (W)
| 8Wk1 aw.fcd

Derivatives of a vector-valued function w.r.t. a matrix...
« ...isa3D tensor!
*  So that gets a bit tricky... luckily we (almost) do not need that
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Matrix Calculus

We need to know some rules from Matrix Calculus (see wikipedia)

scalar
_ dax
° . — =
Linear: o
*  Quadratic: = — 9
ox

|
|
|
|
|
|
Ox? |
|
|
|
|
|
|
1

vector

VeAr = AT

Vexla =2x

Vexl Az = (AT + Az
= 2Ax if A is symetric

matrix
Vx a’ Xb = ab?
Vx trf(AXB) = A"B”
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Today's Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra
« Vectors, Matrices and manipulation of those

Linear Regression:

« Least-Squares Solution

* Generalized Linear Regression Models
 Ridge Regression
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Regression

Regression: 30 — data
. . 2.5 A e fit: a=2.554, b=1.352, c=0.475
— Learn continuous function . ~—- fit-3-2.437, b-1.000, c=0.350
= 154
y=f(z)+e
0.5
Linear Regression: B I

— We “just” fit a line
y=f(x)+e=wo+wiz+e

We assume that the outputs are affected
by (typically) Gaussian noise:

e ~N(0,1)
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Objective of Regression

We want to minimize the summed (or mean) squared error
N
2
SSE = Z (yi — f(%’))
=1
* ... where the input x is a d-dimensional vector

Why do we use the squared error?
* ltis fully differentiable

» Easy to optimize

* It also makes sense as:

f(x) = argmin,,SSE = f*(x) = E[y|x]

— Hence, we always estimate the mean of the target function!
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Linear regression models

* Inlinear regression, the output y is modelled as linear function of the input x;

y=f(x)+e=wo+wx+e

House Price(pound)

500

1500

1000

Effect of w,

Relation between House Size and house Price

T T T
5000 10000 15000
House Size (sq ft)
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Objective for Linear Regression

We want to consider linear functions with multiple inputs

f(:[tz) = Wo + Z Wiy, 5

J

Our SSE objective now looks the following
N 2
SSE = Z (yi — (wo + ija:@-,j))
i=1 j

Can we simplify it using matrices??
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Linear regression models in matrix form

« Equation for the i-th sample - -

D ] wo
Q@' = Wy + E Wiks 5 = fi??’w, with Cilz = [ T ] and w =
. 0}
Jj=1 wWp
« Equation for full data set ) )
o ~ — o ~T —
Y1 €Ly W
- ~T
| Yn i | L, W
— Y is a vector containing the output for each sample
~T T
T 1 x5
- X = : = Is the data-matrix containing a vector of ones as the first
7T 1 27 column as bias

n
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Linear regression models in matrix form

9 hn
« Errorvector: ¢ = = | =my—y=y— Xw

Un Un

« Sum of squared errors (SSE)

SSE = > (yi —9:)° = Zef =e'e=(y - Xw)' (y - Xw)

7

* We have now written the SSE completely in matrix form!
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Deriving Linear Regression

 How do we obtain the optimal w ? (which minimizes the SSE)

w* = argmin,, SSE = argmin,, (y — Xw)’ (y — Xw)

At a minimal value of a
function, its derivative is zero

O

OS5 _ g

ow

l.e., find a w where

Ine Learning — Foundations and Algorithms | KIT | WS 2021/2022 34



Estimation of w

SSE(w) = (y — Xw)" (y — Xw)
—w!' X' Xw -y Xw-wl X'y +yTy
—w! X Xw — 2T Xw+yly

Take the derivative w.r.t w :

VwSSE(w) = 8% {'wTXTX'w — 2yl Xw + yTy}

Setting the gradient to 0 yields
w* = (XTX)_ley
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Discussion

We have now derived our first ML algorithm: Linear Regression!
« The solution is called Least Squares solution
* One of the rare cases where we can obtain a closed form solution

This was only possible because:

* The cost-function (SSE) is convex for linear f(x)
— There is only one minimum

« The cost function is quadratic in w
— The minimum is easy to obtain
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Ask guestions!!!
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Evaluating linear regression models

How can we estimate the quality of the model?
« The SSE can take arbitrary values depending on the range of the output
* Make the evaluation invariant to the variance of y

R-Square (or R?) determines how much of the total variation in y is explained by the variation in x.
Mathematically, it can be written as

, Regression sum of squares SN 1B — yn)?
Rc=1- = - N —
Total sum of squares Yore1(m — ¥)?

where y is the mean of the outputs. R? tells how well the regression line approximates the real data
points. An R? of 1 indicates that the regression line perfectly fits the data.
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Today's Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra
« Vectors, Matrices and manipulation of those

Linear Regression:

« Least-Squares Solution

 Generalized Linear Regression Models
 Ridge Regression
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LiInear Functions

So far, we modelled our function f as linear in x and w
f(x) =& w
However, this equation can only represent hyper-planes in the D-dimensional input

space

=
N
eight (Meters)

o
©
H

40

4
5
A% (vears? 7 4 S 10
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General Form

In a more general writing, we could rewrite it as

Where ¢(x) is a vector valued function of the input vector x. This is also called linear basis
function models, and ¢;(x) are known as basis functions.

LW,

- L d
(V) The model is linear in the parameter w, not necessarily linear in x.
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Example of Polynomial Curve Fitting

110

105+

flz) = ¢(33)T’w 100 [

where >l
90+

85r

chirps per sec

S
o
D

80r

R R

70+

B5r

60 1 L 1 L
60 70 80 90 100 110

temperature (F)
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Example of Multiple Linear Regression

184 - L

fl®) = Qb(m)T’w 175

AR

where 165y ¢

8d

Wy 1 1554 o @9

Gerhard Neumann | Machine Learning — Foundations and Algorithms | KIT | WS 2021/2022 43



Example of Fitting Quadratic Form

184 o

1754
fla) = ¢(z) w A
16.54. .
where y "
1554 :
Wi 1] sl '
Wy X1
w=|w2|, ¢ =%
W3 x?
Wy _xzz
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Generalized Linear Regression

The derivations stay exactly the same, just the data matrix is now replaced by the basis
function matrix, i.e.:

w' = (878)" 8Ty,

T
1

with & = :
qu

* In principle, this allows us to learn any non-linear function, if we know suitable basis functions
(which is typically not the case).
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Example: Selecting the order of the polynom

100 100 100
50 50 50 F
(S ol ok
-50 50 -50
-100 = ——J
— training points
e o ground truth -100 - — training points |] -1001 — training points ]
— 1st order e e ground truth e e ground truth
-150 ¢ oy = > " — 2nd order — 3rd order
_150 L L L n _150 L L L L
—6 -4 -2 2 4 6 -6 -4 -2 2 4
100 100
50 - 50
o+ ol
—50 =50
-100} — training points |] -1o0¢ — training points | |
e e ground truth e o ground truth
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Overfitting for polynomial regression

.. . . . . 108

The error on the training set is not an indication .|
for a good fit!! |
« We always need an independent test-set! 102}

100}
Overfitting: .l
« Training error goes down % 125
* Test error goes up 19|
The model is too complex. It fits the noise and has Lo
unspecified behavior between the training points. oz

1041
Underfitting: 101}
« Training + Test error are high 10

The model is too simple to fit the data

Ig—

— SSE on training set |

—— SSE on test set

L=

8 10
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Regularization

Regularization:
« Limit the model such that it can not fit the training data perfectly any more

Simple form of regularization: forcing the weights w to be small
«  Small weights will lead to a smoother function
* Introduce “regularization term” in cost-function

Data term + Regularization term

« where X is the regularization factor
* Needs to be tuned manually in most cases
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Regularized Least Squares

With the sum-of-squares error function and a quadratic regularizer, we get

Liidge = (Y — <I>'w)T(y — dw) + Aw ! w

«  This particular choice of regularizer is known as weight decay because in sequential learning
algorithms, it encourages weight values to decay towards zero, unless supported by the data.

« In statistics, it is called ridge regression.

Derivations can be done similarly as before. The solution is given by

Wigge = (B @+ N) '@y
* | is the Identity matrix

*  The matrix ((I)TCI) + )\I) is now full rank and can be more easily inverted
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Ridge regression: Degree n=15

Lambda 1.00e-06 Lambda 1.00e+01

Lambda 1.00e+03

Influence of the regularization constant
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Takeaway messages

What have we learned today?
* Familiarized with matrix manipulations and matrix calculus
 What a regression problem is

 How to obtain the Least-Squares solution in closed form
— Only possible as the cost function is quadratic in the weights
» Generalized Linear Regression
— Non-linear functions in x are fine as long as linear in w

« Avoid overfitting by keeping the weights small
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