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Announcements

• The Exam will take place on 23.02.2022 at 18:00. The place will be the Audimax, and 
potentially further rooms "next to it" if needed.

• According to the survey, we fixed the date for the exercise/recap sessions to Thursday, 17:00 
virtually. - First session will be next week and it will be "Exercise 0: Organization and Intro to 
scientific python"

• We'll close the exercise group assignment next Tuesday evening and might re-assigin people 
who are in groups of < 3, to form groups of 3.
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Learning Outcomes

• Get familiar with matrix computations and matrix calculus

• Understand the regression problem

• What do we mean with “linear representation”?

• Be able to derive the least squares solution

• What is the use of regularization in ridge regression?

• How to extend linear regression to non-linear function?
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Today‘s Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra

• Vectors, Matrices and manipulation of those

Linear Regression:

• Least-Squares Solution

• Generalized Linear Regression Models

• Ridge Regression
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Supervised Learning

Training data includes targets

– Regression:

• Learn continuous function

• Example: line

– Classification:

• Learn class labels

• Example: Digit recognition
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Unsupervised Learning

Trainings data does not include target values

• Model the data

• Clustering:

• Dimensionality

reduction:
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Reinforcement Learning

• No supervisor, but reward signal

• Selected actions also influence future states

Not part of this lecture!
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Today‘s Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra

• Vectors, Matrices and manipulation of those

Linear Regression:

• Least-Squares Solution

• Generalized Linear Regression Models

• Ridge Regression
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Vectors

• A vector is a multi-dimensional quantity

• Each dimension contains different information (Age, Height, Weight…)
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Some notation

• Vectors will always be represented as bold symbols

• A vector is always a column vector

• A transposed vector is always a row vector
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What can we do with vectors?

• Multiplication by scalars

• Addition of vectors
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Scalar products and length of vectors

• Scalar (Inner) products:

– Sum the element-wise products

• Length of a vector

– Square root of the inner product with itself
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Matrices

• A matrix is a rectangular array of numbers arranged in rows and columns.

– is a 3 x 2 matrix and a 2 x 4 matrix

– Dimension of a matrix is always num rows times num columns

– Matrices will be denoted with bold upper-case letters (A,B,W)

– Vectors are special cases of matrices
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Matrices in Machine Learning

• In many cases, our data set can be represented as matrix, where single samples are

vectors

• Most typical representation: 

– Each row represent a data sample (e.g. Joe)

– Each column represents a data entry (e.g. age)
X is a num samples x num entries matrix
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What can you do with matrices?

• Multiplication with scalar

• Addition of matrices

• Matrices can also be transposed
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Multiplication of a vector with a matrix

• Matrix-Vector Product:

• Think of it as:

– Hence:

– We sum over the columns of W weighted by

• Vector needs to have same dimensionality as number of columns!
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Multiplication of a matrix with a matrix

• Matrix-Matrix Product:

• Think of it as:

– Hence:  Each column in U can be computed by a matrix-vector product
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Multiplication of a matrix with a matrix

• Dimensions: 

– Number of columns of left matrix must match number of rows of right matri

• Non-commutative (in general):

• Associative:

• Transpose Product:
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Important special cases

• Scalar (Inner) product:

– The scalar product can be written as vector-vector product
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Important special cases

• Compute row/column averages of matrix

– Vector of row averages (average over all entries per sample)

– Vector of column averages (average over all samles per entry)
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Matrix Inverse

• Definition: 

• Unit Element: Identity matrix, e.g., 3 x 3:

• Verify it!

• Note: We can only invert quadratic matrices (num rows = num cols)

scalar matrices
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Calculus

We also need to talk about derivatives…

“The derivative of a function of a real variable measures the sensitivity to change of a 

quantity (a function value or dependent variable) which is determined by another 

quantity (the independent variable)” (Wikipedia)

Function:

Derivative:

Minimum/Maximum:
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Matrix Calculus

Derivatives of a scalar function w.r.t a vector…

• Yields the gradient vector:

• Example: Quadratic form

Derivatives of a vector-valued function w.r.t a vector…

• Yields a matrix (the Jacobian) 

• Example: Linear form 
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Matrix Calculus

Derivatives of a scalar function w.r.t. a matrix…

• … is again a matrix

Derivatives of a vector-valued function w.r.t. a matrix…

• … is a 3D tensor!

• So that gets a bit tricky… luckily we (almost) do not need that
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Matrix Calculus

We need to know some rules from Matrix Calculus (see wikipedia)

• Linear:

• Quadratic:

scalar vector
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Today‘s Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra

• Vectors, Matrices and manipulation of those

Linear Regression:

• Least-Squares Solution

• Generalized Linear Regression Models

• Ridge Regression
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Regression

Regression:

– Learn continuous function

Linear Regression:

– We “just” fit a line

We assume that the outputs are affected 

by (typically) Gaussian noise:
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Objective of Regression

We want to minimize the summed (or mean) squared error

• … where the input x is a d-dimensional vector

Why do we use the squared error?

• It is fully differentiable

• Easy to optimize

• It also makes sense as:

– Hence, we always estimate the mean of the target function!
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Linear regression models

• In linear regression, the output y is modelled as linear function of the input xi

Effect of 𝑤0 Effect of 𝑤1
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Objective for Linear Regression

We want to consider linear functions with multiple inputs

Our SSE objective now looks the following

Can we simplify it using matrices??
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Linear regression models in matrix form

• Equation for the i-th sample

• Equation for full data set

– is a vector containing the output for each sample

– is the data-matrix containing a vector of ones as the first
column as bias
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Linear regression models in matrix form

• Error vector:

• Sum of squared errors (SSE)

• We have now written the SSE completely in matrix form!
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Deriving Linear Regression

• How do we obtain the optimal      ? (which minimizes the SSE) 

At a minimal value of a 

function, its derivative is zero

I.e., find a       where
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Estimation of w

Take the derivative w.r.t     :

Setting the gradient to      yields
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Discussion

We have now derived our first ML algorithm: Linear Regression!

• The solution is called Least Squares solution

• One of the rare cases where we can obtain a closed form solution

This was only possible because:

• The cost-function (SSE) is convex for linear f(x)

– There is only one minimum

• The cost function is quadratic in w

– The minimum is easy to obtain
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Ask questions!!!
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Evaluating linear regression models

How can we estimate the quality of the model?

• The SSE can take arbitrary values depending on the range of the output

• Make the evaluation invariant to the variance of y

R-Square (or 𝑅2) determines how much of the total variation in 𝑦 is explained by the variation in 𝑥. 

Mathematically, it can be written as

𝑅2 = 1 −
Regression sum of squares

Total sum of squares
= 1 −

σ𝑛=1
𝑁 ො𝑦𝑛 − 𝑦𝑛

2

σ𝑛=1
𝑁 𝑦𝑛 − ത𝑦 2

where തy is the mean of the outputs. R2 tells how well the regression line approximates the real data 

points. An R2 of 1 indicates that the regression line perfectly fits the data.

Gerhard Neumann | Machine Learning – Foundations and Algorithms | KIT | WS 2021/2022 38



Today‘s Agenda!

Recap: Types of Machine Learning

Recap: Linear Algebra

• Vectors, Matrices and manipulation of those

Linear Regression:

• Least-Squares Solution

• Generalized Linear Regression Models

• Ridge Regression
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Linear Functions

So far, we modelled our function f as linear in x and w

However, this equation can only represent hyper-planes in the D-dimensional input 

space
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General Form 

In a more general writing, we could rewrite it as

Where 𝜙(𝒙) is a vector valued function of the input vector 𝒙. This is also called linear basis 

function models, and 𝜙𝑖(𝒙) are known as basis functions.

The model is linear in the parameter 𝒘, not necessarily linear in 𝒙.
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Example of Polynomial Curve Fitting

where

𝒘 =

𝑤0

𝑤1

𝑤2

𝑤3

, 𝜙(𝒙) =

1
𝑥
𝑥2

𝑥3
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Example of Multiple Linear Regression 

where

𝒘 =

𝑤0

𝑤1

𝑤2

, 𝜙(𝒙) =
1
𝑥1
𝑥2

𝑥1 𝑥2

𝑦
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Example of Fitting Quadratic Form

where

𝒘 =

𝑤0

𝑤1

𝑤2

𝑤3

𝑤4

, 𝜙(𝒙) =

1
𝑥1
𝑥2
𝑥1
2

𝑥2
2 𝑥1 𝑥2

𝑦
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Generalized Linear Regression

The derivations stay exactly the same, just the data matrix is now replaced by the basis 
function matrix, i.e.: 

with 

• In principle, this allows us to learn any non-linear function, if we know suitable basis functions 
(which is typically not the case).
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Example: Selecting the order of the polynom
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Overfitting for polynomial regression

The error on the training set is not an indication 
for a good fit!!

• We always need an independent test-set!

Overfitting:

• Training error goes down

• Test error goes up

The model is too complex. It fits the noise and has 
unspecified behavior between the training points.

Underfitting:

• Training + Test error are high

The model is too simple to fit the data
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Regularization

Regularization:

• Limit the model such that it can not fit the training data perfectly any more

Simple form of regularization: forcing the weights w to be small

• Small weights will lead to a smoother function

• Introduce “regularization term” in cost-function

• where      is the regularization factor

• Needs to be tuned manually in most cases 

Data term + Regularization term
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Regularized Least Squares

With the sum-of-squares error function and a quadratic regularizer, we get  

• This particular choice of regularizer is known as weight decay because in sequential learning 
algorithms, it encourages weight values to decay towards zero, unless supported by the data. 

• In statistics, it is called ridge regression.

Derivations can be done similarly as before. The solution is given by

• I is the Identity matrix

• The matrix                           is now full rank and can be more easily inverted
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Ridge regression: Degree n=15

Influence of the regularization constant
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Takeaway messages

What have we learned today?

• Familiarized with matrix manipulations and matrix calculus

• What a regression problem is

• How to obtain the Least-Squares solution in closed form

– Only possible as the cost function is quadratic in the weights

• Generalized Linear Regression

– Non-linear functions in x are fine as long as linear in w

• Avoid overfitting by keeping the weights small
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