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Learning Outcomes

« Understand the overfitting problem and ...

« ... its relation to the complexity of the model class
« Bias variance tradeoff

Why we need test-sets and cross-validation

« Understand different regularization methods
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Agenda for today

Model Selection

« QOverfitting and model complexity
« Bias variance trade-off

» Hold-out set and cross validation

Regularization:

* Limit complexity

* Penalty terms

« Early stopping

* Noise and data augmentation
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Z0oo of algorithms for machine learning

 Regression: Continuous output labels

— Linear regression, Polynomial Regression,
KNN, Regression Trees, Gaussian
Processes, Neural Nets

« Classification: Discrete / Nominal output so—

labels

— Logistic Regression, Decision Trees, Neural
Nets, SVMs, KNN

sepal width (cm)

sepal length (cm)
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Model Complexity

For most of these algorithms, we have to choose the model complexity
« Linear Regression: number of features, regularization coefficient

 Decision Trees: maximum depth, number of leaves

 Neural Networks: number of layers, number of neurons

 Support Vector Machine: which features, regularization

« Gaussian Processes: kernel bandwith

Choosing the right complexity is a model selection problem!
« And one of the most fundamental problems in ML
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True risk vs. empirical risk

True risk: performance on a random test point (x,y)

« Classification: probability of misclassification ply # f(z))
 Regression: expected squared error Eo., [(f(w) _ y)Q]
» Unknown!

Empirical risk: performance on the training set

« Classification: proportion of misclassified samples - ZH Flxs) # i)

_Z wz)_yz

 Regression: average squared error

» Can be evaluated
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Overfitting

Is the following predictor good?

i, fx=x;,fori=1...n
fa={

any other value, else

/(@)

f(x)

Empirical risk? Zero!
True risk? Huge!

*  Will predict poorly on unseen data
« Large generalization error
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Model Selection

100
50 |

Choose complexity of the model class |

50}

« Too complex: Overfitting

- Flt nO|Se |n the data 100} — training points ||

| e e ground truth

— Unspecified behavior between data points B | —_10th order

— Not enough data

« Too simple: Underfitting
— We can not represent the underlying function

Lets look at an example...

-100 |- — training points ||

e e ground truth
— 1st order
o
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Polynomial regression up to kth order

100 100
50 + 50 |
o oF
=50 =50
-100 — training points |] -100¢ — training points ||
e e ground truth ¢  ground truth
— 1st order — 2nd order
150 . . . -150 . : ‘
-6 -4 -2 0 2 4 6 =6 -4 =2 0 2 4
100 100
50 + 50
(S ol
-50 =50
-100 Y q
—— training points -100 - — training points ||
e e ground truth e e ground truth
—— 4th order —— 10th order
_150 1 L L - _150 n n L
6 -4 -2 0 2 4 6 —6 —4 -2 0 2 4

Last model overfits the data:
. Fits the noise

* Unspecified behavior in between
datapoints



Effect of Model Complexity

Overfitting: Dradicion |
Small empirical risk, but true Error
risk is high

empirical risk -~

3

‘ | fixed # training data

true risk

Underfitting:
High empirical risk and true risk

- [ >

underfi tting Best overfi tﬁn; Complexity

Model @

Empirical risk is no longer a
good indicator of true risk
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Bias-Variance Decomposition

f*(X)
Regression example: y = f(z)+¢, €~ N(0,07) v __A_//Né

Expected Loss = Variance + Bias? + Noise

Ll

Bias:
*  Due to restriction of your model class
 Also called “structure error” True risk
(Mean Square Error)
. Variance
Variance:

. Due to randomness of the data set

Noise: .

*  Nothing we can do about it... Complexity of F
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Understanding the true risk

fH(X)

oo

Regression example: y= f(z) +e, e~ N(0,0°) X

Expected Loss: . .
R(fp,) =Ep, |Esy |(fp.(@) - v)?]

p. o
~

R Expected error for training with a specific dataset
. fDn is the estimate of f we obtain using data D, Expectation is done w.r.t to all possible inputs and

corresponding outputs
*  The expectation is done w.r.t all training-sets D,, of size n. What does that mean?
— Assume there is a process that can generate data sets n data-points, e.g.:
+ Sample x; uniformly in range [-1,1]
- Sampley,as  y; = f(x;) +e, €~ N(0,07)
* Repeat ntimes

— The expectation averages the error over all training-sets D,
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Understanding the true risk

F(X)
Regression example: y = f(z) +¢ e~ N(0,0%) v __A_//Né

Expected Loss:
R(fp,)=Ep, {Exy [(JED” (@) — y)QH
:EEDn [Em {(JEDH (z) — f*(w))ZH + I, [(f*(ac) _ f(w))ﬂ e

N _/ .
v D noise
Variance Bias?2

. f*(m) =Ep, [fDn(:c)] is the average estimate, averaged over all data sets of size n
« ... which can approximately be seen as training with infinite data

« ... can be seen as “best achievable fit” with the given function class
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Bias-Variance Decomposition

Observations:
. We can not get better than the noise

Bias: E. [(f*(w) N f(w))z}

. Difference of true function to the “best” estimate
. The best you can do with your model class

. Also called “structure error”
True risk

(Mean Square Error)

Variance: [, {Em [(fpn(m) - f*(a:))zﬂ

. Difference of the estimates to the “best” estimate
. Due to limited size of the data set

. Depends on number of data-points

. Also called “estimation error”

Variance

L

Complexity of F
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Derivation of the Bias-Variance Trade-off

A lot of math... look in the appendix if interested
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Bias-Variance Trade-off

Low Variance High Variance

Each point represents a fitted

model with a different dataset

« Low variance, high bias: Underfitting Q
« High variance, low bias: Overfitting

« High variance, high bias: something is

terribly wrong

« Low variance, low bias: too good to be true . P B
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Agenda for today

Model Selection

Overfitting and model complexity
Bias variance trade-off
Hold-out set and cross validation

Regularization:

Limit complexity

Penalty terms

Early stopping

Noise and data augmentation
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Evaluation Methods

We have seen that the empirical risk on the training set is not a good indicator for the
guality of your model. What can we do?

e Hold-out method
e Cross-validation
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Hold-out method

*  We would like to pick the model M with the smallest generalization error
« Can judge the generalization error by independent data set (not used for training)

Hold-out procedure: n datapoints available D = {(x;,y;}

1. Splitinto 2 datasets: Training Data Validation Data
Dp = {(Ccivyi ?ll Dy = {(wiayi ?:m+1

2. Train on training data to obtain fDT (x) for each model class M

3. Evaluate resulting estimators on validation data, e.g: MSE( Dy, fDT) =

4. Pick model with best validation loss
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Hold-out method

Drawbacks:
» Costly in terms of data
*  “Unlucky” splits might give misleading results

Cross-validation methods fix these issues
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Cross validation

K-fold cross validation
1. Create k-fold partition of the dataset

2. Estimate k hold-out predictors using 1 partition as validation and k-1 partitions as
training set

<—p4 h(é-vtq :’%; {'(A") - \/I S

Run 1 | | =f

[ | | =% ‘

| .
| [ ] :
| h’L.WjK

| I éfﬁk

A
Mse - m Z hsé_w;

k predictors for each model class:
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Cross validation

Leave-One-Out (LOO) cross validation
1. Special case with k =n

2. Consequently, estimate n hold-out predictors using 1 sample as validation and n-1

samples as training set

h I:Itraining |:|va|idation
Total number of examples

Run 1 = f1
Run 2 =>f2
Run K = f;(

k predictors for each model class:
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Cross validation

Random sub-sampling
1. Randomly sample a fraction of alpha * n (0 < alpha < 1) data points for validation
2. Train on remaining points and validate, repeat K times
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Regularization techniques

How to avoid overfitting?

Limit the complexity of the model (# neurons, # of leaves, etc...)
Regularization penalty

Early stopping

Noise and Data-Augmentation
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Occam’s Razor

 Named after William of Occam — AD 1300s

« Prefer simpler explanations over more
complex ones

— “Numquam ponenda est pluralitas sine
necessitate”

— (Never posit plurality without necessity.)

Occam’s Razor

(=]
. . . . \d
« Historically, a widely prevalent idea across
different schools of philosophy
* DirECtIy applicable for model selection in ML “When faced with two equally good hypotheses, always

choose the simpler.”
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Limit complexity — Example with polynoms
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Model Selection for polynomial regression

—

Overfitting:
— Training error goes down
— Validation error goes up

Underfitting:
— Training + Validation error are high

Optimum: 3rd or 4th degree

Occam: 3rd degree is better as it is the
simpler hypothesis

SSE

108

106}
104}
102}
1001
102}
1041
108+
108+
1010 L
1012}
104 |
1016 |

1018
0

— SSE on training set |

— SSE on test set

=
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Reqularization penalty

Can be used for most optimization-based algorithms
« Linear Regression + Classification, Neural Networks, GPs, ...

We, typically optimize a (sample-based) loss plus a regularization penalty

N
arg min Z [(x;, @)+ X penalty(8)

parameters 0 i—1
*  Penalty keeps parameters small

«  Small parameters -> smoother function estimate
« Implicitly limits the complexity of the learned model (larger lambda -> smaller complexity)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

28



Reqularization penalty

Which penalty functions can we use?

« L, penalty: penalty(8) = ||0]|2 = Z 9>
d

— Easy to optimize (strongly convex)
— Closed form solutions exists
— Redundant parameters will be close to 0, but never 0

© Lypenalty:  penalty(8) = [|6]]; = ) |04l
d

90—-) /\/—-—-\ 90—>
<>

Data term only:
all @, non-zero

— Induces sparse solutions
— Called “Lasso” regularization
— Much harder to optimize (not in this lecture)

91 —F
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Example: ridge regression

Ridge regression with polynomial of degree n=15

Lambda 1.00e-06 Lambda 1.00e+01

Lambda 1.00e+03

Influence of the regularization constant
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Example: Ridge regression

Influence of the lambda parameter

10°

— SSE on training set

105}

« High Lambda: Underfitting

— High training and validation error
«  About Right:

— Test error is minimal
«  Small Lambda: Overfitting

104}

103}

verfittini

.. . . . 1021
— Small training error, but high validation 5
error
101l .|
104 10 o o o o o o

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 31



Early stopping

Idea: don’t train to too small training error
« Used with incremental learning rules (e.g. gradient descent)

« Prevent overfitting: do not push the model too much; use validation error to decide
when to stop

« Implicitely limits complexity
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Early stopping

Learning curves
1 I | |
e—e Training set loss

0.20

0.15 —— Validation set loss

1

0.10 |# Optimal number of epochs .

Loss (negative log likelihood)

0 50 100 150 200 250

Time (epochs)

Figure from Deep Learning,

idati e Goodfellow, Bengio and Courvill
Validation error goes up due to overfitting COCTETIoW, Benglo and Lourvite
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Early Stopping

« During training, also compute validation error

« Every time validation error improved, store a copy of the weights
* When validation error not improved for some time, stop

* Return the copy of the weights stored
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Early stopping as regularizer

Early stopping has similar effects
than L, regularization

Advantage <@

w9

Efficient: along with training;
only store an extra copy of weights

Simple: no change to the model/algo
No hyper-parameter (such as lambda) w

Disadvantage

need validation data
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Robustness to noise

Class -1

Prefer w, (higher confidence)
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Adding noise to the inputs

* Rules out unlikely / not robust solutions

B |
H
[ |
Class +1 . y ¢
H B [
O ® o
= u o Class -1
® o
o o
o

Prefer w, (higher confidence)
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Equivalence to L2 regularization

For a linear regression model, the noise model is given by
flx+e) =w'(x+e), e€~N(ON)

This leads to the following loss:

MSE(w) = Eg 4 ¢ [(wT:c — 1y + 'wTe)Z]
=By [(wTz - )] +2F0 e (w2 — y)w €] + Eop yw [(w'e)?]

o . o~

W g WV
nSSE(w) —0,zero mean, i.i.d. noise AwTw

= nSSE(w) + )\||w||§

l.e., for linear regression, input noise is the same as L2 regularization
«  For other models, the effect is similar, but not exactly the same
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Data Augmentation

: . L 2
Create additional artificial samples EIRISEOIRL P
/5 G
Yet, be careful about the Crop
transformation applied
— Example: classify ‘b’ and ‘d’ ’ -
— Example: classify ‘6’ and ‘9’ Rotate
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Takeaway messages

What have we learned today?
* Never use training set to evaluate your model!
« Understand the causes of overfitting
— Learn noise in the data
— Unspecified behaviour between data points
» Bias-Variance tradeoff and its relation to the model complexity
* How to evaluate models
« Different regularization strategies
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Self-test questions

What you should understand by now:

« Whyis it a bad idea to evaluate your algorithm on the training set
«  Whatis the difference between true and empirical risk

*  The true risk can be decomposed in which parts?

« How is the bias and the variance of a learning algorithm defined and how do the contribute to the
true risk?

« Whatis the advantage/disadvantage of k-fold CV vs. the Hold-out method?
«  Why does it make sense to penalize the norm of the weight vector?

«  Which norms can we use and what are the different effects?

«  Whatis the effect of early stopping?
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Appendix: Derivation of the Bias-Variance Trade-off 1/2

R(fp,) = Beyp, |(f0,(@) = 9)?] = Eayp, |((fp. (@)~ Ep, [fp, @) + Ep, [fp, @) ~ 1)’
=E.y.0, |(fp, (@) —Ep,[fo, (@) + Ep, [fp, ()] - v)*
+ 2fp, (@) ~ Ep,|fp, @) Ep,|fp, ()] - v)]

—Evy, [(0,(@) ~ B, [fp,@)?] + Eayop, [(En, [fo, (@) - )

+ 2B,y | (Ep,[fp, ()] - Ep,[fp, (@) (ED,[fp, ()] — ¥)

o vy
o

=0
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Appendix: Derivation of the Bias-Variance Trade-off 2/2

R(fp,) = Eay,p, |(fp,(®) = Ep, [, @))*| +Ee b, |(Ep, [fp, (2)] - 4)?]

. —

~
variance

2nd term:

Eo0. |(Ep, o, (@) = )| = Bay |Ep, [fp,(2)] - f(@) — ¢)?]
= Eay |(Ep,[fo, (@)] = f(@)] + Eay [€F] ~2Euy |/, @)] - f(2)]

7 H/_/

~ . v
noise

-

bias? 0 due to zero mean i.i.d noise
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