Nearest Neighbour Algorithms, Trees and Forests

Machine Learning -Foundations and Algorithms WS21/22

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

Learning Outcomes

What will we learn today?

Nearest Neighbors:

- What an non-parametric/instance based learning algorithm is
- ... start with the most simple non-parametric algorithm: k-Nearest Neighbor
- What is the curse of dimensionality
- How to compute the nearest neighbors efficiently

Trees:

- How can we use trees for classification and regression
- Why should we use ensembles of trees (forests)?
- Why should these be random to some extend?

Today's Agenda!

Nearest Neighbour Algorithms:

- k-Nearest Neigbhour Classifiers
- Curse of dimensionality
- Indexing with KD-trees

Tree-based methods

- For regression: Regression Tree
- For classification: Decision Tree
- Almost the same algorithms!

Random forest

- Bagging predictors
- Randomization

K-Nearest Neighbor Algorithms

Non-parametric Methods

Non-parametric methods store all the training data and use the training data for doing predictions. They do not adapt parameters or a parametric model. They are also often referred to as instance-based methods.

- ✓ Complexity adapts to training data
- ✓ Very fast at training
- × Slow for prediction
- × Hard to use for high-dimensional input

Algorithms:

- k-Nearest Neighbor Algorithm (today)
- Locally Weighted Regression (not covered)
- Kernel Methods and Gaussian Processes (later)

K-Nearest Neighbour Classifier

To classify a new input vector x, examine the kclosest training data points to x and assign the object to the most frequently occurring class

• common values for k: k = 3, k = 5

When to consider:

- Can measure distances between data-points
- Less than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Similar algorithm can be used for regression

Decision Boundaries

- The nearest neighbour algorithm does not explicitly compute decision boundaries.
- However, the decision boundaries form a subset of the Voronoi diagram for the training data.
- The more data points we have, the more complex the decision boundary can become

Example Result

- Bayes error: error of
 perfect decision boundary
 - = True risk from previous lecture
- Increasing k reduces
 variance, increases bias
 - K < 7: overfitting
 - K > 7: underfitting
- Has to be selected by cross-validation

7-Nearest Neighbors

Distance Metrics

Most common distance metric is Euclidean distance (ED):

$$d(\boldsymbol{x}, \boldsymbol{y}) = ||\boldsymbol{x} - \boldsymbol{y}|| = \sqrt{\left(\sum_{k=1}^{d} (\boldsymbol{x}_k - \boldsymbol{y}_k)^2\right)}$$

- ED makes sense when different features are commensurate; each is variable measured in the same units.
- If the units are different, say length and weight, data needs to be normalized:

 $ilde{oldsymbol{x}} = (oldsymbol{x} - oldsymbol{\mu}) \oslash oldsymbol{\sigma}$

- Mean μ , standard deviation σ , element-wise division \oslash
- I.e. resulting input dimensions are zero mean, unit variance

Distance Metrics

• **Cosine Distance:** Good for documents, images, etc. $r^T u$

$$d(x, y) = 1 - \frac{x^{T} y}{\|x\| \|y\|}$$

• Hamming Distance: For string data / categorical features

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sum_{k=1}^{a} (\boldsymbol{x}_k \neq \boldsymbol{y}_k)$$

• Manhattan Distance: Coordinate-wise distance

$$d(oldsymbol{x},oldsymbol{y}) = \sum_{k=1}^d |oldsymbol{x}_k - oldsymbol{y}_k|$$

Distance Metrics

 Mahalanobis Distance: Normalized by the sample covariance matrix – unaffected by coordinate transformations.

$$d(x, y) = ||x - y||_{\Sigma^{-1}} = \sqrt{(x - y)^T \Sigma^{-1} (x - y)}$$

k-NN and irrelevant features

• No irrelevant input:

• Added irrelevant dimension:

Class can be clearly determined

- Neighborhood needs to be increased
- Heavily affected by noise
- Needs much more training data

The performance of k-NN degrades with more (irrelevant) dimensions

Curse of dimensionality

Example 1: What fraction of the points in a cube lie outside the sphere inscribed in it?

• For $d \to \infty$ this fraction approaches 1!

Curse of dimensionality

Most of the points in high dimensional spaces are far away from the origin!

• Need more data to "fill up the space"

Bad news for nearest neighbor classification in high dimensional spaces

- Even if most/all features are relevant, in high dimensional spaces, most points are equally far from each other!
- "Neighborhood" becomes very large

Remedies (to some extend):

- Most "real-world" data is not uniformly distributed in the high dimensional space
- E.g.: Dimensionality reduction techniques, manifold learning
- Feature selection (pick a good set based on a validation set)

Finding the neighbours: KD-Trees

Problem: given a sample set $S = \{ {m x}_1, \ldots, {m x}_N \}$, find the k-NNs of test point ${m x}^*_{\cdot}$

Building the tree: for each non-leaf node

- Choose dimension (e.g., longest hyperrectangle).
- Choose median as pivot
- Split node according to (pivot, dimension).

Balanced tree, binary space partitioning.

KD-Trees

Finding the neighbours (k = 1):

- Find region containing **x** (starting from root node, move to child node based on node test).
- Save region point x* = x₀ as current best.
- Move up tree and recursively search regions intersecting hypersphere $S(x, ||x x^*||)$
- Update x* if new nearest neighbour has been found

For k > 1:

- Same algorithm, but save **x*** as knearest neighbour.
- Complexity: O(k log N)

k-NN Summary

Probably the oldest and simplest learning algorithm

- Prediction is expensive.
- Efficient data structures help. k-D trees: the most popular, works well in low dimensions
- Good baseline: If you do not beat k-NN, you are doing something wrong

Requires a distance measure between instances

- Partitions the space into a Voronoi Diagram
- Beware the curse of dimensionality

Trees and Forests

Regression and Classification Trees

Grow a binary tree

- At each node, "split" the data into two "child" nodes.
- Splits are chosen using a splitting criterion.
- Bottom nodes are "terminal" nodes.

For regression:

• the predicted value at a node is the **average response** variable for all observations in the node.

For classification:

- the predicted class is the **most common class** in the node (majority vote).
- Can also estimate probability of membership in each of the classes

A classification tree

A regression tree

Predict (log) prostate specific antigen from

- Log cancer volumne
- Log prostate weight

Splitting criterion

• Regression: Minimum residual sum of squares

$$RSS = \sum_{\text{left}} (y_i - \bar{y}_L)^2 + \sum_{\text{right}} (y_i - \bar{y}_R)^2$$
$$= N_L \sigma_L^2 + N_R \sigma_R^2$$

- where \bar{y}_L and \bar{y}_R are the average label values in the left and right subtree
- and N_L are the number of samples and σ_L^2 is the variance (in the left subtree)
- Split such that weighted variance in subtrees is minimized

Splitting criterion (thats the second mathy slide...)

Classification: Minimum entropy in subtrees ٠

score = $N_L H(p_L) + N_R H(p_R)$

- where $H(p_L) = -\sum p_L(k)\log p_L(k)$ is the entropy in the left sub-tree - and $p_L(k)$ is the proportion of class k in left tree
- Entropy is a measure of uncertainty
 - Split such that class-labels in sub-trees are "pure" —

Finding the best horizontal split

Best horizontal split is at 3.67 with RSS = 68.09.

Finsing the best vertical split

Best vertical split is at 1.05 with RSS = 61.76.

Creating the root node

log of cancer volume

Icavol<1.05

Finding the best split in the left node

Best horizontal split is at 3.66 with RSS = 16.11.

Finding the best split in the left node

log of cancer volume

log of cancer volume

Best vertical split is at -.48 with RSS = 13.61.

Building the regression tree...

log of cancer volume

Finding the best split in the right node...

Best horizontal split is at 3.07 with RSS = 27.15.

Skipping some steps... final result

32

34

35

When do we stop?

There are many stopping criterias, the 2 main ones are:

Stop if:

- Minimum number of samples per node
- Maximum depth
- ... has been reached

Both criterias again influence the **complexity** of the tree !

Controlling the tree complexity

Small number of samples per leaf:

Tree is very sensitive to noise

Controlling the tree complexity

Small number of samples per leaf:

Tree is very sensitive to noise

Controlling the tree complexity

Small number of samples per leaf:

Tree is very sensitive to noise

Large number of samples per leaf:

Tree not expressive enough

Model-Selection for Regression Trees

Evaluate error on validation-set

- Overfitting for min_samples = 1
- Underfitting for min_sampes > 2
- Larger min_samples -> lower complexity

Classification and Regression Trees

Advantages

- Applicable to both regression and classification problems.
- Handle categorical predictors naturally.
- Computationally simple and quick to fit, even for large problems.
- No formal distributional assumptions
- Can handle highly non-linear interactions and classification boundaries.
- Automatic variable selection.
- Very easy to interpret if the tree is small.

Classification and Regression Trees (CART)

Disadvantages

- Accuracy current methods, such as NNs, support vector machines and ensemble classifiers often have much lower error rates than CART.
- *Instability* if we change the data a little, the tree picture can change a lot. So the interpretation is not as straightforward as it appears.

Nowadays, we can do better! Random Forests!

Key Idea: Use multiple trees to improve accuracy

Key Idea: Use multiple trees to improve accuracy

Hard problem for a single tree:

How do we get **variability** in the **trees**?

Breiman, "Bagging Predictors", *Machine Learning*, 1996. Fit classification or regression models to **bootstrap samples** from the data and combine by **voting** (classification) or **averaging** (regression).

Bagging (Bootstrap Aggregating)

A **bootstrap sample** is chosen at **random** *with* **replacement** (sometimes also without) from the data. Some observations end up in the bootstrap sample more than once, while others are not included ("out of bag").

Variance reduction

In general:
$$\operatorname{Var}\left[\frac{1}{M}\sum_{i=1}^{M}X_{i}\right] = \frac{1}{M^{2}}\operatorname{Var}\left[\sum_{i=1}^{M}X_{i}\right] = \frac{1}{M}\operatorname{Var}\left[X\right], \text{ if } X \text{ i.i.d.}$$

• i.e., ideally, the variance would reduce linearly with the number of trees

In practice:
$$\operatorname{Var}\left[\frac{1}{M}\sum_{i=1}^{M}\operatorname{Tree}_{i}\right] > \frac{1}{M}\operatorname{Var}\left[\operatorname{Tree}\right]$$
, as trees are still correlated

- But variance reduction is still significant
- Bagging reduces the variance of the base learner but has almost no effect on the bias
 - I.e. no overfitting: The more trees the better
- It's most effective if we use *strong* base learners that have very little bias but high variance. E.g. trees.

Bagging CART

Dataset	# cases	# vars	# classes	CART	Bagged CART	Decrease %
Waveform	300	21	3	29.1	19.3	34
Heart	1395	16	2	4.9	2.8	43
Breast Cancer	699	9	2	5.9	3.7	37
Ionosphere	351	34	2	11.2	7.9	29
Diabetes	768	8	2	25.3	23.9	6
Glass	214	9	6	30.4	23.6	22
Soybean	683	35	19	8.6	6.8	21

Leo Breiman (1996) "Bagging Predictors", Machine Learning, 24, 123-140.

Randomization

Grow a **forest** of many trees. (R default is 500)

Grow each tree on an independent **bootstrap sample** from the training data.

• Sample N cases at random with replacement.

At each node:

- 1. Select *m* variables **at random** out of all *M* possible variables (independently for each node).
- 2. Find the best split on the selected *m* variables.

Grow the trees to maximum depth (classification).

Vote/average the trees to get predictions for new data.

Why does that work?

Intuition: Why randomization?

- Increase variability of the single trees
- A single tree is less likely to over-specialize
- The trees are less likely to overfit

Random Regression Forests

We can represent almost continuous functions!

Random Forests

Dataset	# cases	# vars	# classes	CART	Bagged CART	Random Forests
Waveform	300	21	3	29.1	19.3	17.2
Breast Cancer	699	9	2	5.9	3.7	2.9
Ionosphere	351	34	2	11.2	7.9	7.1
Diabetes	768	8	2	25.3	23.9	24.2
Glass	214	9	6	30.4	23.6	20.6

Leo Breiman (2001) "Random Forests", Machine Learning, 45, 5-32.

Random Forests

Advantages

- Applicable to both regression and classification problems. Yes
- Handle categorical predictors naturally. Yes
- Computationally simple and quick to fit, even for large problems. Yes
- No formal distributional assumptions (non-parametric). Yes
- Can handle highly non-linear interactions and classification boundaries. Yes
- Automatic variable selection. Yes
- Very easy to interpret if the tree is small. No

Random Forests

Improve on CART with respect to:

- Accuracy Random Forests are competitive with the best known machine learning methods (at least pre DNN era)
- Instability if we change the data a little, the individual trees may change but the forest is relatively stable because it is a combination of many trees.

Random Forests and the Kinect

Random Forests and the Kinect

Random Forests and the Kinect

Use computer graphics to generate plenty of data

Shotton, et. al., Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR 2011

Take-home messages

- CART: Binary decision trees can be used for classification and regression
- Complexity can be set by minimum samples per leaf
- Variability in the trees:
 - Bootstrap
 - Randomized splits
- Averaging over multiple trees reduces variance while bias is unaffected!

Self-test questions

You should know now:

- What we mean with non-parametric / instance-based machine learning algorithms ?
- How k-NN works ?
- How to choose the k?
- Why is it hard to use for high-D data ?
- How do search for nearest neighbours efficiently ?
- What a *binary* regression / decision tree is
- What are useful splitting criterions
- How can we influence the model complexity of the tree?
- Why is it useful to use multiple trees and randomization?