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Learning Outcomes

What will we learn today?

• Understand latent variable models and why they are hard to train

• Understand mixture models and how to train it using EM

• Analysis of the EM algorithm and why it converges
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Agenda for today

Mixture Models

• Gaussian Mixture Models (GMM)

• Expectation Maximization

Latent Variable Models and Generalized EM

• EM decomposition

• E- and M-step

• Convergence analysis

• EM for dimensionality reduction
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Mixture Models

Parametric models

• Gaussian, Neural Networks, ...

✓ Good analytic properties

✓ Simple

✓ Small memory requirements

✓ Fast

× Limited representation power (most 

parametric distributions have only 

one mode)

Non-Parametric models

• Kernel-density estimation, k-NN

✓ General (can represent any 

distribution)

× Curse of dimensionality

× Large memory requirements

× Slow

• Mixture models combine the advantages of both worlds

• Key idea: Create a complex distribution by combining simple ones (e.g. Gaussians)
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Mixture model

A mixture distribution is the sum of 

individual distributions:

• In the limit with many / infinite components, this 

can approximate any smooth density

Number of 

components

Mixture 

coefficient
k-th mixture 

component

Example: Mixture of Gaussians (MoG)

• Individual Gaussians

• Sum of Gaussians
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Gaussian Mixture Models (GMMs)

• Mixture coefficient: 

• Mixture component: 

• Mixture distribution:

– Always integrates to 1

– Parameters of the mixture

Example: Mixture of Gaussians (MoG)

• Individual Gaussians

• Sum of Gaussians
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Maximum Likelihood of a mixture

• (Marginal-)Log-Likelihood with N iid. points

• Q: Can we do gradient descent?

× Gradient depends on all other 

components (cyclic dependency)

× No closed form solution

× Typically very slow convergence

► A: Yes, but the sum (marginalization) 

does not go well with the log
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EM for Gaussian Mixture Models



Estimating Gaussian Mixture Models

So why is optimizing                                    so hard?

• Because we do not know which mixture component k created which data-point

• If we would have data from the joint distribution ,  then it would be easy ...

In this case, we can simply perform a maximum likelihood estimate:

• Coefficients:

• Means:

• Covariances:

where                         is 1 if the ith

sample belongs to the kth component 

and 0 otherwise
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Expectation-Maximization: Chicken and Egg...

Yet, we do not know which component belongs to which sample

• Can we estimate that? Given a current mixture model, yes! 

• Expectation Step:

– Compute cluster probabilities aka responsibilities for each sample (Bayes rule)

– Responsibilities        are now continues between 0 and 1

– But we need to know the Gaussian components
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Expectation-Maximization: Chicken and Egg...

Yet, we do not know which component belongs to which sample

• Can we estimate that? Given a current mixture model, yes! 

• Maximization Step:

– Compute (weighted) maximum likelihood estimate

– But we need to know the responsibilities
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Algorithm: EM for GMMs

• Initialize: Mixture Components + Mixture coefficients

– E.g. Use k-means for the component means and some initial covariance

• Repeat until convergence:

– Expectation-step: Compute responsibilities

– Maximization-step: Update coefficients, components means and component variance
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Illustration

• Each component represents a 

cluster in the data set

• EM is very sensitive to the 

initialization

Initialization

E-step:

Compute responsibilities

M-step:

First update
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EM versus k-means

K-means can be seen as special case of EM with:

• Co-variances are always set to 0 (in the limit)

• E-Step / Assignment Step:

– responsibilities       of nearest cluster k are set to 1, all other values are 0

• M-Step / Adjustment Step:

– Update for the mean is the same

– Co-Variances are ignored (set to close to 0)

• EM is harder to learn than k-means but it also gives you variances and densities

• Often k-means is used to initialize the means for EM 

K-means is known to converge, does also EM always converge?
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EM for Gaussian Mixture Models

• Mixture coefficient: 

• Mixture component: 

• Mixture distribution:

– Always integrates to 1

– Parameters of the mixture

E-Step

• Compute “responsibilities”

• How much component k contributes to generation 

of xi according to current mixture model
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EM for Gaussian Mixture Models

• Mixture coefficient: 

• Mixture component: 

• Mixture distribution:

– Always integrates to 1

– Parameters of the mixture

M-Step:

• We can separate updates of single components 

and coefficients 

– just additive objectives in lower bound

• Update coefficients:

• Update components:

– Each data-point is weighted by qik

– Weighted maximum likelihood estimate
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EM for Gaussian Mixture Models

Weighted Maximum Likelihood updates:

• Update coefficients:

– Result:

• Update components:

– Mean:

– Covariance:
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Agenda for today

Mixture Models

• Gaussian Mixture Models (GMM)

The Expectation Maximization (EM) Algorithm

• EM decomposition

• E- and M-step

• Convergence analysis

• EM for GMMs
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Latent Variable Models and a 

generalized view on EM



Mixture Models are Latent Variable Models

Mixture models are an instance of latent variable models

• Examples: mixture models, missing data, latent factors,

• Observed variables: x, Latent variables: z (e.g., index of mixture component)

• Parametric model:

• Marginal distribution: 

(Marginal) Log-Likelihood:

… which is hard to optimize for all latent variable models (due to log of a sum)
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Expectation-Maximization (EM)

Expectation-Maximization (EM) is a general algorithm for estimating latent variable 

models

• Most common application: Gaussian Mixture models

• … but many other (deep) models as well

• Its extension is called Variational Bayes, which is underlying variational auto-encoder and other 

variational inference techniques

• Very hot research topic… pays off to look into the math of it

EM can be derived in 2 ways:

• Jensen’s inequality (not covered)

• Decomposition in lower-bound and KL-term
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Expectation-Maximization (EM)

EM uses a lower bound of the marginal log-likelihood for the optimization

• For simplicity, lets consider only a single data-point first

• Where         is called the variational / auxiliary distribution

– This decomposition holds for any 

– By introducing q(z), the optimization will become much simpler

• Why is that the same?

– We can use Bayes rule for                                 and all terms except                cancel
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Basics: Kullback-Leibler Divergences

The KL-divergence is a important similarity measure for distributions

– Its always non-negative

– If its zero, both distributions are the same:

– It is non-symmetric (hence, its not a distance metric):

– Can be used to find different approximations of distributions

– Used a lot in Variational Inference, Reinforcement Learning, Information theory…
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EM-Decomposition

Derivation:

1. Introduce variational distribution q(z)

2. Use Bayesian theorem

3. Add and subtract 

4. Write as 2 sums
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EM Decomposition

Marginal Likelihood decomposes in 2 terms:

• Lower bound 

– Contains                      instead of

– … which is much easier to optimize (convex for most distributions)

– Each                        is weighted by q(z)

• Why is it a lower bound?

– Since                          it follows that 
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Expectation-Maximization Steps

EM iteratively applies 2 steps:

• (E)xpectation-step:

– Find q(z) that minimizes KL 

– Can be done in closed form for discrete z (e.g. mixtures): 

• Observations:

– The marginal log-likelihood                   is unaffected by the E-step

– As KL is minimized, lower bound has to go up

– After the E-step                                       and therefore, the lower bound is tight, i.e.: 
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Expectation-Maximization Steps

EM iteratively applies 2 steps:

• (M)aximization-step:

– Maximize lower bound with respect to  

– Also called the complete-data likelihood

– Each possible value of the missing data is weighted by
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EM Convergence Properties

• EM improves the lower bound

– M-step: Lower bound is maximized

– E-step: KL is set to 0, lower bound has to go up

• EM improves the marginal likelihood

– M-step: Lower bound increases and KL increases (can’t get 

smaller than 0)

– E-step: Marginal likelihood is unaffected

E-Step

M-Step
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Illustration of EM

• Lower bound (blue curve) is a convex 

approximation of the marginal likelihood (red 

curve)

– Maximum of lower bound can be easily 

obtained (         )

– Closed form solutions available, no 

gradient descent  required

• Compute new lower bound for          

(green curve)

• Due to the local approximation of the lower-

bound, EM can only find local optima         

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 29



EM for full dataset

For all data-points, the lower bound is given by:

• One latent variable     per data-point

• If z is discrete with K different values, than                 

can be represented as a N x K matrix

• We will write 
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Practical considerations…

How many mixture components do we need?

• More components will typically lead to a better likelihood

• But are more components necessarily better? Not always, because of overfitting!

• It’s again a model-selection problem (cross-validate on a validation-set)

• Bayesian methods can be used to integrate out number of components (tricky to get them to 

work)

How do we initialize:

• EM can give very poor results with wrong initialization

• Most common approach: 

– Use k-means (simple clustering algorithm) to initialize the centers

– Use a fixed value for the covariance
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EM for Dimensionality Reduction



EM for Dimensionality Reduction (aka. probabilistic PCA)

We can also formulate dimensionality reduction using latent variables

Idea: Introduce a latent variable model to relate a D-dimensional

observation vector to a corresponding M-dimensional gaussian 

latent variable (with M < D)

• z is a d’ latent variable (our low dimensional representation)

• W is a D x M matrix relating the latent space z with the original space x

• is a constant offset vector

• is a d-dimensional Gaussian noise vector
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EM for Dimensionality Reduction

Probabilistic Dimensionality Reduction Model:

• Continuous Latent Variable: 

– Assume 0 mean, unit variance distribution in latent space

• Observation Model

– with parameters 
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Generative Process

Our model can be interpreted in terms of a generative process

1. Sample latent variable

2. Linearly project to high-D space

3. Sample noise

4. Add noise to obtain x
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Marginal likelihood

Marginal likelihood is given by:

Maximize the marginal log-likelihood:

This is a typical case for using EM

• It can however also be solved in closed form as everything is Gaussian and linear

• But it is somehow complex and using EM is a much more general solution

• Its a good example to understand EM
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Expectation-step

We need to compute the posterior distribution

• Application of Bayes’ Rule with Gaussian distributions

• Posterior is Gaussian with mean and variance 

– Not covered now, see Lecture 9, Bayesian Learning

– Only the case because x is linear in z!
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Maximization Step

Maximize the lower bound with respect to    ...

• Continuous latent variable: How can we solve the integral?

a) qi(z) is Gaussian, can be solved in principle in closed form (not covered)

b) Simpler: Sampling! I.e, we can use Monte Carlo Estimates
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Recap: Monte-carlo estimation (Lecture 2)

Expectations can always be approximated by samples:

• Necessary if no analytical solution exists to compute the integral (typical case)
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Maximization Step

Monte-Carlo estimate for the lower bound 

• If we only use a single sample      per i (i.e. N = 1), we get

• Maximizing             is a standard maximum likelihood problem with Gaussian linear models. 

• We know the solution already (standard least squares): 

k-th element of
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Algorithm: EM for PCA

• Initialize: Use average of x for    , random matrix W

• Repeat until convergence:

– Expectation-step: 

• Compute posterior mean and covariance

• Generate latent samples: 

– Maximization-step: Update 
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Illustration: EM for PCA
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Probabilistic PCA vs. PCA

Typically, PCA using eigenvector decomposition is preferred:

• Single one-step solution

• Very fast

However, looking at EM for dimensionality reduction makes sense if:

• We need a density

• Helps us to understand EM

• Helps us to understand more complex dimensionality reduction methods (variational auto 

encoders use the same principles)
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Additional Notes for EM

EM assumes that E-step can set the KL to zero:

• I.e. we can evaluate the posterior analytically

• Lower bound is tight

• Marginal likelihood always improves (good to check for debugging!)

• Only possible if z is discrete or we have linear Gaussian models!

For more complex latent variable models (e.g. Deep Neural Networks), this is 

typically not possible:

• Extension of EM called Variational Bayes / Variational Inference can still do that

• Approximates the posterior, i.e. KL will be > 0 after E-step

• Very active research, underlying algorithm of many deep learning architectures (e.g. variational 

autoencoder)

• Will be covered in the end of the lecture
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Takeaway messages

You know now:

• The difference between parametric and non-parametric models

• Different non-parametric models (histogram, kernel density 

estimation and k-nearest neighbors)

• What mixture models and latent variable models are

• What the Expectation-Maximization idea and algorithm are

• Why does EM converge

• How to apply EM to GMMs (discrete latent variables) and PCA 

(continuous latent variables)
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Self-test questions

• What are mixture models?

• Should gradient methods be used for training mixture models?

• How does the EM algorithm work?

• What is the biggest problem of mixture models?

• How does EM decomposes the marginal likelihood?

• Why does EM always improve the lower bound?

• Why does EM always improve the marginal likelihood?

• Why can we optimize each mixture component independently with EM

• Why do we need sampling for continuous latent variables?
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