Variational Auto Encoders

Machine Learning WS2021/22

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

Learning Outcome for today...

In this lecture, we will..

- Understand the auto-encoders and what you can do with it
- How to use them as generative model and its connection to latent variable
 models
- What variational auto-encoders are...
- ... and how to train them using Variational Bayes

Auto-encoders

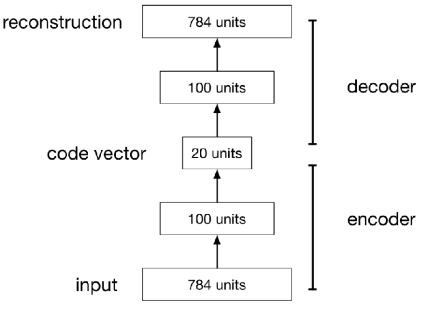
.

-

C .

Auto-encoders

- An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input



Minimize reconstruction loss:

$$L(\boldsymbol{ heta}) = \sum_{i} ||\mathrm{dec}_{\boldsymbol{ heta}}(\mathrm{enc}_{\boldsymbol{ heta}}(\boldsymbol{x}_{i})) - \boldsymbol{x}_{i}||^{2}$$

• Note: the simplest auto-encoder only has 1 linear layer for the encoder and decoder -> PCA

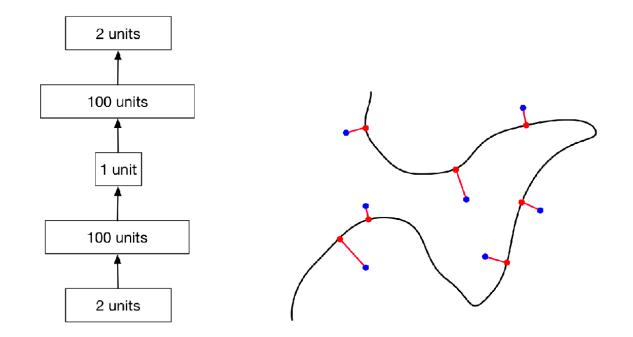
Auto-encoders

Why autoencoders?

- Map high-dimensional data to two dimensions for visualization
- Compression (i.e. reducing the file size)
 - Note: this requires a VAE, not just an ordinary autoencoder.
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
 - Unlabled data can be much more plentiful than labeled data
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

Deep auto-encoders

- Deep nonlinear autoencoders learn to project the data, not onto a linear subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is a kind of nonlinear dimensionality reduction.



Deep auto-encoders

• Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)

Some limitations of autoencoders

- They're not generative models, so they don't define a distribution
- How to choose the latent dimension?

Generative Model

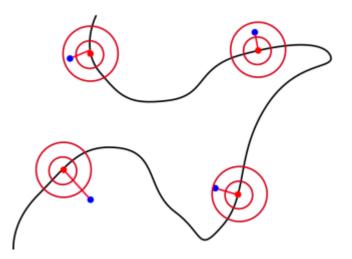
• Consider training a generator network with maximum likelihood.

$$p(\boldsymbol{x}) = \int p(\boldsymbol{z}) p(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z}$$

- One problem: if z is low-dimensional and the decoder is deterministic, then p(x) = 0 almost everywhere!
 - The model only generates samples over a low-dimensional sub-manifold of X.
- Solution: define a noisy observation model, e.g.

 $p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{z}), \sigma^{2}\boldsymbol{I})$

where $\mu_{\theta}(z)$ is the function computed by the decoder with parameters θ .



Latent Variable Models and Variational Bayes

- ·

c

Latent Variable Models

Recap: latent variable models

- Examples: mixture models, missing data, latent factors, variational auto-encoders
- Observed variables: x, Latent variables: z
- Parametric model: $p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$

• Marginal distribution:
$$p_{\theta}(\boldsymbol{x}) = \int_{\boldsymbol{z}} p(\boldsymbol{z}) p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z}$$

At least the integral $p_{\theta}(x) = \int_{z} p(z) p_{\theta}(x|z) dz$ is well-defined, but how can we compute it?

• The decoder function is very complicated, so there's no hope of finding a closed form.

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022

Marginal Likelihood for Latent Variable Models

(Marginal) Log-Likelihood:

$$\operatorname{LogLik}(\mathcal{D}) = \sum_{i=1}^{N} \log p(\boldsymbol{x}_i) = \sum_{i=1}^{N} \log \left(\int p(\boldsymbol{x}_i | \boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} \right) \approx \sum_{i=1}^{N} \log \left(\frac{1}{M} \sum_{\boldsymbol{z}_j \sim p(\boldsymbol{z})}^{M} p(\boldsymbol{x}_i | \boldsymbol{z}_j) \right)$$

... which is computationally infeasible in most cases

• Requires a lot of samples z_j for each x_i due to uninformed sampling of z_j (high variance in p(x|z))

Variational Bayes

Variational Bayes (VB) uses a lower bound of the marginal log-likelihood for the optimization

For simplicity, lets consider only a single data-point first ۲

$$\underbrace{\log p(\boldsymbol{x})}_{\text{marginal log-like}} = \underbrace{\int q(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})} d\boldsymbol{z}}_{\text{Lower Bound } \mathcal{L}(q)} + \underbrace{\int q(\boldsymbol{z}) \log \frac{q(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z}}_{\text{KL Divergence: KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{x}))} \mathbf{z} = \underbrace{\sum \sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})}}_{\text{KL Divergence: KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{x}))} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})}}_{\text{KL Divergence: KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{x}))} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{q(\boldsymbol{z})}}_{\text{Lower Bound } \mathcal{L}(q)} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{KL Divergence: KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{z}))} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{KL Divergence: KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{z}))} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{KL Divergence: KL}(\boldsymbol{z})|p(\boldsymbol{z}|\boldsymbol{z})}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Lower Bound } \boldsymbol{z}} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{KL Divergence: KL}(\boldsymbol{z})|p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Simplification in EM:}} \mathbf{z} = \underbrace{\sum \substack{p(\boldsymbol{z}) \log \frac{p(\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{z})}}_{\text{Lower Bound } \boldsymbol{z}}_{\text{Lower Bound } \boldsymbol{z}}_{\text{L$$

- Where q(z) is called the variational / auxiliary distribution ٠
 - This decomposition holds for any q(z)
 - By introducing q(z), the optimization will become much simpler
- Why is that the same? ٠
 - We can use Bayes rule for $p(\bm{z}|\bm{x}) = rac{p(\bm{x}, \bm{z})}{p(\bm{x})}$ and all terms except $p(\bm{x})$ cancel

Postenor $p(\boldsymbol{z}|\boldsymbol{x})$ can be computed in closed form

- Note

Examples: Gaussian Mixture Models, Probabilistic PCA

Optimization in Variational Bayes

VB optimizes the lower bound instead of the log-likelihood

$$\mathcal{L}(q,p) = \int q(\boldsymbol{z}) \log \left(p(\boldsymbol{x}|\boldsymbol{z}) \frac{p(\boldsymbol{z})}{q(\boldsymbol{z})} \right) d\boldsymbol{z} = \int q(\boldsymbol{z}) \log p(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z} - \mathrm{KL}(q(\boldsymbol{z})||p(\boldsymbol{z}))$$

- Why is it a lower bound? Since $\operatorname{KL}(q||p) \geq 0$ it follows that $\mathcal{L}(q,p) \leq \log p(\boldsymbol{x})$

– Its also called **Evidence lower bound (ELBO)**, as the marginal likelihood is often called evidence

Joint optimization of the lower bound $\mathcal{L}(q, p)$ w.r.t *p* and *q* using stochastic gradient descent

$$q^*, p^* = \operatorname*{arg\,max}_{q,p} \mathcal{L}(q,p)$$

- In practice, $q_{\phi}(z), p_{\varphi}(z)$ and $p_{\varphi}(z)$ will be parametrized distributions and we optimize over ϕ and φ
- We always improve the lower-bound, but there is no guarantee to improve the marginal likelihood
- Standard for most continuous latent variable models (e.g. Variational Auto-Encoder)
- Lower bound is only tight if KL(q(z)||p(z|x)) can be set to 0. Thats only true for EM.

Objective for the variational distribution

What does q learn?

$$\text{KL}(q(\boldsymbol{z})||\boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x})) = \int q(\boldsymbol{z}) \log \frac{q(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z} = \int q(\boldsymbol{z}) \log \frac{p(\boldsymbol{x})q(\boldsymbol{z})}{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})} d\boldsymbol{z} = \int q(\boldsymbol{z}) \log \frac{q(\boldsymbol{z})}{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})} d\boldsymbol{z} + \text{const}$$
$$= -\mathcal{L}(q,p) + \text{const}$$

$$\Rightarrow \operatorname{argmin}_{q} \operatorname{KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{x})) = \operatorname{argmax}_{q} \mathcal{L}(q,p)$$

• By maximizing the variational lower bound w.r.t q(z), the variational distribution will approximate the posterior, i.e.,

$$q(\boldsymbol{z}) \approx p(\boldsymbol{z}|\boldsymbol{x})$$

Full-Dataset Lower Bound

$$\mathcal{L}(\{q_i\}, p) = \frac{1}{N} \sum_i \int q_i(\boldsymbol{z}) \log p(\boldsymbol{x}_i | \boldsymbol{z}) d\boldsymbol{z} - \mathrm{KL}(q_i(\boldsymbol{z}) | | p(\boldsymbol{z}))$$

- Introduced individual variational distribution $q_i(z)$ for each data point

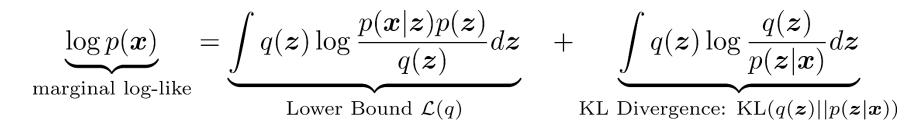
✓ More directed sampling:

- Instead of sampling from the uninformed prior p(z) ...
- ... we can now sample from the variational distributions $q_i(z) \approx p(z|x_i)$
- Each $q_i(z)$ will produce samples with high p(x|z) once optimized!

✓ Integral is outside the log:

- only one sample from $q_i(z)$ needed to obtain unbiased estimate of the lower bound
- i.e. suitable for stochastic gradient descent while the marginal loglikelihood is not

Special Case 1: Expectation Maximization



Expectation-Maximization uses the same decomposition, but two separate optimization steps

- Maximization Step:
 - Keep $q({m z})$ fixed, maximize Lower bound ${\cal L}(q,p)$ w.r.t. model distribution $p_{m arphi}({m x}|{m z})$ and $p_{m arphi}({m z})$

$$\boldsymbol{\varphi}^* = \arg\max_{\varphi} \mathcal{L}(q, p_{\boldsymbol{\varphi}})$$

- Expectation Step:
 - Keep model $p_{\varphi}(\boldsymbol{x}|\boldsymbol{z})$ and $p_{\varphi}(\boldsymbol{z})$ fixed, minimize KL w.r.t q

 $q^* = \operatorname*{arg\,min}_{\sim} \operatorname{KL}(q(\boldsymbol{z})||p(\boldsymbol{z}|\boldsymbol{x}))$

$$\rightarrow q^*(\boldsymbol{z}) = p(\boldsymbol{z}|\boldsymbol{x})$$

Gerhard Neumann | Reinforcement Learning | KIT | WS 2021

Sidenote
In EM the KL can be set to zero (i.e. we can compute posterior p_φ(z|x))
Only works in special cases

e.g. discrete z, GMMs

In this case the lower bound is tight
increasing lower bound always increases marginal log-like

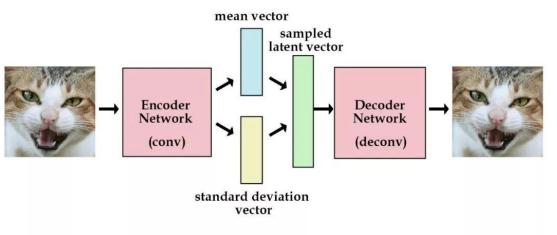
Special Case 2: Amortized Variational Inference

Instead of using an individual auxiliary distribution $q_i(z)$ per data-point x_i , we can use an "amortized" distribution $q_{\phi}(z|x_i)$ that is given by a DNN

$$\mathcal{L}(q,p) = \frac{1}{N} \sum_{i} \int q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i}) \log p_{\varphi}(\boldsymbol{x}_{i}|\boldsymbol{z}) d\boldsymbol{z} - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})||p_{\varphi}(\boldsymbol{z}))$$

This is the standard objective used for variational auto-encoders (VAE)

- Encoder $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$
- Decoder $p_{oldsymbol{arphi}}(oldsymbol{x}|oldsymbol{z})$
- Latent Prior $p_{\varphi}(\boldsymbol{z})$



Optimization over the variational distribution

$$\mathcal{L}(q,p) = \frac{1}{N} \sum_{i} \int q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i}) \log p_{\varphi}(\boldsymbol{x}_{i}|\boldsymbol{z}) d\boldsymbol{z} - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})||p_{\varphi}(\boldsymbol{z}))$$

But: How can we optimize over the sampling distribution $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$?

- Different to standard max-likelihood: Here, samples are not fixed but generated!
- Standard gradients can be used (related to policy gradients), but very inefficient as it does not use gradient information of $\partial \log p_{\varphi}(x|z)/\partial z$
- We need something more efficient: **Reparemetrization trick**!

Basics: Reparameterization Trick

We want to optimize distribution $p_{\theta}(x)$ using the following expected objective

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}}[f(\boldsymbol{x})] = \int p_{\boldsymbol{\theta}}(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

... and we are given $\frac{df}{dx}(x)$. How can we exploit this information?

We can reparametrize the expectation:

- Introduce random variable $\boldsymbol{\xi} \sim q(\boldsymbol{\xi})$ where q is a simple, parameter-free distribution (e.g., $q(\boldsymbol{\xi}) = \mathcal{N}(\mathbf{0}, \boldsymbol{I})$)
- If we can find a mapping $x = h_{\theta}(\xi)$ such that x is distributed as $x \sim p_{\theta}(x)$ then:

$$\int p_{\theta}(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x} = \int q(\boldsymbol{\xi}) f(\boldsymbol{h}_{\theta}(\boldsymbol{\xi})) d\boldsymbol{\xi}$$

We moved the parameters from distribution $p_{\theta}(x)$ into a function $h_{\theta}(\xi)$

Basics: Reparameterization Trick

Example: Lets assume
$$p_{\theta}(x) = \mathcal{N}(\mu, \Sigma)$$
 and $q(\xi) = \mathcal{N}(0, I)$. If we set
 $h_{\theta}(\xi) = \mu + A^T \xi$, with $\theta = \{\mu, \Sigma\}$ and $A^T A = \Sigma$
Then $x' = h_{\theta}(\xi)$ is distributed with $p(x') = \mathcal{N}(\mu, A^T I A) = \mathcal{N}(\mu, \Sigma)$
Reparametrization Trick:
 $\int p_{\theta}(x) f(x) dx = \int q(\xi) f(h_{\theta}(\xi)) d\xi$

Reparametrized Gradient:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p_{\boldsymbol{\theta}}}[f(\boldsymbol{x})] = \nabla_{\boldsymbol{\theta}} \int q(\boldsymbol{\xi}) f(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{\xi})) d\boldsymbol{\xi} = \int q(\boldsymbol{\xi}) \; \frac{\partial \boldsymbol{h}_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}}(\boldsymbol{\xi}) \; \frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{\xi})) d\boldsymbol{\xi}$$

• We can now use the gradient
$$rac{\partial f}{\partial x}$$
 to compute $\nabla_{m{ heta}} \mathbb{E}_{p_{m{ heta}}}[f(m{x})]$!

Back to optimization over the variational distribution

• Lower bound:
$$\mathcal{L}(q,p) = \frac{1}{N} \sum_{i} \int q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i}) \log p_{\varphi}(\boldsymbol{x}_{i}|\boldsymbol{z}) d\boldsymbol{z} - \mathrm{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}_{i})||p_{\varphi}(\boldsymbol{z}))$$

• Distribution:

$$q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) = \mathcal{N}ig(\boldsymbol{z}|\boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{x}), \sigma_{\boldsymbol{\phi}}^2(\boldsymbol{x})\boldsymbol{I}ig)$$

• Reparametrization function:

$$oldsymbol{h}_{oldsymbol{\phi}}(oldsymbol{\xi},oldsymbol{x})=oldsymbol{\mu}_{oldsymbol{\phi}}(oldsymbol{x})+oldsymbol{\sigma}_{oldsymbol{\phi}}(oldsymbol{x})\circoldsymbol{\xi}$$

• Reparametrized lower bound:

$$\mathcal{L}(q,p) = \frac{1}{N} \sum_{i} \int p(\boldsymbol{\xi}) \Big(\underbrace{\log p_{\varphi}(\boldsymbol{x}_{i} | \boldsymbol{h}(\boldsymbol{\xi}, \boldsymbol{x}))}_{\text{reconstruction}} + \underbrace{\log p_{\varphi}(\boldsymbol{h}(\boldsymbol{\xi}, \boldsymbol{x})) - \log q_{\phi}(\boldsymbol{h}(\boldsymbol{\xi}, \boldsymbol{x}) | \boldsymbol{x})}_{\text{KL-term}} \Big)$$

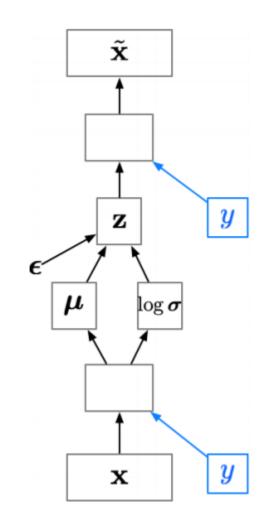
Variational Auto-Encoders

Faces produced by variational auto-encoders

- In comparison to other generative models (such as GANs), VAEs produce rather blurry images
 - More specific methods (e.g. hierarchical VAEs) can achieve similar performance to GANs
 - Most likely cause: Maximum Likelihood objective of VAEs
- In short, a VAE is like an autoencoder, except that it's also a generative model
 - defines a distribution p(x)

Class conditional VAEs

- So far, we haven't used the labels y. A class-conditional VAE provides the labels to both the encoder and the decoder.
- Since the latent code **z** no longer has to model the image category, it can focus on modeling the stylistic features.
- If we're lucky, this lets us disentangle style and content. (Note: disentanglement is still a dark art.)
 - See Kingma et al., "Semi-supervised learning with deep generative models."



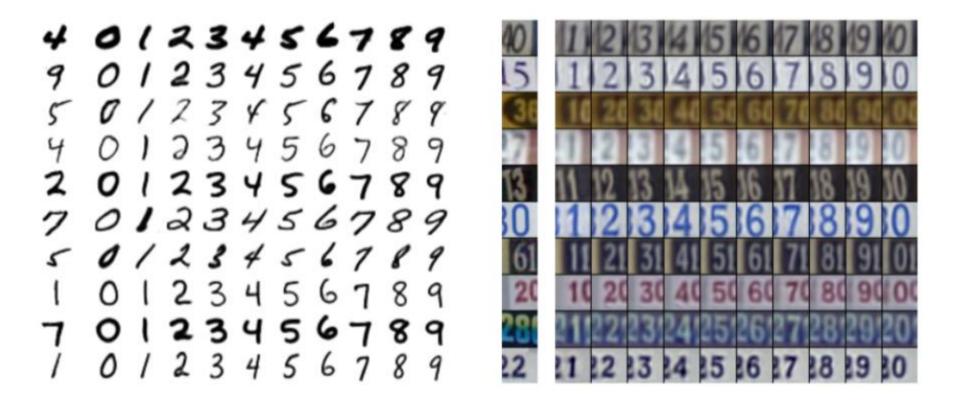
Class-conditional VAE

• By varying two latent dimensions (i.e. dimensions of z) while holding y fixed, we can visualize the latent space.

2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	З	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	З	3	3	3	3	з	з	з	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	З	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	З	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	ч	4	4	4	4	4	4	4	4	4
2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	ч	4	4	4	4	4	4	4	4	1

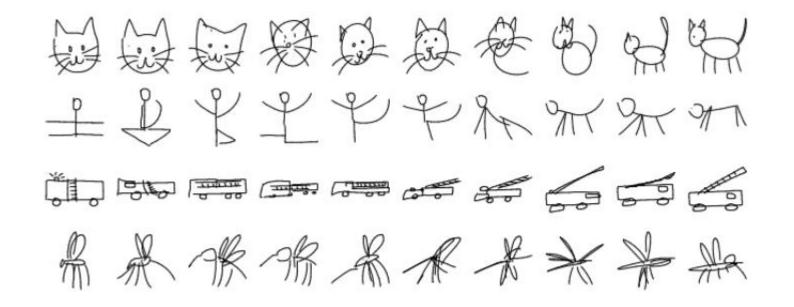
Class-conditional VAE

• By varying the label y while holding **z** fixed, we can solve image analogies



Latent Space Interpolations

• You can often get interesting results by interpolating between two vectors in the latent space:



Ha and Eck, "A neural representation of sketch drawings"

Wrap-Up Variational Bayes

VB is a method for optimizing the data likelihood of latent variable models

- It introduces a variational distribution $q_i(z)$ over the latent variable
 - Variational distribution should approximate posterior $q_i(\boldsymbol{z}) pprox p(\boldsymbol{z}|\boldsymbol{x}_i)$
- ... and decomposes the marginal likelihood in a lower bound and a KL-term
- The lower bound is in general easier to optimize than the marginal log-likelihood:
 - \checkmark The integral has moved outside the log
 - ✓ More direct sampling in latent space by sampling from approximate posterior $q_i(z)$ instead of prior p(z)
 - × No guarantee that we also improve marginal loglikelihood (except in the special case of EM)
- Expectation Maximization is a special case where posterior can be computed analytically
- Most prominent application of VB is the Variational Auto-Encoder

Intermediate Lecture Wrap-Up – Algorithms

Chapter 1: Classical Supervised Learning

- ✓ Linear Regression,
- Ridge Regression,
- ✓ k-NN,
- Trees and Forests

Chapter 2: Kernel Methods

- ✓ Kernel-Regression
- Support Vector Machines

Chapter 3: Bayesian Learning

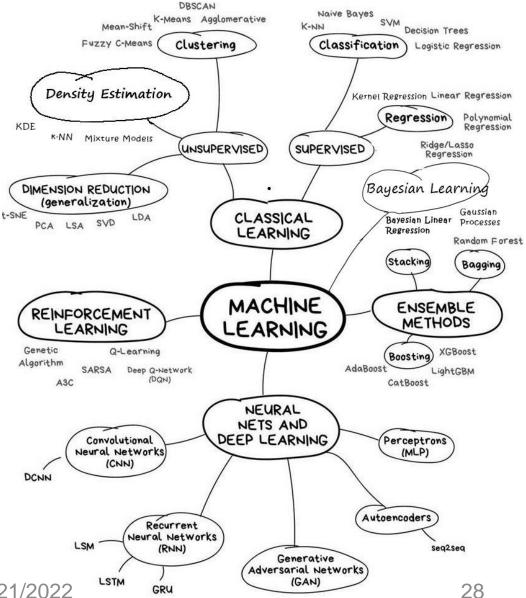
- ✓ Bayesian Linear Regression
- ✓ Gaussian Processes

Chapter 4: Neural Networks

- ✓ Backpropagation
- ✓ MLPs, CNNs, LSTMs

Chapter 5: Unsupervised Learning

- ✓ PCA
- ✓ K-means
- Expectation-Maximization
- Variational Auto Encoders



Intermediate Lecture Wrap-Up – Basics

Chapter 1: Classical Supervised Learning

- ✓ Matrix/Vector Calculus
- Probability Theory, Maximum Likelihood
- ✓ Gradient Descent

Chapter 2: Kernel Methods

- ✓ Sub-gradients
- Constraint Optimization

Chapter 3: Bayesian Learning

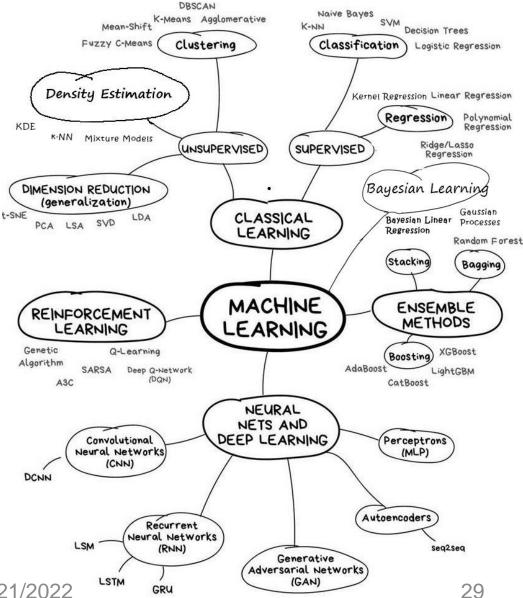
- "Completing the Square"
- Gaussian Conditioning

Chapter 4: Neural Networks

✓ Multivariate chain rule

Chapter 5: Unsupervised Learning

- ✓ KL-divergences
- ✓ Reparametrization trick



Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

The ML algorithm "coordinate system"

Most ML algorithms can be grouped along 3 axis:

- **Representation:** What is the underlying representation of our model?
- Loss function: How do we define what is a good and what is a poor model?
- **Optimization:** How do we optimize?

... of course more axis exists, e.g. Regularization

Intermediate Lecture Wrap-Up – Representations

Chapter 1: Classical Supervised Learning

- Features / Basis Functions: Linear (Ridge) Regression, Logistic Regression
- ✓ Instances: k-NN
- ✓ Trees: CART
- Ensembles: Forests

Chapter 2: Kernel Methods

Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning

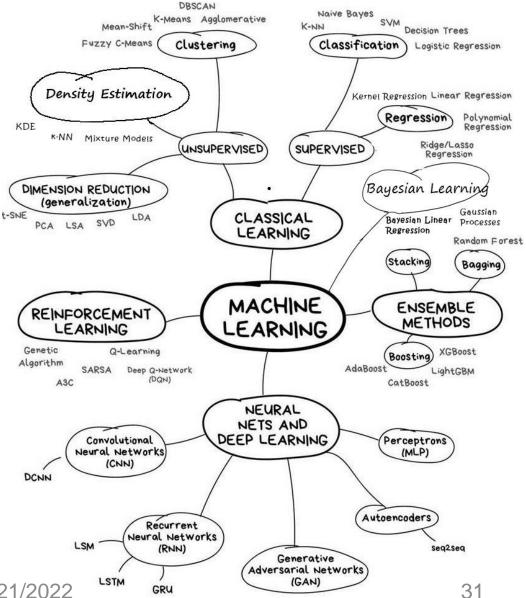
- ✓ Features: Bayesian Linear Regression
- Kernels: Gaussian Processes

Chapter 4: Neural Networks

 Feed-forward Neural Networks, CNNs, Recurrent Neural Networks, LSTMs, GRU: Backprob

Chapter 5: Unsupervised Learning

- Cluster centroids: k-means
- Linear subspaces: PCA
- Mixture Models: Expectation Maximization
- (Variational) Auto-encoders: Variational Bayes



Intermediate Lecture Wrap-Up – Loss Functions

Chapter 1: Classical Supervised Learning

- Mean/Summed Squared error (SSE): Linear Regression
- Gaussian Log-Likelihood: Probabilistic linear Regression
- Binary Cross Entropy Likelihood: Logistic Regression
- Soft-Max Likelihood: Multi-class classification

Chapter 2: Kernel Methods

- ✓ SSE: Kernel Regression
- ✓ Maximum Margin or Hinge Loss: SVM

Chapter 3: Bayesian Learning

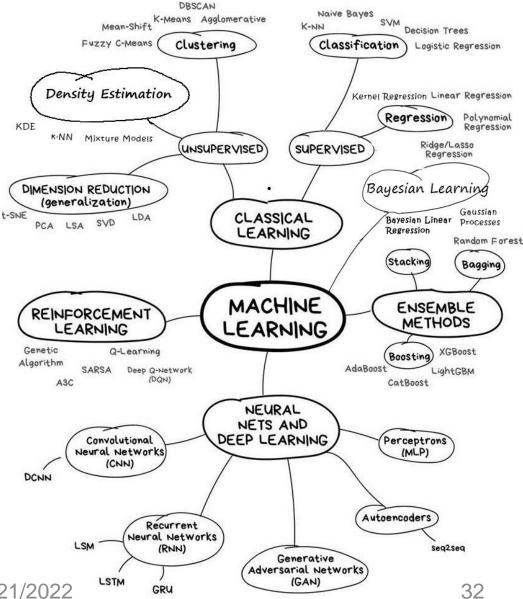
 Maximum a-posteriori solution: Probabilistic ridge regression

Chapter 4: Neural Networks

Most of that above...

Chapter 5: Unsupervised Learning

- Reconstruction Loss: PCA, k-means
- ✓ Marginal Log-likelihoods: EM
- Evidence Lower Bound (ELBO): Variational Bayes



Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Intermediate Lecture Wrap-Up – Optimization Methods

Chapter 1: Classical Supervised Learning

- ✓ Least Squares Solution: Linear Regression
- Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

- ✓ Least Squares Solution: Kernel Regression
- ✓ Sub-Gradients: SVM
- Lagrangian Optimization: SVMs

Chapter 3: Bayesian Learning

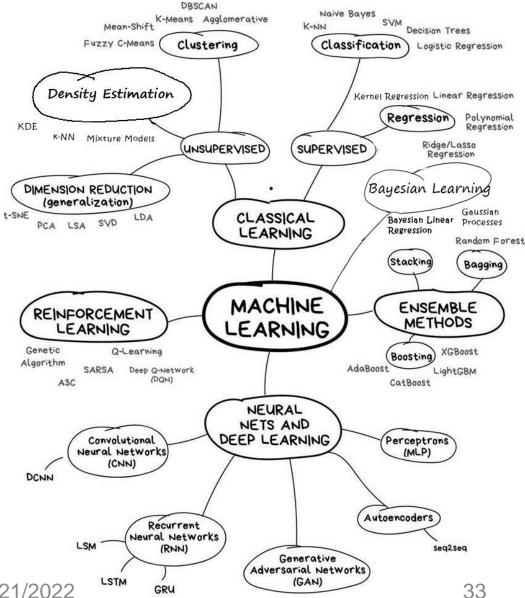
Posterior approximation

Chapter 4: Neural Networks

- More specialized gradient descent methods
- Adam, 2nd order methods

Chapter 5: Unsupervised Learning

- Expectation-Maximization
- ✓ Variational Bayes



Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Where to go from now?

Other ML lectures:

- WS: Reinforcement Learning, **Me**
- SS: Deep Learning and Neural Networks: Prof. Waibel
- SS: Deep Learning for Computer Vision: Prof. Stiefelhagen
- WS: Optimization Methods for Machine Learning and Engineering
- SS: Cognitive Systems, Prof. Waibel and Me
- SS: Pattern Recognition, Prof. Beyerer
- SS: Maschinelles Lernen in den Materialwissenschaften, Prof. Friedrich
- SS: Maschinelles Lernen in der Computersicherheit, Prof. Wressnegger

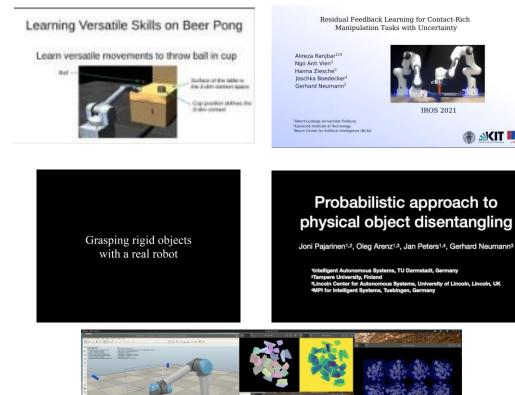
A bit of self-advertisment

What else do we offer?

- Hot research topics: Robot Reinforcement Learning, Deep Learning, Imitation Learning, Robotics, Human-Robot Collaboration, Variational Inference
- Projektpraktikum and Seminar
 - Work on your own research topic together with your supervisor
 - Get to know latest state of the art algorithms
 - Get experience in doing top-nodge research

Praxis der Forschung

- 2 semester, 24 ECTS intensive research project
- Interested in a Master-Thesis or Bachelor Thesis?
 - Have a look at https://alr.anthropomatik.kit.edu/
 - Use real robots (Franka Panda arms)
 - High success-rate of turning your thesis into a paper!
- Hiwi Positions:
 - Use robots, cameras, physics simulation, benchmark algorithms etc...



Announcement: Fragestunde, 18.02 16:00

