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Learning Outcome for today...

In this lecture, we will..

• Understand the auto-encoders and what you can do with it

• How to use them as generative model and its connection to latent variable 

models

• What variational auto-encoders are...

• ... and how to train them using Variational Bayes
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Auto-encoders



Auto-encoders

• An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x

• To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than 

the input

• Note: the simplest auto-encoder only has 1 linear layer for the encoder and decoder -> PCA
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Minimize reconstruction loss:



Auto-encoders

Why autoencoders?

• Map high-dimensional data to two dimensions for visualization

• Compression (i.e. reducing the file size)

– Note: this requires a VAE, not just an ordinary autoencoder.

• Learn abstract features in an unsupervised way so you can apply them to a supervised task

– Unlabled data can be much more plentiful than labeled data

• Learn a semantically meaningful representation where you can, e.g., interpolate between different 

images.
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Deep auto-encoders

• Deep nonlinear autoencoders learn to project the data, not onto a linear subspace, but onto a 

nonlinear manifold

• This manifold is the image of the decoder.

• This is a kind of nonlinear dimensionality reduction.
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Deep auto-encoders

• Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with 

linear autoencoders (PCA)

Some limitations of autoencoders

• They’re not generative models, so they don’t define a distribution

• How to choose the latent dimension?
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Generative Model

• Consider training a generator network with maximum likelihood.

• One problem: if z is low-dimensional and the decoder is deterministic, then p(x) = 0 almost 

everywhere!

– The model only generates samples over a low-dimensional sub-manifold of X .

• Solution: define a noisy observation model, e.g.

where is the function computed by

the decoder with parameters θ.

Gerhard Neumann | Reinforcement Learning | KIT | WS 2021 8



Latent Variable Models and Variational Bayes



Latent Variable Models

Recap: latent variable models

• Examples: mixture models, missing data, latent factors, variational auto-encoders

• Observed variables: x, Latent variables: z

• Parametric model:

• Marginal distribution: 

At least the integral                                                   is well-defined, but how can we compute it?

• The decoder function is very complicated, so there’s no hope of finding a closed form.
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Marginal Likelihood for Latent Variable Models

(Marginal) Log-Likelihood:

… which is computationally infeasible in most cases

• Requires a lot of samples       for each       due to uninformed sampling of       (high variance in            )
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Variational Bayes

Variational Bayes (VB) uses a lower bound of the marginal log-likelihood for the optimization

• For simplicity, lets consider only a single data-point first

• Where         is called the variational / auxiliary distribution

– This decomposition holds for any 

– By introducing q(z), the optimization will become much simpler

• Why is that the same?

– We can use Bayes rule for                                 and all terms except            cancel

Expectation maximization is a 

special case of this decomposition

Simplification in EM:

• Posterior              can be 

computed in closed form

• Examples: Gaussian Mixture 

Models, Probabilistic PCA

Note
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Optimization in Variational Bayes

VB optimizes the lower bound instead of the log-likelihood

– Why is it a lower bound? Since                          it follows that

– Its also called Evidence lower bound (ELBO), as the marginal likelihood is often called evidence

Joint optimization of the lower bound w.r.t p and q using stochastic gradient descent

• In practice,                                           will be parametrized distributions and we optimize over 

• We always improve the lower-bound, but there is no guarantee to improve the marginal likelihood

• Standard for most continuous latent variable models (e.g. Variational Auto-Encoder)

• Lower bound is only tight if                             can be set to 0. Thats only true for EM. 
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Objective for the variational distribution

What does q learn?

• By maximizing the variational lower bound w.r.t         , the variational distribution will approximate the 

posterior, i.e., 
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Full-Dataset Lower Bound

– Introduced individual variational distribution          for each data point

✓ More directed sampling: 

– Instead of sampling from the uninformed prior          ...

– ... we can now sample from the variational distributions

– Each           will produce samples with high             once optimized!

✓ Integral is outside the log:

– only one sample from         needed to obtain unbiased estimate of the lower bound 

– i.e. suitable for stochastic gradient descent while the marginal loglikelihood is not
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Special Case 1: Expectation Maximization

Expectation-Maximization uses the same decomposition, but two separate optimization steps

– Maximization Step:

• Keep fixed, maximize Lower bound                w.r.t. model distribution 

– Expectation Step:  

• Keep model                                    fixed,   minimize KL w.r.t 
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• In EM the KL can be set to zero

(i.e. we can compute posterior                 )

• Only works in special cases 

• e.g. discrete z, GMMs

• In this case the lower bound is tight      

• increasing lower bound always increases 

marginal log-like  

Sidenote



Special Case 2: Amortized Variational Inference

Instead of using an individual auxiliary distribution         per data-point     , we can use an 
“amortized” distribution                that is given by a DNN 

This is the standard objective used
for variational auto-encoders (VAE)

• Encoder

• Decoder

• Latent Prior

c
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Optimization over the variational distribution

But: How can we optimize over the sampling distribution ?

• Different to standard max-likelihood: Here, samples are not fixed but generated!

• Standard gradients can be used (related to policy gradients), but very inefficient as it does not use 

gradient information of 

• We need something more efficient: Reparemetrization trick!
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Basics: Reparameterization Trick

We want to optimize distribution            using the following expected objective

... and we are given            . How can we exploit this information?

We can reparametrize the expectation:

• Introduce random variable                 where q is a simple, parameter-free distribution (e.g.,                            ) 

• If we can find a mapping                    such that x is distributed as then:

We moved the parameters from distribution           into a function
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Basics: Reparameterization Trick

Example:  Lets assume                                 and                            . If we set

Then                        is distributed with

Reparametrization Trick:

Reparametrized Gradient:

• We can now use the gradient        to compute                            ! 
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Back to optimization over the variational distribution

• Lower bound:

• Distribution: 

• Reparametrization function:

• Reparametrized lower bound:
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Variational Auto-Encoders

Faces produced by variational auto-encoders

• In comparison to other generative models (such as GANs), 

VAEs produce rather blurry images

– More specific methods (e.g. hierarchical VAEs) can achieve 

similar performance to GANs

– Most likely cause: Maximum Likelihood objective of VAEs

• In short, a VAE is like an autoencoder, except that it’s also a

generative model

– defines a distribution p(x)
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Class conditional VAEs

• So far, we haven’t used the labels y. A class-conditional 

VAE provides the labels to both the encoder and the

decoder.

• Since the latent code z no longer has to model the 

image category, it can focus on modeling the stylistic 

features.

• If we’re lucky, this lets us disentangle style and content. 

(Note: disentanglement is still a dark art.)

– See Kingma et al., “Semi-supervised learning with deep 

generative models.”
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Class-conditional VAE

• By varying two latent dimensions (i.e. dimensions of z) while holding y fixed, we can 

visualize the latent space.
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Class-conditional VAE

• By varying the label y while holding z fixed, we can solve image analogies
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Latent Space Interpolations

• You can often get interesting results by interpolating between two vectors in the latent 

space:
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Wrap-Up Variational Bayes

VB is a method for optimizing the data likelihood of latent variable models

• It introduces a variational distribution          over the latent variable

– Variational distribution should approximate posterior 

• ... and decomposes the marginal likelihood in a lower bound and a KL-term

• The lower bound is in general easier to optimize than the marginal log-likelihood:

✓ The integral has moved outside the log

✓ More direct sampling in latent space by sampling from approximate posterior          instead of 

prior 

× No guarantee that we also improve marginal loglikelihood (except in the special case of EM)

• Expectation Maximization is a special case where posterior can be computed analytically

• Most prominent application of VB is the Variational Auto-Encoder 
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Intermediate Lecture Wrap-Up – Algorithms

Chapter 1: Classical Supervised Learning

✓ Linear Regression, 

✓ Ridge Regression, 

✓ k-NN, 

✓ Trees and Forests

Chapter 2: Kernel Methods

✓ Kernel-Regression

✓ Support Vector Machines

Chapter 3: Bayesian Learning

✓ Bayesian Linear Regression

✓ Gaussian Processes

Chapter 4: Neural Networks

✓ Backpropagation

✓ MLPs, CNNs, LSTMs

Chapter 5: Unsupervised Learning
✓ PCA

✓ K-means

✓ Expectation-Maximization

✓ Variational Auto Encoders
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Intermediate Lecture Wrap-Up – Basics

Chapter 1: Classical Supervised Learning

✓ Matrix/Vector Calculus

✓ Probability Theory, Maximum Likelihood

✓ Gradient Descent

Chapter 2: Kernel Methods

✓ Sub-gradients

✓ Constraint Optimization

Chapter 3: Bayesian Learning

✓ “Completing the Square”

✓ Gaussian Conditioning

Chapter 4: Neural Networks

✓ Multivariate chain rule

Chapter 5: Unsupervised Learning

✓ KL-divergences

✓ Reparametrization trick
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The ML algorithm “coordinate system”

Most ML algorithms can be grouped along 3 axis:

• Representation: What is the underlying representation of our model?

• Loss function: How do we define what is a good and what is a poor model?

• Optimization: How do we optimize?

... of course more axis exists, e.g. Regularization
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Intermediate Lecture Wrap-Up – Representations

Chapter 1: Classical Supervised Learning

✓ Features / Basis Functions: Linear (Ridge) 
Regression, Logistic Regression

✓ Instances: k-NN

✓ Trees: CART 

✓ Ensembles: Forests 

Chapter 2: Kernel Methods

✓ Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning

✓ Features: Bayesian Linear Regression

✓ Kernels: Gaussian Processes

Chapter 4: Neural Networks

✓ Feed-forward Neural Networks, CNNs, Recurrent 
Neural Networks, LSTMs, GRU: Backprob

Chapter 5: Unsupervised Learning

✓ Cluster centroids: k-means

✓ Linear subspaces: PCA

✓ Mixture Models: Expectation Maximization

✓ (Variational) Auto-encoders: Variational Bayes

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 31



Intermediate Lecture Wrap-Up – Loss Functions

Chapter 1: Classical Supervised Learning
✓ Mean/Summed Squared error (SSE): Linear 

Regression

✓ Gaussian Log-Likelihood: Probabilistic linear 
Regression

✓ Binary Cross Entropy Likelihood: Logistic 
Regression

✓ Soft-Max Likelihood: Multi-class classification

Chapter 2: Kernel Methods
✓ SSE: Kernel Regression

✓ Maximum Margin or Hinge Loss: SVM

Chapter 3: Bayesian Learning
✓ Maximum a-posteriori solution: Probabilistic ridge 

regression

Chapter 4: Neural Networks

• Most of that above...

Chapter 5: Unsupervised Learning
✓ Reconstruction Loss: PCA, k-means

✓ Marginal Log-likelihoods: EM

✓ Evidence Lower Bound (ELBO): Variational Bayes

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 32



Intermediate Lecture Wrap-Up – Optimization Methods

Chapter 1: Classical Supervised Learning

✓ Least Squares Solution: Linear Regression

✓ Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

✓ Least Squares Solution: Kernel Regression

✓ Sub-Gradients: SVM

✓ Lagrangian Optimization: SVMs

Chapter 3: Bayesian Learning

✓ Posterior approximation

Chapter 4: Neural Networks

✓ More specialized gradient descent methods

✓ Adam, 2nd order methods

Chapter 5: Unsupervised Learning

✓ Expectation-Maximization

✓ Variational Bayes
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Where to go from now?

Other ML lectures:

● WS: Reinforcement Learning, Me

● SS: Deep Learning and Neural Networks: Prof. Waibel

● SS: Deep Learning for Computer Vision: Prof. Stiefelhagen

● WS: Optimization Methods for Machine Learning and Engineering

● SS: Cognitive Systems, Prof. Waibel and Me

● SS: Pattern Recognition, Prof. Beyerer

● SS: Maschinelles Lernen in den Materialwissenschaften, Prof. Friedrich

● SS: Maschinelles Lernen in der Computersicherheit, Prof. Wressnegger
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A bit of self-advertisment

What else do we offer?

- Hot research topics: Robot Reinforcement Learning, Deep 
Learning, Imitation Learning, Robotics, Human-Robot 
Collaboration, Variational Inference

- Projektpraktikum and Seminar

- Work on your own research topic together with your supervisor

- Get to know latest state of the art algorithms

- Get experience in doing top-nodge research

- Praxis der Forschung

- 2 semester, 24 ECTS intensive research project 

- Interested in a Master-Thesis or Bachelor Thesis?

- Have a look at https://alr.anthropomatik.kit.edu/

- Use real robots (Franka Panda arms)

- High success-rate of turning your thesis into a paper!

- Hiwi Positions:

- Use robots, cameras, physics simulation, benchmark 
algorithms etc...
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The end

Announcement: Fragestunde, 18.02 16:00 
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