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Learning Outcomes

 What are kernels and how are they useful?

« What do we mean by the “Kernel trick™?

 How to use kernels in regression (using Kernel Regression)?

* How to use kernels in classification (using SVMs)?

* Understand how to obtain dual optimization problems from the primal
... and its relation to kernel methods
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Today's Agenda!

Kernels:
*  Definition and properties
. Kernel trick

Kernel Regression:
* Kernel trick for Ridge Regression
* Analytical Solution
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What is a kernel?

Representation by point-wise comparisons

ST TT oo = (S)=(aatcgagtcac,atggacgtct, tgcactact)

1 0.5 0.3
.- K=l 0.5 1 0.6
““““ 0.3 0.6 1
« Define a “comparison function” k : X x X — R
«  Represent a set of points S = {x1,...,2x,} bythen xn matrix [K|;; = k(x;, x;)
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Kernel Matrix

Properties:

K is always an n x n matrix, whatever the nature of data: the same algorithm will
work for any type of data (vectors, strings, ...).
Total modularity between the choice of function k and the choice of the algorithm.

Poor scalability with respect to the dataset size (n? to compute and store K)...
We will restrict ourselves to a particular class of pairwise comparison functions.
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Positive definite kernels

A positive definite kernel function kis a functionk : X x A — R that is:

(i) Symmetric: Va,x' : k(z,2') = k(2, x)

(i) Similarity matrix is always positive definite

T

a' Ka = ZZaiajk(:ci,wj) >0, Va,VS={xzi,...,z,}

i=1 j=1

Kernel methods are algorithms that take such matrices as input.
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Example: Linear kernel

The linear kernel is the simplest kernel for vectors
» Its defined by the scalar product:

k(x,z') = (x,z’), where (-, ) denotes the inner product
« Itis always positive definite:

ZZa@aJ T, Tj) = HZCL@QZZH >0

=1 7=1
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Kernels in Feature Spaces

Let ¢ : X — R be an arbitrary feature function, then k(z,z') = (¢(x), ¢(z')) defines a
positive definite kernel.

Proof ST aias (@), p(@))) = | Y aidla)|* > 0

=1 5=1
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Kernels as inner products

Theorem (Aransjan 1950):

k is a positive definite kernel on the set X" if and only if there exists a feature space H
and a feature mapping

d: X —>H

such that forany z,x’ € X :

k(z,2') = (¢(z), p(z'))

» Every p.d. kernel comes with an associated feature space!
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Example: polynomial kernel

For & = [z1,22]7, let () = [27, V22129, 23]

The kernel is defined by:

O
(@]

O
!/
k(x, ') = 2322 + 221202 1y + 22al? ©

/ 1\2 © ;
= (z12] + 22x5) © (x 6
~ —®
= (z,2')? ’ \R\'j °
O O
e} @]
Kernel for polynomials of degree d:

k(z,z') = (x,2')?
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Example: Gaussian Kernel

The Gaussian kernel is defined by:

k(2 y) = exp @M)

202

 where O is the bandwidth parameter

Often also called:
« Radial basis function kernel (RBF)
« Squared exponential kernel

It is the most used kernel for kernel methods
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Is the Gaussian kernel a valid p.d. kernel?

Remember: If we can show that the kernel is a valid product of feature vectors, then it is p.d.

«  Consider the following feature function:

2
Gu(x) =1/Zexp (_Hwo_—;’l“) , Yu e R4

« l.e. we have an infinite amount of features (for every possible center ;1 )
 Zis anormalization constant (which we will ignore)

Inner product:
* Inner product becomes an integral due to infinite amount of dimensions

(D), buly)) = / by () by () s
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Is the Gaussian kernel a valid p.d. kernel?

Inner product:

(Pu(x), oy /ﬁbu z) oy

2 2

w J— J—

o / exp (—M) exp (—M) dp ... ignore normalization constants
o o

x fN(Ma:, o2 /2N (ply, 0% /21)dp ... product of 2 Gaussians (see matrix cookbook)

— N(aly, o’ /N@

x exp (_M) ~ k()

202

l.e. the Gaussian kernel is the inner product of 2 infinite dimensional feature vectors!
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Kernel Trick

So why do we do this?

Kernels can be used for all feature based algorithms that can be rewritten such that
they contain inner products of feature vectors

— This is true for almost all feature based algorithms (Linear regression, Support Vector
Machines, ...)

— This is called the Kernel Trick
Kernels can be used to map the data x in an infinite dimensional feature space (i.e.,
a function space)

— The feature vector never has to be represented explicitly

— As long as we can evaluate the inner product of two feature vectors

Hence, we obtain a more powerful representation than standard linear feature
models
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A few kernel identities

¢(x1)"

Let &y = : e RV*% then the following identities hold:

¢(xn)"
Kernel matrix: K = ®x®%
~ Check: [Klij = ¢(x:)" ¢p(5) = k(zi, x;)

k(z1,z) (z1)" P(x*
Kernel vector:  k(z*) = : = : = P yp(x™)

k(zn, ") xy) oz
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Today's Agenda!

ML Algorithms

Kernels:
*  Definition and properties
. Kernel trick

Kernel Regression:
* Kernel trick for Ridge Regression
* Analytical Solution

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

18



Kernel ridge Regression

Recap: Ridge Regression

«  Squared error function + L2 regularization

» Linear feature space

*  Not directly applicable in infinite dimensional feature spaces

Objective:
Liidge = (y — ®w)’ (y — dw) +) w!w
N ~ v N el
sum of squared errors Lz regularization
Solution:
w:rkidge = \(‘I)T‘I) + )\I)_lj ‘I’Ty Matrix inversion infeasible in infinite dimensions

"

dxd matrix inversion
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Kernel Ridge regression

We can apply the “kernel trick”:
*  Rewrite solution as inner products of the feature space!
«  We can do this béfusing the following matrix identity
Py
(I+AB) 'A=A(I+BA)!
=T -

— “Searle setof identities”, The Matrix Cookbook

w'= (@' Ty =0T (@27 +AI)! y

dxd matrix inversion N x N matrix inversion

— With A=®" and B=®
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Kernel ridge regression

The “kernelized” solution is given by:

=27 (@37 1A y= q)tu E
N XN matrlx inversion /7 A/,(a,l

* Instead of inverting a d x d matrix, we can now invert an N x N matrix

* Is beneficial for d >> N (e.g., infinite)
. stillbw* € RY is potentially infinite dimensional and can not be represented

Yet, we can evaluate the function f that is specified by w™ :

f(x) = T’w :( T@T} =k(z)' @ Zg%k(fb‘iaﬂf/‘
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Examples and comparison to RBF regression

For a Gaussian kernel, the prediction corresponds to
Xr—&; 2
flx) = Zi:aik(:ni,:c) = Zi:ai exp (—%)

The kernel allows setting the centres adaptively
to the available data!

One centre per data-point

Comparison: Linear regression with radial basis function
(RBF) features
I

flx) = Z:W¢¢i($) = Z;wi Cxp (_%)

f; ... i"" center location (fixed)
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Selecting the hyper-parameters

= train error
test error
*  min error

«  The parameters of the kernel, e.g., sigma in 14 1

k(@) = exp G%) ol

at
are called hyper-parameters. E

 Choosing them is again a model-selection
problem that can be solved via cross-validation.
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Different bandwidth factors

Overfitting Good fit
15
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Summary: Kernel ridge regression

The solution for kernel ridge regression is given by
(@) = k(z)" (K + )"y

* No evaluations of the feature vectors needed
*  Only pair-wise scalar products (evaluated by the kernel)
 Needtoinvert a N x N matrix (can be costly

Note:

« We have to store all samples in kernel-based methods (they also belong to the instance-based or
non-parametric methods)

— Computationally expensive (matrix inverse is O(n?376) ) |

«  Hyper-parameters of the method are given by the kernel-parameters
— Can be optimized on validation-set

«  Very flexible function representation, only few hyper-parameters
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Takeaway messages

What have we learned today?

AN

Kernels estimate the similarity between samples

They represent an inner product in a feature space
— Allows to use potentially infinite dimensional
— That’s ok due to the kernel trick and regularization

Many standard ML algorithms can be “kernelized”
— l.e. rewritten in terms of inner products

— Regression: Kernel Ridge regression, Gaussian Processes
(to be covered), Support Vector Regression (not covered)

— Classification: SVMs, Kernel Logistic Regression (not covered)
Very flexible representation that adapts to the complexity of the data
Works well with small data sets
Hard to scale to more complex problems
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Self-test questions

You should know now:

What is the definition of a kernel and its relation to an underlying feature space?
Why are kernels more powerful than traditional feature-based methods?

What do we mean by the kernel trick?

How do we apply the kernel trick to ridge regression?

How do we compute with infinite dimensional vectors?

What are hyper-parameters of a kernel and how can we optimize them?
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