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Change in plans - Lecture Content

Chapter 1: Classical Supervised Learning
• Lecture 1: Linear Regression, Ridge Regression

• Lecture 2: Linear Classification

• Lecture 3: Model Selection

• Lecture 4: k-Nearest Neighbors, Trees and Forests

Chapter 2: Classical Unsupervised Learning
• Lecture 5: Dimensionality Reduction and Clustering

• Lecture 6: Density Estimation and Mixture Models

Chapter 3: Kernel Methods
• Lecture 7: Kernel-Regression

• Lecture 8: Support Vector Machines

Chapter 4: Bayesian Learning
• Lecture 9: Bayesian Linear Regression and Gaussian 

Processes

Chapter 5: Neural Networks
• Lecture 10: Neural Networks and Backpropagation

• Lecture 11: CNNs and LSTMs

• Lecture 12: Variational Auto-Encoders (?)
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Learning Outcomes

• What are kernels and how are they useful?

• What do we mean by the “Kernel trick”?

• How to use kernels in regression (using Kernel Regression)?

• How to use kernels in classification (using SVMs)?

• Understand how to obtain dual optimization problems from the primal

• … and its relation to kernel methods
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Today‘s Agenda!

Kernels: 

• Definition and properties

• Kernel trick

Kernel Regression:

• Kernel trick for Ridge Regression

• Analytical Solution
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What is a kernel?

Representation by point-wise comparisons

• Define a “comparison function”

• Represent a set of points                                  by the n x n matrix  
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Kernel Matrix

Properties:

• K is always an n × n matrix, whatever the nature of data: the same algorithm will 

work for any type of data (vectors, strings, ...).

• Total modularity between the choice of function k and the choice of the algorithm.

• Poor scalability with respect to the dataset size (n2 to compute and store K)...

• We will restrict ourselves to a particular class of pairwise comparison functions.
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Positive definite kernels

A positive definite kernel function k is a function                            that is:

(i) Symmetric:

(ii) Similarity matrix is always positive definite 

Kernel methods are algorithms that take such matrices as input.
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Example: Linear kernel

The linear kernel is the simplest kernel for vectors

• Its defined by the scalar product:

• It is always positive definite:
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Kernels in Feature Spaces

Let                      be an arbitrary feature function, then                                        defines a 

positive definite kernel.

Proof:  
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Kernels as inner products

Theorem (Aransjan 1950):

k is a positive definite kernel on the set     if and only if there exists a feature space

and a feature mapping

such that for any                    :

➢ Every p.d. kernel comes with an associated feature space!
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Example: polynomial kernel

For                      , let

The kernel is defined by:

Kernel for polynomials of degree d:
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Example: Gaussian Kernel

The Gaussian kernel is defined by:

• where      is the bandwidth parameter

Often also called:

• Radial basis function kernel (RBF)

• Squared exponential kernel 

It is the most used kernel for kernel methods
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Is the Gaussian kernel a valid p.d. kernel?

Remember: If we can show that the kernel is a valid product of feature vectors, then it is p.d.

• Consider the following feature function:

• I.e. we have an infinite amount of features (for every possible center      )

• Z is a normalization constant (which we will ignore)

Inner product:

• Inner product becomes an integral due to infinite amount of dimensions
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Is the Gaussian kernel a valid p.d. kernel?

Inner product:

I.e. the Gaussian kernel is the inner product of 2 infinite dimensional feature vectors!
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Kernel Trick

So why do we do this?

• Kernels can be used for all feature based algorithms that can be rewritten such that 

they contain inner products of feature vectors

– This is true for almost all feature based algorithms (Linear regression, Support Vector 

Machines, …)

– This is called the Kernel Trick

• Kernels can be used to map the data x in an infinite dimensional feature space (i.e., 

a function space)

– The feature vector never has to be represented explicitly

– As long as we can evaluate the inner product of two feature vectors

• Hence, we obtain a more powerful representation than standard linear feature 

models
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A few kernel identities

Let then the following identities hold:

• Kernel matrix: 

– Check: 

• Kernel vector:
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Today‘s Agenda!

ML Algorithms

Kernels: 

• Definition and properties

• Kernel trick

Kernel Regression:

• Kernel trick for Ridge Regression

• Analytical Solution
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Kernel ridge Regression

Recap: Ridge Regression

• Squared error function + L2 regularization

• Linear feature space

• Not directly applicable in infinite dimensional feature spaces

Objective:

Solution: 

Matrix inversion infeasible in infinite dimensions
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Kernel Ridge regression

We can apply the “kernel trick”:

• Rewrite solution as inner products of the feature space!

• We can do this by using the following matrix identity

– “Searle set of identities”, The Matrix Cookbook

– With                   and   
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Kernel ridge regression

The “kernelized” solution is given by:

• Instead of inverting a d x d  matrix, we can now invert an N x N matrix

• Is beneficial for d >> N (e.g., infinite)

• Still,                 is potentially infinite dimensional and can not be represented

Yet, we can evaluate the function f that is specified by       : 
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Examples and comparison to RBF regression

For a Gaussian kernel, the prediction corresponds to

• The kernel allows setting the centres adaptively 

to the available data!

• One centre per data-point

Comparison: Linear regression with radial basis function 

(RBF) features
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Selecting the hyper-parameters

• The parameters of the kernel, e.g., sigma in

are called hyper-parameters. 

• Choosing them is again a model-selection

problem that can be solved via cross-validation.
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Different bandwidth factors

Overfitting Good fit
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Summary: Kernel ridge regression

The solution for kernel ridge regression is given by

• No evaluations of the feature vectors needed

• Only pair-wise scalar products (evaluated by the kernel)

• Need to invert a N x N matrix (can be costly

Note: 

• We have to store all samples in kernel-based methods (they also belong to the instance-based or 
non-parametric methods)

– Computationally expensive (matrix inverse is O(n2.376) ) !

• Hyper-parameters of the method are given by the kernel-parameters

– Can be optimized on validation-set

• Very flexible function representation, only few hyper-parameters
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Takeaway messages

What have we learned today?

• Kernels estimate the similarity between samples

• They represent an inner product in a feature space

– Allows to use potentially infinite dimensional

– That’s ok due to the kernel trick and regularization

• Many standard ML algorithms can be “kernelized”

– I.e. rewritten in terms of inner products

– Regression: Kernel Ridge regression, Gaussian Processes 
(to be covered), Support Vector Regression (not covered)

– Classification: SVMs, Kernel Logistic Regression (not covered)

✓ Very flexible representation that adapts to the complexity of the data

✓ Works well with small data sets

× Hard to scale to more complex problems
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Self-test questions

You should know now:

• What is the definition of a kernel and its relation to an underlying feature space?

• Why are kernels more powerful than traditional feature-based methods?

• What do we mean by the kernel trick?

• How do we apply the kernel trick to ridge regression?

• How do we compute with infinite dimensional vectors?

• What are hyper-parameters of a kernel and how can we optimize them?
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