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Learning Outcomes

What will we learn today?

Understand the “Bayesian formulation” of machine learning

What are the 2 basics steps needed for Bayesian learning

What are the advantages of being “Bayesian”?

For which representations can Bayesian learning be done in closed form?

How to compute the posterior and predictive distribution for Bayesian Linear
Regression?

How to compute the posterior and predictive distribution for Gaussian Processes?
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Today's Agenda!

Basics:
Bayesian Learning:

« Posterior and Predictive Distribution

« Bayesian estimation for Gaussians

«  Maximum A-posteriori (MAP) Estimates

Gaussian Identities:
Completing the Square
« Gaussian Bayes Rules
«  Gaussian Propagation
Bayesian Regression Algorithms:
« Bayesian Linear Regression

« Gaussian Processes
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Bayesian Learning

So far:
«  We mainly considered single models, i.e., a point estimate 8™ for the parameter vector

However, ...
1.  As the data is noisy, the estimated optimal parameter vector @™ is also uncertain
— l.e. parameters are just random variables
—  We so far do not really know how wrong / uncertain our estimate @* is
2.  We have also seen that multiple models (ensembles, see trees + forests) usually work better!

Motivation of Bayesian Learning:

Estimate uncertainty in @*

Find a more robust predictor by averaging over many predictors

* ... where each predictor is weighted by the probability of being “right”
Use this estimate to quantify uncertainty of the prediction
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1-step: Compute Posterior

Compute the probability of “being right” for a parameter 8 using Bayes theorem:

data likelihood prior

——
p(D|6)  p(8)

p(0|D) =
2o »(D)
posterior S~

evidence

«  Prior: Can encode our subjective belief

- Posterior: Probability of parameter vector given the data

«  Likelihood: Specified by our parametric model D

«  Evidence: Normalization, can be used for model comparison (later)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 5



2-step: Compute predictive distribution

Predicting of a new data-point x™:

vy

p(y*|a*, D) — f p(y*|z*,0) p(6]D) 6
~ W v

marginal likelihood likelihood  posterior

«  Parameter vector @ is integrated out
«  Likelihoodp(y™|x™, D) is now purely determined by the data D
- p(y*|x", D) is often called marginal likelihood as @ is marginalized out

Intuition: If you assign each parameter estimator a “probability of being right”, the average of these
parameter estimators will be better than the single one

. Weighted ensemble method (with potentially infinite amount of models if integral can be solved exactly)

. ... often, samples from p(8|D) are used to approximate the integral (finite number of models in this case)
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Example:

1o Posterior density (N = 1)

L 10 = Prediction
05 03 05 Uncertainty
0.0 e e ool Tmowmw
2 00 = ) ':_---'"'-,_., = =T
. . . -0.5 et 054 -7 -
Bayesian Linear Regression .. S |-~ = | |&
1.0 === Truth -1.0
(math comes later...) N sl , | et | ] , , , ,
-10 -05 00 05 10 -10 -0.5 0.0 05 10 -1.0 -05 00 05 10
wi x X
1o Posterior density (N = 3 1o 1o
Observatlon . ) | ==e Truth ) = Prediction
' 05 05 Post. samples 05 Uncertainty
. - —
*  The posterior becomes more 00 P 00
. 2 00 - - -
narrow with more data aa -0
-0.5
-10 -1.0
-1. -15 1 T T . — 1515 , . : :
-10 -05 00 05 10 -10 -0.5 0.0 05 10 -1.0 -05 00 05 10
wi x X
mPosterior density (N = 20} 10 10
) ) === Truth ) — Prediction
05 o 05 Post. samples . 05 Uncertainty .
00 0.0
2 00 - = - =,
-05 -05 <0 .
05 -101 o -101 o *
-1.0 -15 1 T T . — 1515 , . : :
-10 -05 00 05 10 -10 -0.5 0.0 05 10 -1.0 -05 00 05 10
wi b ®
p(Q‘D) Samples from posterior Posterior integrated out
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http://krasserm.github.io/2019/02/23/bayesian-linear-regression/

Priors

Prior p(@) should capture our belief and domain knowledge as well as possible

What is our domain knowledge for a general ML algorithm?
«  For most ML algorithms, we know that the weights @ should be small
«  This knowledge can be expressed with a Gaussian prior, e.g.

p(8) = N(6]0,A71)

— Most common for weight vectors (linear regression, neural nets...)
— A is the precision of the prior
However, many other priors are possible
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Example: Gaussian Distribution

Keli . _ _ _ 1 (z = p)”
Likelihood (sample): p(x|0@ ={p,0}) = N(x|pu,0) = . exp {_T
. 1 > (@i — p)?
Likelihood (dataset): = — =

ikelihood (dataset) p(X|u, o) | |p x|, o) (27r02)N/2 exp{ 53

: 1 —
Prior: plu) = N {plyan, o0) = \/2mo? o {_%}
0

Compute posterior p(u|X) for i
assuming ¢ is known: .

_ p(X|u)p(p)
p(/,L|X) — p(X) i p,o-r-__.-'

o< p(X |p)p(pe) ]
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Basics: Completing the square

Posterior: p(u|X) oc p(X|u)p(p) oc exp {_Zi(:;;; p ;J%Lo) }

Completing the square: Bring exponent in canonical squared form, i.e.

1
exp(— §a,u2 +  bp Const)
R v

linear term
squared term

Then we know that p(u|X) = N (p|pun, oa) with:
e Mean: uy =a b
.« Variance: ox =a !
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Basics: Completing the square

Posterior: P(u|X) o< p(X|p)p(p) o< exp {_Zi(a;i;; )= (p ;(;%0) }

1/ N 1
:exp{—§<§—l—0 );u —I—(Z;2 —I—Mo)u+const}
0

o
W \ v 9
a b
Completing the square: p(u|X) = N (p|pn, o)
52 52
Mean: —alp=
ST No? —I—UQZH—NQ—F 210
No? o?
" NoZ+o g2 ML T NoZ + o2/
2 2
oo
+  Variance: 0% =a ' = —5—2—
IN =4 No? + o2
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Example: Posterior Distribution

The posterior is Gaussian with:

No} o? .
« Mean: - - S —
ot NO'(Q)—FO'QHJML Nangcr?'uO

Vari 2 0'20'8

. ariance: On = w55 5
N No? + 02

Observations:
« Variance decreases with more training

samples
«  Will eventually reach O
« Posterior mean interpolates between prior 91

mean and sample average
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Example: Computing the predictive distribution

The predictive distribution is given by:

P X) = [ ol p(ulX)du
—— —— N——
marginal likelihood likelihood posterior

/N x|, )N (p|pn,on)du ... Gaussian propagation (proof not shown)

|p‘$* ) Ua:* )

The predictive distribution is Gaussian with: Observations:

|
|
| . .
e  Mean: Ly = [N | The predictive mean is the same as
[ the posterior mean
Vari Lol =52 4 g2
llieliee. T* N I« However, the predictive variance also
|
|

considers the uncertainty of the mean
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Conjugate priors

If the posterior distribution p(@|D) is in the same probability distribution family as the
prior probability distribution p(8) , the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood function.

* In our example, the prior and posterior are Gaussian

* l.e. the Gaussian distribution is conjugate to itself

Other conjugate prior distributions:

«  Gamma distribution is conjugate for the variance of a scalar Gaussian

«  Wishart distribution is conjugate for the covariance of a multivariate Gaussian
... won'’t be covered in the lecture but good to know it exists.
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Summary: Bayesian Learning

data likelihood prior

D|6 0
1. Compute posterior: p(0|D) = p(DI6) _ p(0)
S—— p(D)
posterior S~
evidence
2. Integrate out posterior: p(z*|D) =/p(w*|9) p(0|D) do
————r ——— ——
marginal likelihood likelihood posterior

Properties:

For very large datasets, the posterior will be a point estimate nh—>H;o p(0|D,) =6(0 — 07)
— l.e., Bayesian Learning will be equivalent to maximum likelihood

« However, large advantage for smaller datasets!
1. We know where our model is uncertain
2. More robust estimate due to averaging
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Summary: Bayesian Learning

1. Compute posterior:

2. Integrate out posterior:

marginal likelihood

data likelihood prior

(D) p(0)
p p
p(0|D) =
OB == m)
posterior S~

evidence
pe'D) = [ pla’le) p(OID) do
—_—— —— N —

likelihood posterior

In most cases, both operations can not be performed analytically
* Exception: Bayesian Linear Regression + Gaussian Processes

*  Very high-dimensional integrals, hard to compute

«  Simplification: Maximum A-posteriori (MAP) Solution

« Various Approximations: Laplace Approximation, Variational Inference, Sampling, etc...

covered)
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Maximum a-posteriori solution

Simplification of Bayesian Learning:
1. Find the parameter vector 8y ap that maximizes the posterior

Oriap = arg max p(0|D) = arg max p(D[0)p(0)
0 0

— Uncertainty in 8 is ignored
—  Optimization is done in log-domain

Oniap = arg maxlog p(D|0) + log p(0)
0
2. Use Opap for prediction

p(*|D) = p(x”|6nap)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Maximum a-posteriori solution

MAP solution: Oniap = arg max (logp(D]6) + log p(6))
0

Prior has similar role than a regularization loss

Example: Regression

Gaussian likelihood p(D|0) =p(Y |X,0) = HN(ydfg(a:i),a?)

Gaussian prior p(0) = N(0]0,\711) '
1 2 A
Corresponding objective: argmax » —=— (y; — fo(w:))" — 5676 +  c(0®))
o] - 20 2 N——
! g _ *A/QV“GHQ only interested in 6

Sum of squared errors
— Gaussian prior corresponds to a L2 regularization loss!
— Gaussian likelihood corresponds to squared loss!
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Example: MAP for Linear Regression

Remember: In linear regression f,,(x) = w’ ¢(x)

L 1 A
w p 2 N——
N — ) _)\/“2”9H only interested in w

Sum of squared errors

= arg mmz —wl¢( m@))z + \owlw + ¢c(o?, \)

« The MAP objective for Linear Regression is equivalent to Ridge Regression!
— with Aridge = \o?
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Example: MAP for Linear Regression

. 2
Objective: wyap = argminy _ (y; — w” ¢(x;))” + Ao’w w
Result: wyap = (P71 ® + A2 1@y

«  We have now 2 parameters:
— X ... sets the importance of the prior } Can be set by optimizing log likelihood + log prior

g , - via cross validation
o” ... uncertainty of the training data Q: Why do we need cross validation here?

Predictive Model:
p(y*|z*, D) = p(y*|z*, wmap) = N (y*|wyapd(z*), 0°)

«  Uncertainty solely depends on estimated noise level o2
— l.e. noise is input independent
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Intermediate Wrap-up Bayesian Learning

« Treat parameter vector as random variable and estimate posterior
— Estimate probability of “being right” for 8
» Posterior distribution is integrated out for prediction
— All possible parameter vectors are used for the prediction
— Weighted by probability of “being right”
» Posterior quantifies our uncertainty in the model
— Can also be used to quantify uncertainty in the prediction

We will now look at 2 examples for Bayesian Learning:
« Bayesian Linear Regression
« Gaussian Processes

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Today's Agenda!

Bayesian Learning:

Bayesian Regression Algorithms:

Posterior and Predictive Distribution
Bayesian estimation for Gaussians
Maximum A-posteriori (MAP) Estimates

Bayesian Linear Regression
Gaussian Processes
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Basics:

Gaussian ldentities:

Completing the Square
Gaussian Bayes Rules
Gaussian Propagation

24



Bayesian Linear Regression

For Bayesian Linear Regression, the posterior and the prediction can be computed in
closed form:

«  For all other cases, we need approximations

*  While linear models are limited, it is still insightful to look at the properties of this case

Model: Linear model

Noise variance

» Likelihood (single sample): p(y|ac,'w) = N(Q|ET¢($), 02)

Feature Matrix

|
. Likelihood (full dataset):  p(y|X,w) HN yilwl¢(x;),0%) =  N(y|®w,sI)

Vo

Multivariate distribution
—  Write product of independent Gaussians as multivariate Gaussian

«  Gaussian prior: plw) = N(w|0,A\"11)

_ _ Parameter precision
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Bayesian Linear Regression

2 Steps:
1. Compute posterior — :
Likelihood Prior
WX wptw) X wiplw]
P\Y| A, w)plw PY|A,w)plw
w| X,y) = =
plwlX.y) = == %) Tr(yl X, w)p(ae) oo

Evidence/Normalizer

2. Compute predictive distribution: Integrate posterior out
Parameter-specific prediction
\
plyle”, X, y) = /p(y*!w,w*)p(le,y)dw
l
Posterior

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Basics: Gaussian ldentities

* Eq (1): Joint from Marginal and Conditional:

Nale BN wIFe 2,) = A (| 5 [1| f= ||

> > FT ] )
Y Fu,

F¥, X,+FX,F’

* Eq(2): Marginal and Conditional Gaussian from Joint:

75 TR ¥, C _ Pl _ ATx—1
N[ 2| & s |) =Ml BN sy + O755 @ - ). By - CTESC).

« Can also be derived by “completing the square”...
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Basics: Gaussian Bayes rule

Bayes rule for Gaussian distribution:

-  Marginal: p(x) =N(z|pn,, X) - Conditional: p(y|x) = N (y|Fz, a;jI)

« Gaussian Bayes Rule 1: The posterior p(x|y) is Gaussian with
—  Mean: Ly = By + SaF T (0o] + FE.FT) ' (y — Fu,)
— Covariance: 3., = Xg — EmFT(ozI + FYX, F1)"Fx,
« Derivation:
— Use Eq (1) to form joint p(, ¥ )from marginal p(x) and conditional p(y|x)

— Use Eq (2) to form posterior p(x|1) from joint p(, )

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Bayes rule for Gaussian distribution:

- Marginal: p(x) = N(z|p,, Xz) « Conditional: p(y|x) = J\/’(y\Fa:;a;‘jI)

« Gaussian Bayes Rule 2: The posterior p(x|vy) is Gaussian with
— Mean: Py = By + (azI + X, F'F) 'S, F'(y— Fp,)
— Covariance: 3., = (2" +0,°F'F) ' =02(0,1 + Z,F'F) '%,

« Derivation: Use following identities for Bayes rule 1 from the matrix cookbook...
— Useidentity A(I + BA) ! = (I + AB) ' A for the mean (Searl identity)

— Useidentty (A+CBCH)'=A"'—A"lc(B'+ctACc)tct A
for the covariance (Woodbury identity)



« Gaussian Bayes Rule 1
— Mean: oy = Mo +EmFT(O'3I—|—F2mFT)_l(y—F[Lm)
— Covariance: gy =3z — ZoF' (0,1 + FE,F")'FX,
« Gaussian Bayes Rule 2:
— Mean: Pgly = HBg + (052;1 +F'F)"'F'(y - Fpu,)
— Covariance: X, = 03(032;1 +F'F)7!

Observations: Both rules are mathematically equivalent...

 However, numerically it can be a huge difference

« Bayes rule 1: Invert a matrix with dimension dim(y) x dim(y) } Use Rule 1 if dim(y) < dim(x),
« Bayes rule 2: Invert a matrix with dimension dim(x) x dim(x) otherwise Rule 2



Basics: Gaussian propagation

Given marginal p(z) = N(z|p,, Xs) and conditional p(y|z) = N (y|Fxz, 0, 1) we
want to obtain the marginal for y

- The marginal distribution p(y) = fp(ac)p(yh:)da: is Gaussian with

— Mean: Hy = Fp,

— Variance: Xy = U?QJI + FY, Ft
*  Derivation:

— Use Eq (1) to obtain joint distribution

— Marginal p(y) can be directly read from the joint
« Variance iny increases due to uncertainty in x

Ok... now we are ready to derive Bayesian Linear Regression!
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Computing the Posterior

«  Likelihood (conditional): p(y|X,w) = N (y|®w, o*I)
«  Prior (marginal):  p(w) :N(w\O,A‘lI)
« Dimensions: w € RY and Y € RV*! typically d < N

As the dimensionality of the marginal variable (parameter vector) is smaller than dimensionality of
cond. variable (number of datapoints), we have to use Gaussian Bayes rule 2!

Popy = By + (0,8, + F F)7'F' (y — Fu,)
Spy =0y(0,5, + F' F)™!

«  with g, =0, o=\ 'I, Fzéandazzai

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Computing the Posterior

Posterior p(w|X,y) = N (W[t x 4> Zew| X ,y)
Posterior mean: Poy| X,y = ('@ + UiAI)il‘ﬁT?J

: T 2T 2y 7y—1
»  Posterior covariance: X, x = 0,(®" ® + o, A1)

Observations:
« The posterior mean is equivalent to the MAP estimate

« ... results from the linearity of the likelihood (not the case for non-linear models)

So whats the advantage?

« We also get an uncertainty estimate for the parameter vector!

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Example: Samples from the posterior

«  We can create samples i b

 Each w; represents a function

fi(z) = w ¢(x) | , / |

* Basis functions are given by RBF

basis functions

0 1 0 . 1
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Predictive Distribution

The predictive distribution is given by:

Py |2, X, y) = / p(y* |w, & )p(w| X, y)dw

T
— [ N7 w0 TN (Wl .4 Sy )0
« Using Gaussian propagation, we can evaluate the predictive distribution. It is Gaussian with
—  Mean: px*) = o) T (@' ® + )\aiI)_1<I>Ty
— Variance: o*(x*) = 0,3 (1 + oz (T ® + )\UzI)_lq.l)(iB*))
*  Nothing new for the mean (same as Ridge Regression / MAP solution)

« However: The variance is now input dependent!
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Example: Predictive Distribution

Visualize predictive distribution with | /\ Y
t t
u(@") + 20(a") o . |
*  Model uncertainty is reduced if \/
—1t ] a4l

training data contains information
about weight for specific feature

* Inthe limit N — oo model
uncertainty vanisr;es and only It 1
noise variance 0o, remains ! ‘

0 I 0 |
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Today's Agenda!

Bayesian Learning:

Bayesian Regression Algorithms:

Posterior and Predictive Distribution
Bayesian estimation for Gaussians
Maximum A-posteriori (MAP) Estimates

Bayesian Linear Regression
Gaussian Processes
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Basics:

Gaussian ldentities:

Completing the Square
Gaussian Bayes Rules
Gaussian Propagation
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Gaussian Processes

A Gaussian Process (GP)  f(z) ~GP( m(z) , k(z.z') )

mean function covariance function

IS a probability distribution over functions f(x), such that any finite set of function values
t. = f(x;) evaluated at inputs x, , . . ., X, IS jointly Gaussian distributed

 Mean function evaluates our prior belief about the function
Elf(x)] = m(z)
—  For simplicity, we will use m(x) = 0
«  Covariance function evaluates how similar/correlated two function evaluations at inputs x, " are
E[f(z)f(x")] = k(z,z')
— Covariance function needs to be a positive definite function (similar to a kernel function)
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Different covariance functions

Samples from a GP prior with
different covariance functions
. The covariance encodes our

prior belief in the smoothness
of the function

1.3

-1.5

-3
-1 =05 0 0.5 1

1
x.) = exp (= 5 %~ %)

Gaussian Kernel
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-1.5

-3
-1 =05 0 0.5 |

k (xi,x;) = exp (=0 ||x; — x;||)

Ornstein-Uhlenbeck Process

(Brownian Motion)
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Gaussian Processes

l.e. a Gaussian process over N function evaluations ¢ = [¢q,... ,tN]T Is completely specified by
the 2nd order statistics, i.e., mean and covariance, i.e.
k(xy,21) ... ke, zN)
p(t| X) =N (t|0, K) with K =
Elxn,21) ... k(zy,zN)

In reality, we can only measure noisy function values, i.e. y; = f(x;) +¢€, €~ N(0, 05) . We
get the following Gaussian distribution over y

p(91) = [ plult)p(el X
= f./\f(y|t, 051)./\/'(1‘,]0, K)dt ... Gaussian propagation

= N(y|0,K + 0'21-)
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Predictive distribution

We know that the function values y for the training set X and for a new data point ™ are jointly
Gaussian distributed. Hence, also the conditional p(y*|X,y, ") is also Gaussian distributed.

For a new data-point ¥* we can obtain the joint distribution over function values

y X B Y ‘ K+o,I kg
(LA D) -2 (L I
K ... kernel matrix, kg = [k(z1,2%),... k(zy,2")]" ... kernel vector , k* = k(z*,x*)

We can condition on ¥ to obtain p(y*| X, y,x*) using the Gaussian identities (Eq. 2). The
predictive distribution is Gaussian with

— Mean:  p(x*)=ky.(K+o.I) 'y

— Variance: o(x*) =k*+ 0, — ki (K + 051)_11633*
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Predictive distribution

Predictive GP distribution:
— Mean:
w@*) = koo (K +03I) 1y
— Variance:
o’ (x*) = k* + 0, — ky (K + 021) kg
Observations:

— The mean corresponds to the Kernel Ridge
Regression solution

— Yet, we also get an input dependent variance
estimate

— Variance is reduced if kernel activations are
high
Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Example of Sinusoidal Data Set (green: true

function; blue: noisy data; red: GPR predictive
mean; shaded: +20)
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lllustration of Posterior

Samples of the prior and the posterior (after conditioning on y)

output, f(x)
output, f(x)

-5 0 5 -5 0 5
input, x input, x
(a), prior (b), posterior

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Weight space view

So why are GPs an instance of Bayesian Learning?
« We can also derive GPs from the Bayesian Linear Regression view
« Kernelized version of Bayesian Linear Regression (with infinite dimensional feature spaces)

So back to Bayesian linear regression....
« Likelihood (conditional): p(y| X, w) = N(y|Pw, 031)
. Prior (marginal): p(w) = N(w|0,\ 1)

«  Dimensions: w € R?and Y € RV*1, high /infinite dimensional features d > N

As the dimensionality of the marginal variable (parameter vector) is now larger than dimensionality of
cond. Variable (humber of samples), we have to use Gaussian Bayes rule 1

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 44



Recap: Gaussian Bayes rule

« Gaussian Bayes Rule 1
—  Mean: Poyly = By +EmFT(J§,I+FZmFT)_1(y—Fum)
— Covariance: gy =3z — SoF' (0,1 + FE,F')T'FX,
« Gaussian Bayes Rule 2:
—  Mean: Pgly = HBg + (032;1 +F'"F)'F'(y — Fp,)
— Covariance: X, = 03(032;1 +F'F)™!

Observations: Both rules are mathematically equivalent...

« However, numerically it can be a huge difference

« Bayes rule 1: Invert a matrix with dimension dim(y) x dim(y) } Use Rule 1 if dim(y) < dim(x),
« Bayes rule 2: Invert a matrix with dimension dim(x) x dim(x) otherwise Rule 2

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 45



Recap: A few kernel identities

A kernel is an inner product of a feature space:  k(x,x') = (p(x), p(z')) = op(x)' ¢(z)

d(x1)"

Let &y = : € RYV*4 then the following identities hold:

P(xn)”
Kernel matrix: K = ®&x®%
— Check: [K];; = ¢(€U7:)T¢($j) = k(zi, x;)

(@1, z*) d(x1)" P(z*)
Kernel vector: kg« = : = ; =P xp(x™)

k(xn,x*) Qﬁ(iL’N)inqb(iU*)
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Recap: A few kernel identities

A kernel is an inner product of a feature space: k(z,z') = A" Hop(x), p(z')) = X\ ' o(x) (')

d(z1)"
Let &y = : € RYV*4 then the following identities hold:
d(xn)T
In the Bayesian case, we will subsume
. Kernel matrixx: K =\"'®x®% the prior precision A into the kernel

— Check: [K];; = A 'o(x)! ¢d(x;) = k(zy, =)

ke, x") P(x1)" P(z7)

+  Kernel vector: k. = : =\t : =\ Dy p(z¥)
k(zy, ") d(xn)" P(z”)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 47



Computing the Posterior

Using the Gaussian Bayes Rule 1 results in the following posterior:

Bolxy =A@ (oI + ) 28" )y
K

Swixy = AT -A28T(02 I+ K) &

[ S—
N XN matrix

*  We used the Kernel trick to evaluate the inverse matrix
— The prior precision A has been subsumed in the kernel
«  Both quantities are still potentially infinite dimensional and can not be evaluated!
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Predictive distribution

Still, we can use the posterior to evaluate the predictive distribution (again using the Kernel
trick)

Py |2*, X, y) = / Py |w, & )p(w| X, y)dw

— [ Nl w. N (@bt x - Erp )
The predictive distribution is again Gaussian with
° Mean: [L(.’IJ*) = )\_1¢($*)T‘1)T(O'!2’I + K)_ly

=kl (2T +K)™!

Variance: o(x") = 05 + A p(a) () — _zﬁb(m*)T‘I’T(UzI"' K) " ®¢(z")
= O’Z +k* — k',T*(O'2I—|-K)

ere s%t as obtained with Gaussian conditioning

... Which i am
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Wrap-up: GP derivations

Function View:

« A Gaussian process is a distribution over functions, where every set of N function evaluations is
jointly Gaussian distributed

« Predictions can hence be performed by conditioning

Weight Space View:

« A Gaussian process is a Bayesian Kernel Regression approach

« Underlying feature space is potentially infinite dimensional

«  Weight vector (which is not representable) is integrated out using the Kernel trick

While GP for Regression is computationally very expensive ( O(N3) ), it is one of the most principled
approaches to statistical learning for regression
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Length scale 0.5

Kernels and Hyperparameters ’
4.5
« The parameters of the kernel (e.g. length-scale of 0
Gaussian kernel) are called “hyper-parameters” 3.
*  The prior precision of the weights as well as the -4.5
observation noise are for simplicity also subsumed in the
kernel hyper-parameters —9

The most common kernel is the Gaussian / RBF / squared-
exponential Kernel

i — ]

k(ac“:cj) = )\_1 exXp ( T) + CSZJO';

« A... prior precision of the weight vector

2

Oy noise variance

— (only applied if i = j, in this notation K + J;I is replaced by C'
 [... length scale
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Influence of the Hyper-Parameters

Different noise levels

20¢ ™ 1 20 | ml
195 ] 195 1895
19 + 19 19
185 185 185
. 18 + 18 - 18
175 + 175 175
17| | 17[ 17I
b 5 w0 1 2 2 m % 5 10 15 20 2 165 5 o 15 2 2 @
X X X
Too big / Underfitting About right Too small / Overfitting
Different length scales
195 2ﬂ| 0y 1
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19 19
185
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> 18 >
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Kernels and Hyperparameters

Squared-exponential Kernel can be extended with a length-scale per dimension

d

2
— Lik — Ljk
k(mi7$j) =A 1exp (—Z ( 212 1 ) ) + 5@‘05
k

k=1

* )\... prior precision of the weight vector
* 42 . noise variance (only applied if i =)
* | ... length scale for dimension k

Also called Automatic Relevance Determination (ARD) kernel:
«  Optimizing the length-scale determines the relevance of each dimension
« Large length-scale -> dimension is less important
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Optimization of the Hyperparameters

* In GPs, the parameters w can be integrated out in closed form
* Yet, no closed form solution exists for the hyper-parameters
Objective: Log-likelihood of the training data
B* = argmaxlog N (y|0,Cpg)
B
1 1 N
= ——log|Cg| — =yTC 'y — — log(2
arg max — 0g|Cpl — 5y Cp'y — 7 log(27)

* Need to be optimized via gradient descent (only batch)

«  Non-convex, multiple optima

*  Only a small number of hyper-parameters

«  Very flexible representation, beware of overfitting (would be better to do that on validation set)!
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Example: Gene Expression

« Given gene expression levels in the form of a time series

« Wantto detect if a gene is expressed or not, fit a GP to each gene [Kalaitzis and

Lawrence, 2011]

Gerhard Neuns

RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially

Expressed Gene Expression Time Courses through

Gaussian Process Regression

Alfredo A Kalaitzis  and Neil D Lawrence”

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is

drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results \/\/e review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene

ﬁé %[éﬁéﬁﬁ] hg@ ):201292 to filter quiet genes, or for the case of

t\me serl es int ? orm o expressm rat\ s, quanf\fy d% remz expression. We assess via ROC curves the rankings

A i~ s AL v rAace i~ frarmaesaimrl Al A ~Aare e ra Flare e A et s s~ mee A A e e il RDavimciarm Al £
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Example: GP Log-Likelihood

» Contour plot of the log-likelihood
 We can see multiple optima in the plot

« SNR = signal to noise ratio (ratio between
lambda and sigma)

log,, SNR

log,, length scale
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Example: Multiple Optima

Optimum 1: length scale of 1.2221 and log10 SNR of 1.9654
Log-likelihood is -0.22317.
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Example: Multiple Optima

Optimum 2: length scale of 1.5162 and log10 SNR of 0.21306
Log-likelihood is -0.23604.
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Example: Multiple Optima

Optimum 3: length scale of 2.9886 and log10 SNR of -4.506
Log-likelihood is -2.1056.
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GPs: Summary

 GPs are a non-parametric Bayesian approach to regression with possibly infinite
feature spaces

« Can estimate predictive uncertainty by integrating out model uncertainty

« Resulting prediction equations are “straightforward” and obtained in closed-form
because of the Gaussian properties

* Hyperparameter optimization more complex, non-convex and expensive

 While GP for Regression is computationally very expensive, it is one of the most
principled approaches to statistical learning for regression

« For small data-sets, they typically also outperform Neural Nets by a large margin
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Take-away messages

« Bayesian learning consists of 2 steps:
— Compute posterior over parameters / models
— Average over all parameters / models weighted by posterior

 Both steps are in general intractable

— Can only be done for linear feature / kernelized regression models in
closed form

— For all other cases, we need to rely on approximations
 However, theoretically one of the most powerful learning
methods

— Robust against overfitting (averages over unspecified behaviour in
between datapoints)

— Does not require test set
— Quantifies model uncertainty
— Hot research topic: Bayesian Neural Network
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Self-test questions

* What are the 2 basic steps behind Bayesian Learning?

 Why is Bayesian Learning more robust against overfitting?

« What happens with the posterior if we add more data to the training set?
 Whatis completing the square and how does it work?

« For which 2 cases can Bayesian Learning be solved in closed form?

*  Which approximations can we use if no closed form is available?
 How can we derive Bayesian Linear regression

 Whatis the advantage of Bayesian Linear regression to Ridge regression? What is
the conceptual difference?

 Whatis the major advantage of GPs over Kernel Ridge Regression?
« Why are GPs a Bayesian approach?
« What principle allowed deriving GPs from a Bayesian regression point of view?
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