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Learning Outcomes

What will we learn today?

• Understand the “Bayesian formulation” of machine learning

• What are the 2 basics steps needed for Bayesian learning

• What are the advantages of being “Bayesian”?

• For which representations can Bayesian learning be done in closed form?

• How to compute the posterior and predictive distribution for Bayesian Linear 

Regression?

• How to compute the posterior and predictive distribution for Gaussian Processes?
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Today‘s Agenda!

Bayesian Learning:

• Posterior and Predictive Distribution

• Bayesian estimation for Gaussians

• Maximum A-posteriori (MAP) Estimates

Bayesian Regression Algorithms:

• Bayesian Linear Regression

• Gaussian Processes

Basics:

Gaussian Identities:

• Completing the Square

• Gaussian Bayes Rules

• Gaussian Propagation
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Bayesian Learning

So far:

• We mainly considered single models, i.e., a point estimate      for the parameter vector

However, …

1. As the data is noisy, the estimated optimal parameter vector       is also uncertain

– I.e. parameters are just random variables

– We so far do not really know how wrong / uncertain our estimate       is

2. We have also seen that multiple models (ensembles, see trees + forests) usually work better!

Motivation of Bayesian Learning:

• Estimate uncertainty in      

• Find a more robust predictor by averaging over many predictors

• … where each predictor is weighted by the probability of being “right”

• Use this estimate to quantify uncertainty of the prediction

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 4



1-step: Compute Posterior 

Compute the probability of “being right” for a parameter      using Bayes theorem:

• Prior: Can encode our subjective belief

• Posterior: Probability of parameter vector given the data

• Likelihood: Specified by our parametric model

• Evidence: Normalization, can be used for model comparison (later)
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2-step: Compute predictive distribution

Predicting of a new data-point      :

• Parameter vector     is integrated out

• Likelihood                 is  now purely determined by the data  

• is often called marginal likelihood as     is marginalized out

Intuition: If you assign each parameter estimator a “probability of being right”, the average of these 

parameter estimators will be better than the single one

• Weighted ensemble method (with potentially infinite amount of models if integral can be solved exactly)

• … often, samples from               are used to approximate the integral (finite number of models in this case)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 6



Example:

Bayesian Linear Regression 
(math comes later…)

Observation:

• The posterior becomes more 

narrow with more data

Samples from posterior Posterior integrated out

Picture taken from http://krasserm.github.io/2019/02/23/bayesian-linear-regression/
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Priors

Prior          should capture our belief and domain knowledge as well as possible

What is our domain knowledge for a general ML algorithm?

• For most ML algorithms, we know that the weights     should be small

• This knowledge can be expressed with a Gaussian prior, e.g.

– Most common for weight vectors (linear regression, neural nets…)

– is the precision of the prior

• However, many other priors are possible
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Example: Gaussian Distribution

Likelihood (sample):

Likelihood (dataset):  

Prior:

Compute posterior                   for      

assuming     is known: 
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Basics: Completing the square

Posterior:

Completing the square: Bring exponent in canonical squared form, i.e.

Then we know that                                             with:    

• Mean:

• Variance: 
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Basics: Completing the square

Posterior:

Completing the square:

• Mean:

• Variance: 

a b
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Example: Posterior Distribution

The posterior is Gaussian with:

• Mean:

• Variance:

Observations:

• Variance decreases with more training 

samples

• Will eventually reach 0

• Posterior mean interpolates between prior 

mean and sample average
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Example: Computing the predictive distribution

The predictive distribution is given by: 

The predictive distribution is Gaussian with:

• Mean:

• Variance:

Observations:

• The predictive mean is the same as 

the posterior mean

• However, the predictive variance also 

considers the uncertainty of the mean
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Conjugate priors

If the posterior distribution             is in the same probability distribution family as the 

prior probability distribution         , the prior and posterior are then called conjugate 

distributions, and the prior is called a conjugate prior for the likelihood function.

• In our example, the prior and posterior are Gaussian

• I.e. the Gaussian distribution is conjugate to itself

Other conjugate prior distributions:

• Gamma distribution is conjugate for the variance of a scalar Gaussian

• Wishart distribution is conjugate for the covariance of a multivariate Gaussian

… won’t be covered in the lecture but good to know it exists. 
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Summary: Bayesian Learning

1. Compute posterior: 

2. Integrate out posterior:

Properties:

• For very large datasets, the posterior will be a point estimate

– I.e., Bayesian Learning will be equivalent to maximum likelihood

• However, large advantage for smaller datasets!

1. We know where our model is uncertain

2. More robust estimate due to averaging
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Summary: Bayesian Learning

1. Compute posterior: 

2. Integrate out posterior:

In most cases, both operations can not be performed analytically 

• Exception: Bayesian Linear Regression + Gaussian Processes 

• Very high-dimensional integrals, hard to compute

• Simplification: Maximum A-posteriori (MAP) Solution

• Various Approximations: Laplace Approximation, Variational Inference, Sampling, etc… (not 

covered)
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Maximum a-posteriori solution

Simplification of Bayesian Learning:

1. Find the parameter vector            that maximizes the posterior

– Uncertainty in      is ignored 

– Optimization is done in log-domain

2. Use              for prediction
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Maximum a-posteriori solution 

MAP solution:

• Prior has similar role than a regularization loss

Example: Regression

• Gaussian likelihood

• Gaussian prior         

• Corresponding objective:                               

– Gaussian prior corresponds to a L2 regularization loss!

– Gaussian likelihood corresponds to squared loss!
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Example: MAP for Linear Regression

Remember: In linear regression

Objective:

• The MAP objective for Linear Regression is equivalent to Ridge Regression!

– with

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 21



Example: MAP for Linear Regression

Objective:

Result:

• We have now 2 parameters:

– … sets the importance of the prior

– … uncertainty of the training data

Predictive Model:

• Uncertainty solely depends on estimated noise level

– I.e. noise is input independent

Can be set by optimizing log likelihood + log prior

via cross validation
Q: Why do we need cross validation here?
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Intermediate Wrap-up Bayesian Learning

• Treat parameter vector as random variable and estimate posterior

– Estimate probability of “being right” for

• Posterior distribution is integrated out for prediction

– All possible parameter vectors are used for the prediction

– Weighted by probability of “being right”

• Posterior quantifies our uncertainty in the model

– Can also be used to quantify uncertainty in the prediction

We will now look at 2 examples for Bayesian Learning:

• Bayesian Linear Regression 

• Gaussian Processes
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Today‘s Agenda!

Bayesian Learning:

• Posterior and Predictive Distribution

• Bayesian estimation for Gaussians

• Maximum A-posteriori (MAP) Estimates

Bayesian Regression Algorithms:

• Bayesian Linear Regression

• Gaussian Processes

Basics:

Gaussian Identities:

• Completing the Square

• Gaussian Bayes Rules

• Gaussian Propagation
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Bayesian Linear Regression

For Bayesian Linear Regression, the posterior and the prediction can be computed in 

closed form:

• For all other cases, we need approximations

• While linear models are limited, it is still insightful to look at the properties of this case

Model:

• Likelihood (single sample):

• Likelihood (full dataset):

– Write product of independent Gaussians as multivariate Gaussian

• Gaussian prior:

Noise variance
Linear model

Feature Matrix

Parameter precision
Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 25



Bayesian Linear Regression

2 Steps:

1. Compute posterior

2. Compute predictive distribution: Integrate posterior out

Likelihood Prior

Evidence/Normalizer

Posterior

Parameter-specific prediction

We have to look at 

some basics first…
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Basics: Gaussian Identities

• Eq (1): Joint from Marginal and Conditional:

• Eq (2): Marginal and Conditional Gaussian from Joint:

• Can also be derived by “completing the square”…
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Basics: Gaussian Bayes rule

Bayes rule for Gaussian distribution:

• Marginal:

• Gaussian Bayes Rule 1: The posterior              is Gaussian with

– Mean: 

– Covariance:

• Derivation:

– Use Eq (1) to form joint              from marginal           and conditional 

– Use Eq (2) to form posterior               from joint  

• Conditional:
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Basics: Gaussian Bayes rule

Bayes rule for Gaussian distribution:

• Marginal:

• Gaussian Bayes Rule 2: The posterior              is Gaussian with

– Mean: 

– Covariance:

• Derivation: Use following identities for Bayes rule 1 from the matrix cookbook…

– Use identity                                                          for the mean (Searl identity) 

– Use identity

for the covariance (Woodbury identity) 

• Conditional:
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Basics: Gaussian Bayes rule

• Gaussian Bayes Rule 1

– Mean: 

– Covariance:

• Gaussian Bayes Rule 2:

– Mean: 

– Covariance:

Observations: Both rules are mathematically equivalent… 

• However, numerically it can be a huge difference

• Bayes rule 1: Invert a matrix with dimension dim(y) x dim(y)

• Bayes rule 2: Invert a matrix with dimension dim(x) x dim(x)

Use Rule 1 if dim(y) < dim(x), 

otherwise Rule 2
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Basics: Gaussian propagation

Given marginal                                      and conditional                                           we 

want to obtain the marginal for y

• The marginal distribution is Gaussian with

– Mean:

– Variance:

• Derivation: 

– Use Eq (1) to obtain joint distribution

– Marginal p(y) can be directly read from the joint

• Variance in y increases due to uncertainty in x

Ok… now we are ready to derive Bayesian Linear Regression!
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Computing the Posterior

• Likelihood (conditional):

• Prior (marginal):

• Dimensions:  

As the dimensionality of the marginal variable (parameter vector) is smaller than dimensionality of 

cond. variable (number of datapoints), we have to use Gaussian Bayes rule 2!

• with 
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Computing the Posterior

Posterior                                                             :

• Posterior mean:

• Posterior covariance:

Observations:

• The posterior mean is equivalent to the MAP estimate

• … results from the linearity of the likelihood (not the case for non-linear models)

So whats the advantage?

• We also get an uncertainty estimate for the parameter vector!
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Example: Samples from the posterior

• We can create samples

• Each       represents a function

• Basis functions are given by RBF 

basis functions
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Predictive Distribution

The predictive distribution is given by:

• Using Gaussian propagation, we can evaluate the predictive distribution. It is Gaussian with

– Mean: 

– Variance:

• Nothing new for the mean (same as Ridge Regression / MAP solution) 

• However: The variance is now input dependent!
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Example: Predictive Distribution

Visualize predictive distribution with

• Model uncertainty is reduced if 

training data contains information 

about weight for specific feature

• In the limit              model 

uncertainty vanishes and only 

noise variance         remains 
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Today‘s Agenda!

Bayesian Learning:

• Posterior and Predictive Distribution

• Bayesian estimation for Gaussians

• Maximum A-posteriori (MAP) Estimates

Bayesian Regression Algorithms:

• Bayesian Linear Regression

• Gaussian Processes

Basics:

Gaussian Identities:

• Completing the Square

• Gaussian Bayes Rules

• Gaussian Propagation
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Gaussian Processes

A Gaussian Process (GP)  

is a probability distribution over functions f(x), such that any finite set of function values 

ti = f(xi) evaluated at inputs x1 , . . . , xn is jointly Gaussian distributed

• Mean function evaluates our prior belief about the function

– For simplicity, we will use

• Covariance function evaluates how similar/correlated two function evaluations at inputs          are

– Covariance function needs to be a positive definite function (similar to a kernel function)
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Different covariance functions

Samples from a GP prior with 

different covariance functions

• The covariance encodes our 

prior belief in the smoothness 

of the function
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Gaussian Processes

I.e. a Gaussian process over N function evaluations                                  is completely specified by 

the 2nd order statistics, i.e., mean and covariance, i.e.

In reality, we can only measure noisy function values, i.e.                                                          . We 

get the following Gaussian distribution over 

with
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Predictive distribution

We know that the function values     for the training set       and for a new data point       are jointly 

Gaussian distributed. Hence, also the conditional                          is also Gaussian distributed.  

• For a new data-point      we can obtain the joint distribution over function values

• We can condition on     to obtain                         using the Gaussian identities (Eq. 2). The 

predictive distribution is Gaussian with

– Mean:

– Variance:
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Predictive distribution

Predictive GP distribution:

– Mean:

– Variance:

Observations:

– The mean corresponds to the Kernel Ridge 
Regression solution

– Yet, we also get an input dependent variance 
estimate

– Variance is reduced if kernel activations are 
high

Example of Sinusoidal Data Set (green: true 

function; blue: noisy data; red: GPR predictive 

mean; shaded: ±2σ)
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Illustration of Posterior

Samples of the prior and the posterior (after conditioning on y)
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Weight space view

So why are GPs an instance of Bayesian Learning? 

• We can also derive GPs from the Bayesian Linear Regression view

• Kernelized version of Bayesian Linear Regression (with infinite dimensional feature spaces)

So back to Bayesian linear regression….

• Likelihood (conditional):

• Prior (marginal):

• Dimensions:  

As the dimensionality of the marginal variable (parameter vector) is now larger than dimensionality of 

cond. Variable (number of samples), we have to use Gaussian Bayes rule 1
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Recap: Gaussian Bayes rule

• Gaussian Bayes Rule 1

– Mean: 

– Covariance:

• Gaussian Bayes Rule 2:

– Mean: 

– Covariance:

Observations: Both rules are mathematically equivalent… 

• However, numerically it can be a huge difference

• Bayes rule 1: Invert a matrix with dimension dim(y) x dim(y)

• Bayes rule 2: Invert a matrix with dimension dim(x) x dim(x)

Use Rule 1 if dim(y) < dim(x), 

otherwise Rule 2
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Recap: A few kernel identities

A kernel is an inner product of a feature space:      

Let then the following identities hold:

• Kernel matrix: 

– Check: 

• Kernel vector:
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Recap: A few kernel identities

A kernel is an inner product of a feature space:   

Let then the following identities hold:

• Kernel matrix: 

– Check: 

• Kernel vector:

In the Bayesian case, we will subsume 

the prior precision     into the kernel
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Computing the Posterior

Using the Gaussian Bayes Rule 1 results in the following posterior:

• We used the Kernel trick to evaluate the inverse matrix

– The prior precision     has been subsumed in the kernel

• Both quantities are still potentially infinite dimensional and can not be evaluated! 
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Predictive distribution

Still, we can use the posterior to evaluate the predictive distribution (again using the Kernel 

trick)

The predictive distribution is again Gaussian with

• Mean:

• Variance:

… which is the same result as obtained with Gaussian conditioning
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Wrap-up: GP derivations

Function View:

• A Gaussian process is a distribution over functions, where every set of N function evaluations is 

jointly Gaussian distributed

• Predictions can hence be performed by conditioning

Weight Space View:

• A Gaussian process is a Bayesian Kernel Regression approach

• Underlying feature space is potentially infinite dimensional

• Weight vector (which is not representable) is integrated out using the Kernel trick

While GP for Regression is computationally very expensive ( O(N3) ), it is one of the most principled 

approaches to statistical learning for regression
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Kernels and Hyperparameters

• The parameters of the kernel (e.g. length-scale of 
Gaussian kernel) are called “hyper-parameters”    . 

• The prior precision of the weights as well as the 
observation noise are for simplicity also subsumed in the 
kernel hyper-parameters

The most common kernel is the Gaussian / RBF / squared-
exponential Kernel

• prior precision of the weight vector

• noise variance 

– (only applied if i = j, in this notation                    is replaced by

• length scale

Length scale 0.5

Length scale 0.125
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Influence of the Hyper-Parameters

Different noise levels

Different length scales

Too big / Underfitting About right Too small / Overfitting

Too big / Underfitting About right Too small / Overfitting
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Kernels and Hyperparameters

Squared-exponential Kernel can be extended with a length-scale per dimension

• prior precision of the weight vector

• noise variance (only applied if i = j)

• length scale for dimension k

Also called Automatic Relevance Determination (ARD) kernel:

• Optimizing the length-scale determines the relevance of each dimension

• Large length-scale -> dimension is less important
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Optimization of the Hyperparameters

• In GPs, the parameters      can be integrated out in closed form 

• Yet, no closed form solution exists for the hyper-parameters

Objective: Log-likelihood of the training data

• Need to be optimized via gradient descent (only batch)

• Non-convex, multiple optima

• Only a small number of hyper-parameters

• Very flexible representation, beware of overfitting (would be better to do that on validation set)!
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Example: Gene Expression 

• Given gene expression levels in the form of a time series

• Want to detect if a gene is expressed or not, fit a GP to each gene [Kalaitzis and 

Lawrence, 2011]
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Example: GP Log-Likelihood

• Contour plot of the log-likelihood

• We can see multiple optima in the plot

• SNR = signal to noise ratio (ratio between

lambda and sigma)
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Example: Multiple Optima

• Optimum 1: length scale of 1.2221 and log10 SNR of 1.9654 

• Log-likelihood is -0.22317.
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Example: Multiple Optima

• Optimum 2: length scale of 1.5162 and log10 SNR of 0.21306 

• Log-likelihood is -0.23604.
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Example: Multiple Optima

• Optimum 3: length scale of 2.9886 and log10 SNR of -4.506 

• Log-likelihood is -2.1056.

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022 59



GPs: Summary

• GPs are a non-parametric Bayesian approach to regression with possibly infinite 

feature spaces

• Can estimate predictive uncertainty by integrating out model uncertainty

• Resulting prediction equations are “straightforward” and obtained in closed-form 

because of the Gaussian properties

• Hyperparameter optimization more complex, non-convex and expensive

• While GP for Regression is computationally very expensive, it is one of the most 

principled approaches to statistical learning for regression

• For small data-sets, they typically also outperform Neural Nets by a large margin
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Take-away messages

• Bayesian learning consists of 2 steps:

– Compute posterior over parameters / models

– Average over all parameters / models weighted by posterior

• Both steps are in general intractable
– Can only be done for linear feature / kernelized regression models in 

closed form

– For all other cases, we need to rely on approximations

• However, theoretically one of the most powerful learning 
methods

– Robust against overfitting (averages over unspecified behaviour in 
between datapoints)

– Does not require test set

– Quantifies model uncertainty

– Hot research topic: Bayesian Neural Network
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Self-test questions

• What are the 2 basic steps behind Bayesian Learning?

• Why is Bayesian Learning more robust against overfitting?

• What happens with the posterior if we add more data to the training set?

• What is completing the square and how does it work?

• For which 2 cases can Bayesian Learning be solved in closed form?

• Which approximations can we use if no closed form is available?

• How can we derive Bayesian Linear regression

• What is the advantage of Bayesian Linear regression to Ridge regression? What is 
the conceptual difference?

• What is the major advantage of GPs over Kernel Ridge Regression?

• Why are GPs a Bayesian approach?

• What principle allowed deriving GPs from a Bayesian regression point of view?
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