Neural Networks

Machine Learning – Foundations and Algorithms WS 2021/22

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

Announcement: Exam

If you register for the first time:

 Select in CAS the exam no 7500292 – Maschinelles Lernen - Grundlagen und Algorithmen (WS 21/22)

If you already registered last semester and canceled the exam or did not pass it:

• Select in CAS the exam no. 7500340 – Maschinelles Lernen - Grundverfahren (WS 21/22)

Intermediate Lecture Wrap-Up – Algorithms

Chapter 1: Classical Supervised Learning

- ✓ Linear Regression,
- ✓ Ridge Regression,
- ✓ k-NN,
- ✓ Trees and Forests

Chapter 2: Kernel Methods

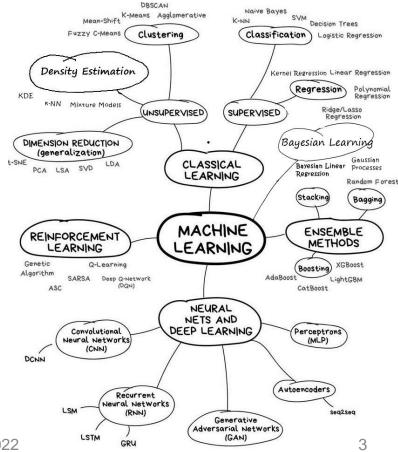
- ✓ Kernel-Regression
- ✓ Support Vector Machines

Chapter 3: Bayesian Learning

- ✓ Bayesian Linear Regression
- ✓ Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning



Intermediate Lecture Wrap-Up – Basics

Chapter 1: Classical Supervised Learning

- Matrix/Vector Calculus
- Probability Theory, Maximum Likelihood
- ✓ Gradient Descent

Chapter 2: Kernel Methods

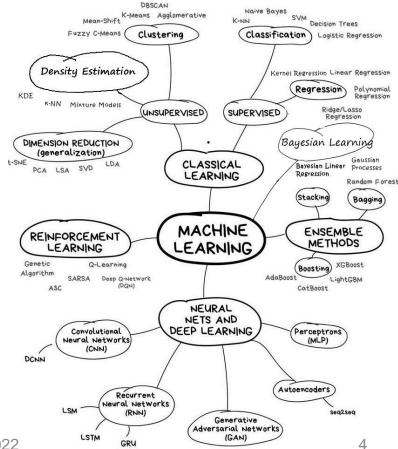
- ✓ Sub-gradients
- ✓ Constraint Optimization

Chapter 3: Bayesian Learning

- "Completing the Square"
- Gaussian Conditioning

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning



The ML algorithm "coordinate system"

Most ML algorithms can be grouped along 3 axis:

- **Representation:** What is the underlying representation of our model?
- Loss function: How do we define what is a good and what is a poor model?
- **Optimization:** How do we optimize?

... of course more axis exists, e.g. Regularization

Intermediate Lecture Wrap-Up – Representations

Chapter 1: Classical Supervised Learning

- Features / Basis Functions: Linear (Ridge) Regression, Logistic Regression
- ✓ Instances: k-NN
- Trees: CART
- Ensembles: Forests

Chapter 2: Kernel Methods

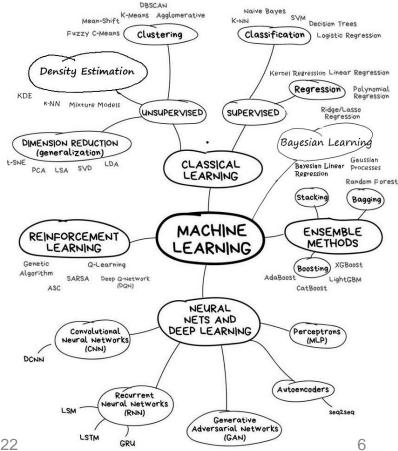
Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning

- Features: Bayesian Linear Regression
- ✓ Kernels: Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning



Intermediate Lecture Wrap-Up – Loss Functions

Chapter 1: Classical Supervised Learning

- Mean/Summed Squared error (SSE): Linear \checkmark Regression
- \checkmark Gaussian Log-Likelihood: Probabilistic linear Regression
- \checkmark Binary Cross Entropy Likelihood: Logistic Regression
- Soft-Max Likelihood: Multi-class classification \checkmark

Chapter 2: Kernel Methods

- SSE: Kernel Regression \checkmark
- Maximum Margin or Hinge Loss: SVM \checkmark

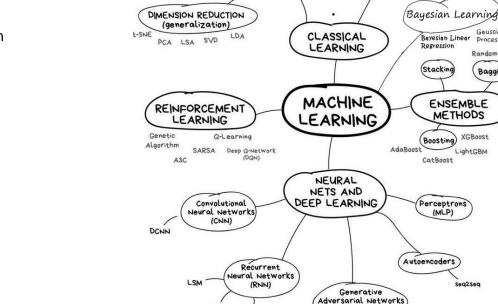
Chapter 3: Bayesian Learning

Maximum a-posteriori solution: Probabilistic \checkmark ridge regression

Chapter 4: Neural Networks

Most of that above... .

Chapter 5: Unsupervised Learning



LSTM

GRU

DBSCAN

Mean-Shift

Fuzzy C-Means

Density Estimation

K-NN Mixture Models

KDE

K-Means Agglomerative

Clustering

UNSUPERVISED

Naive Bayes

Classification

K-NN

SUPERVISED

(GAN)

SVM

Decision Trees

Kernel Regression Linear Regression Regression

Ridge/Lasso

Regression

ENSEMBLE

METHODS

Boosting

(MLP)

XGBoost

LightGBM

Logistic Regression

Polynomial

Gaussian

Processes

Bagging

Random Forest

Regression

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

seq2seq

Intermediate Lecture Wrap-Up – Optimization Methods

Chapter 1: Classical Supervised Learning

- ✓ Least Squares Solution: Linear Regression
- ✓ Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

- Least Squares Solution: Kernel Regression
- ✓ Sub-Gradients: SVM
- Lagrangian Optimization: SVMs

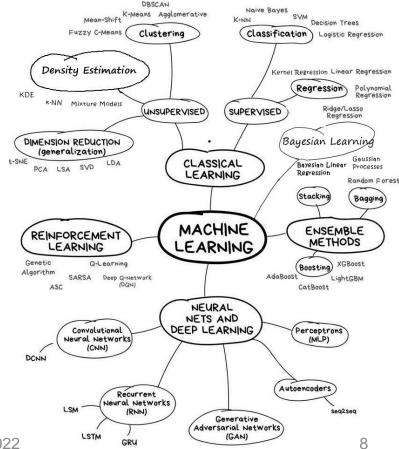
Chapter 3: Bayesian Learning

Posterior approximation

Chapter 4: Neural Networks

More specialized gradient descent methods

Chapter 5: Unsupervised Learning



Wrap-up: Where are we?

Chapter 1: Classical Supervised Learning

- Lecture 1: Linear Regression, Ridge Regression
- Lecture 2: Linear Classification
- Lecture 3: Model Selection
- Lecture 4: k-Nearest Neighbors, Trees and Forests

Chapter 2: Kernel Methods

- Lecture 5: Kernel-Regression
- Lecture 6: Support Vector Machines

Chapter 3: Bayesian Learning

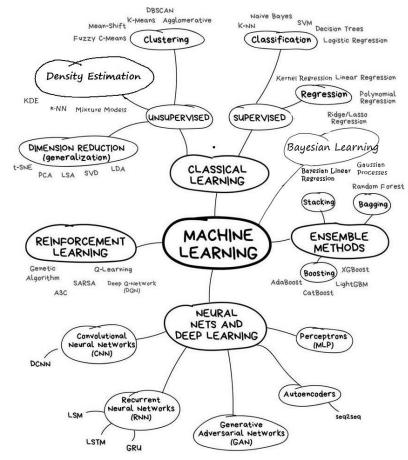
Lecture 7: Bayesian Linear Regression and Gaussian
 Processes

Chapter 4: Neural Networks

- Lecture 8: Neural Networks and Backpropagation
- Lecture 9: CNNs and LSTMs

Chapter 5: Unsupervised Learning

- Lecture 10: Dimensionality Reduction and Clustering
- Lecture 11: Density Estimation and Mixture Models
- Lecture 12: Variational Auto-Encoders (?)



Learning Outcomes

We will learn today...

- What a neuron network is
- How do we train it?
- ... which requires a calculus refresher ©
- Why is everybody talking about it?
- Various ways to accelerate gradient descent
- How to prevent overfitting in NNs?
- Practical tips and tricks for training NNs

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

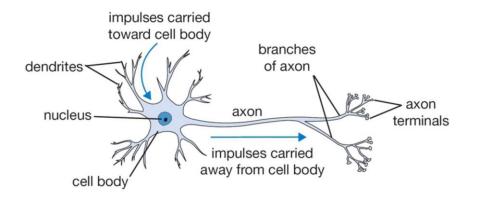
Advanced Topics:

- Accelerating gradient descent
- Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Biological Inspiration: The brain

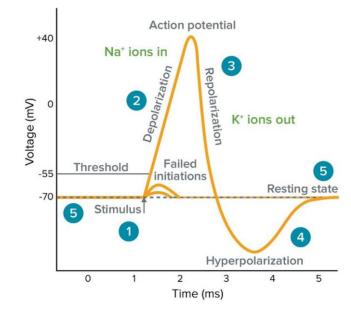
A neuron is the basic computational unit of the brain:



- Our brain has ~ 10¹¹ neurons
- Each neuron is connected to ~ 10⁴ other neurons (via synapses)

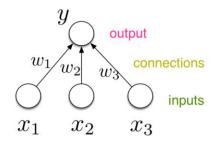
Biological Inspiration: The brain

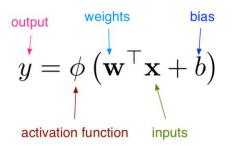
Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.



Artificial Neurons

For neural nets, we use a much simpler unit (neuron, perceptron):





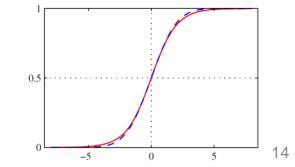
3 ingredients:

- Weighting of the input
- Summation
- Non-linear activation function

Example we already know:

• Logistic regression:

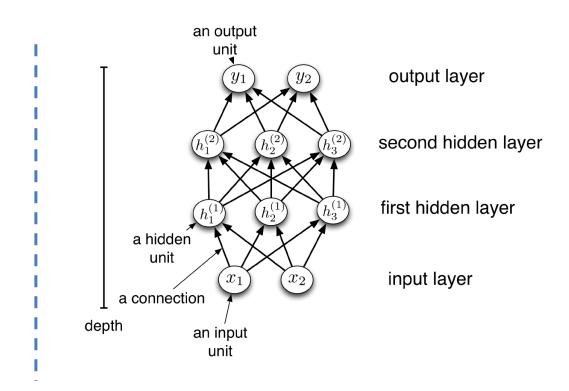
$$y = \sigma(\mathbf{w}^T \mathbf{x} + b)$$



Feedforward Neural Networks

Building a network:

- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles.
- Typically, units are grouped together into layers.



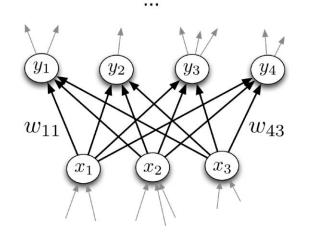
Feedforward Neural Networks

- Each layer connects *N* input units to *M* output units.
- In the simplest case, all input units are connected to all output units. We call this **a fully connected layer.**
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.

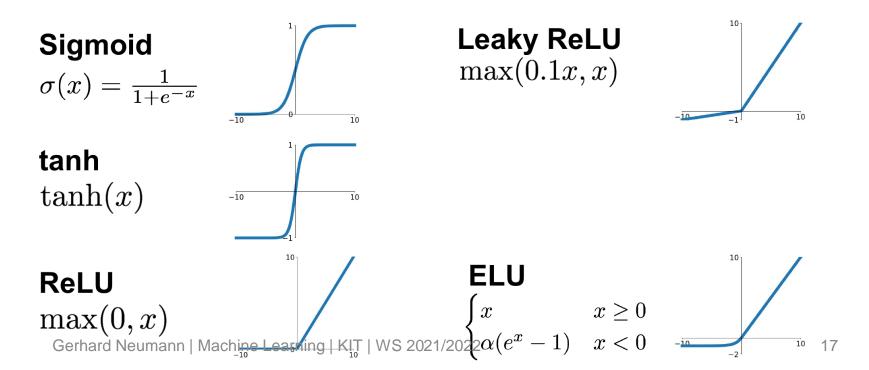
- I.e., each layer has a M x N weight matrix W
- Equation in matrix form:

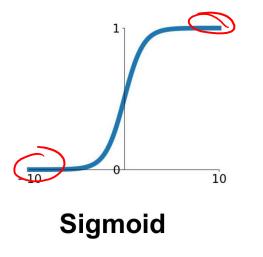
 $\mathbf{y} = \phi(\mathbf{W}\mathbf{x} + \mathbf{b})$

- Output units are a function of input units
- Feedforward neural networks are also often called multi-layer perceptrons (MLPs)



Different activation functions for introducing non-linearities:



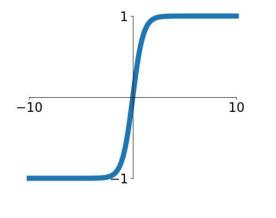


Computes $\sigma(x) = \frac{1}{1 + \exp(-x)}$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

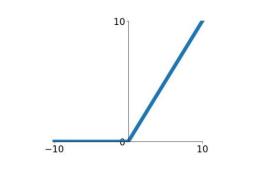
Problems:

- × Saturated neurons "kill" the gradients
- × Sigmoid outputs are not zero-centered (important for initialization)
- × exp() is a bit compute expensive



- Squashes numbers to range [-1,1]
- ✓ zero centered (nice)
- × still kills gradients when saturated :(

tanh(x)



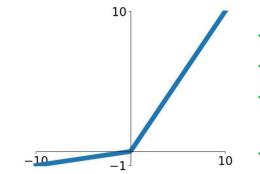
Computes $f(x) = \max(0, x)$

- ✓ Does not saturate (in +region)
- Computationally very efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU (Rectified Linear Unit)

- × Not zero-centred output
- × No gradient for x < 0

Computes $f(x) = \max(0.1x, x)$



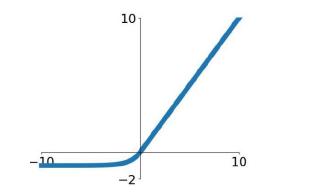
- ✓ Does not saturate
- ✓ Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- ✓ will not "die"

Leaky ReLU

Parametric Rectifier (PReLu):

 $f(x) = \max(\alpha x, x)$

• Also learn alpha



Computes $f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(\exp(x) - 1) & \text{if } x \le 0 \end{cases}$

- ✓ All benefits of ReLU
- ✓ Closer to zero mean outputs
- × Computation requires exp()

Exponential Linear Units (ELU)

In practice:

- Use ReLU. Be careful with your learning rates / initialization
- Try out Leaky ReLU / ELU
- Try out tanh but don't expect much
- Don't use sigmoid
 - Only used for output activations in classification

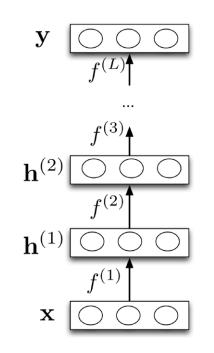
Feedforward Neural Networks

Formalisation:

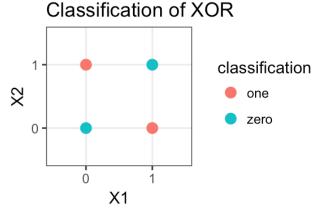
• Each layer computes a function, so the network computes a composition of functions:

$$\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x})$$
$$\mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)})$$
$$\vdots$$
$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$$
Or more simply:
$$\mathbf{y} = f^L \circ f^{L-1} \circ f^{(1)}$$

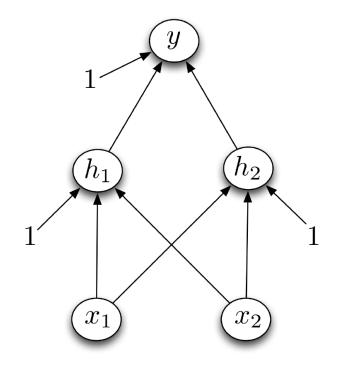
- Or more simply: $\mathbf{y} = f^L \circ f^{L-1} \circ \dots f^{(1)}(\mathbf{x})$
- Neural nets provide modularity: we can implement each layer's computations as a black box.



Design a network that implements XOR:



- Not computable by a single unit!
- Classical example why we need multiple layers



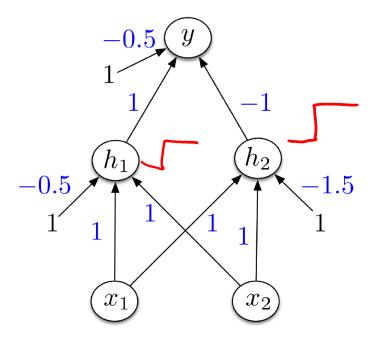
Example: XOR

XOR in terms of elemental operations:

• XOR(a,b) = (a OR b) AND NOT (a AND b)

Design a network that implements XOR:

- Hard threshold for activation function
- h₁ computes x₁ OR x₂
- h_2 computes x_1 AND x_2
- y computers h_1 AND NOT h_2



Deep Architectures

Why do we need to be deep?

• Any sequence of linear layers can be equivalently represented with a single linear layer

$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\tilde{\mathbf{W}}}\mathbf{x}$$

- I.e., we need non-linearities to exploit multiple layers
- FF-NNs with nonlinear activation functions are universal function approximators:
 - Given a potentially infinite amount of units, they can approximate any function arbitrarily well
 - Universal Function Approximation Theorem: Already a single layer is enough to achieve "universality"

Deep Architectures

So, is a single layer enough?

- Even though the Universal Approximation Theorem says a single layer is enough, we would need an exponential number (in input dimensionality) of units to achieve this
 - If you can learn any function, you'll just overfit.
- Instead, multiple layers allow for a similar effect with less units
 - Compact representation >> "Universal representation"

Objective functions for training neural nets:

• General ML recipe: per sample loss + regularization penalty (see lecture 2)

$$oldsymbol{ heta}^* = rgmin_{ ext{parameters}}oldsymbol{ heta}\ \sum_{i=1}^N l(oldsymbol{x}_i,oldsymbol{ heta}) + \lambda ext{ penalty}(oldsymbol{ heta})$$

Which kind of loss and output activation function depends on the task

- Regression
- Binary classification
- Multi-class classification

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

Advanced Topics:

- Accelerating gradient descent
- Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Regression:

Deterministic

• Output layer:

linear $\mathbf{f} = \mathbf{W}^{(L)}\mathbf{h}^{(L-1)} + \boldsymbol{b}^{(L)}$

• Loss:

squared error
$$l_i(\mathbf{x}_i, oldsymbol{ heta}) = rac{1}{2} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Probabilistic

linear Gaussian $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{W}^{(L)}\mathbf{h}^{(L-1)} + \mathbf{b}^{(L)}, \boldsymbol{\Sigma})$

negative log-likelihood $l_i(\mathbf{x}_i, oldsymbol{ heta}) = -\log \mathcal{N}(\mathbf{y}_i | oldsymbol{\mu}(\mathbf{x}_i), oldsymbol{\Sigma})$

Binary classification:

Output layer:

Loss function:

Deterministic linear $f = \mathbf{W}^{(L)}\mathbf{h}^{(L-1)} + b^{(L)}$ hinge-loss $l(\mathbf{x}_i, \boldsymbol{\theta}) = \max \left(0, 1 - y_i f(\boldsymbol{x}_i)\right)$

Probabilistic								
sigmoid								
$f = \sigma(\mathbf{W}^{(L)}\mathbf{h}^{(L-1)} + b^{(L)})$								
neg-loglike								
$l_i(\mathbf{x}_i, \boldsymbol{\theta}) = -c_i \log f(\mathbf{x}_i) - (1 - c_i) \log(1 - f(\mathbf{x}_i))$								
	0/1 labels							

Multi-class classification:

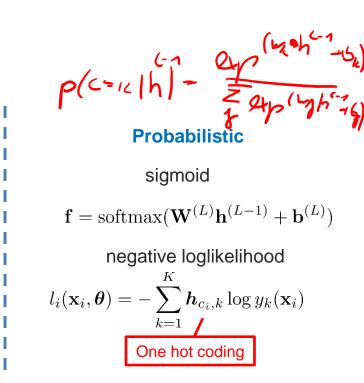
• Output layer:

Deterministic

linear $\mathbf{f} = \mathbf{W}^{(L)} \mathbf{h}^{(L-1)} + \mathbf{b}^{(L)}$

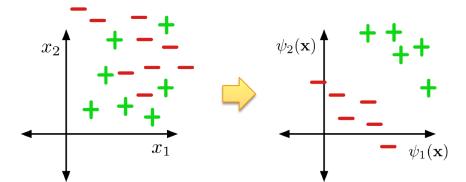
Multi-class SVM loss

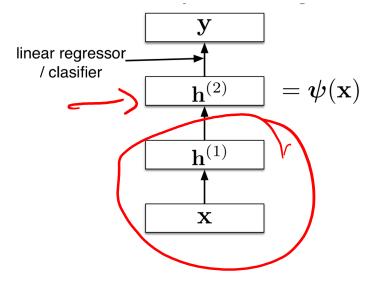
Not covered



Feature Learning

- Neural nets can be viewed as a way of learning features
 - The last layer is a standard linear regression / classification layer
- The network learns the features $\psi(\mathbf{x})$ such that linear regression / classification can solve it





Example: Feature Learning

Classify images of handwritten digits:

- Each image is represented as a vector of 28 × 28
 = 784 pixel values.
- Each first-layer hidden unit computes $\sigma(\mathbf{w}_i^T \mathbf{x})$. It acts as a feature detector.
- We can visualize **w** by reshaping it into an image.
- These weights **w** are visualized on the right for some units
- Edge-detectors at different orientations and locations

			10	S.			(Carl
N.		意					
$\sum_{i=1}^{N_{i}}$			物				Se al
12			る	1ª	1		
1							
<u> </u>	変					alle a	N.
	N.		and the second s		all a	梁	御書
	1				191	同時	di la

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

Advanced Topics:

- Accelerating gradient descent
- Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Gradient Descent

Multi-layer perceptrons are usually trained using back-propagation for computing the gradients

Same algorithms as for logistic regression can be used, however

- Much bigger parameter space
- Non-convex, many local optima
- Can get stuck in poor local optima
- The design of a working backprop algorithm is somewhat of an art

Because of that, the use of NNs was in absolute winter between ~2000 and 2012

However, in the last 5-10 years, we have seen that with:

- More compute
- More data
- And a few tricks...

they work amazingly well...

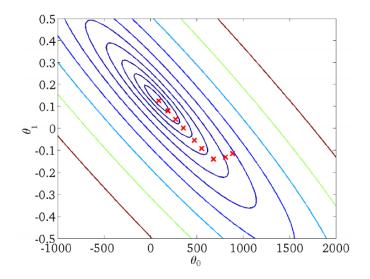
Recap: Gradient Descent

Move in the opposite direction of the gradient (steepest descent)

• Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers

 $\boldsymbol{\theta} = \{\mathbf{W}^{(L)}, \dots, \mathbf{W}^{(1)}, \mathbf{b}^{(L)}, \dots, \mathbf{b}^{(1)}\}$

• Conceptually, not any different from what we've seen so far (Lecture 2) — just higher dimensional and harder to visualize!



Basics: Chain rule gradients of composite functions

Objective functions for training neural nets:

• per sample loss + regularization penalty (see lecture 2)

$$\mathcal{L}(\boldsymbol{\theta}, \mathcal{D}) = \sum_{i=1}^{N} l(\boldsymbol{x}_i, \boldsymbol{\theta}) + \lambda \text{ penalty}(\boldsymbol{\theta})$$

• We need to compute the following partial derivatives:

– Layer weight matrices:
$$rac{\partial \mathcal{L}}{\partial \mathbf{W}^{(l)}}$$

- Layer bias vectors:
- ors: $rac{\partial \mathcal{L}}{\partial \mathbf{b}^{(l)}}$
- Can be done by a recursive use of the chain rule!

Univariate case

Lets start simple...

Univariate chain rule:

• **Recall:** if f(x) and x(t) are univariate functions, then

$$\frac{d}{dt}f(x(t)) = \frac{df}{dx}\frac{dx}{dt}$$

Example

Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Lets compute the loss derivatives...

01z) 101 in calculus: $\mathcal{L} = \frac{1}{2}(\sigma(wx+b) - t)^2$ = $rac{\partial \mathcal{L}}{\partial b}$ Similar for

Example

Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^2$$

Lets compute the loss derivatives...

101 in calculus:

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b) - t)^{2}$$
$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w}\frac{1}{2}(\sigma(wx+b) - t)^{2}$$
$$= (\sigma(wx+b) - t)\frac{\partial}{\partial w}\sigma(wx+b)$$
$$= (\sigma(wx+b) - t)\sigma'(wx+b)\frac{\partial}{\partial w}(wx+b)$$
$$= (\sigma(wx+b) - t)\sigma'(wx+b)x$$
• Similar for $\frac{\partial \mathcal{L}}{\partial b}$

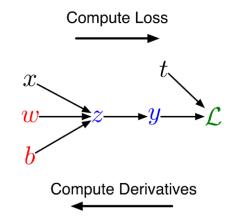
Computation graph (example)

Can we find an algorithm to do it more systematically?

- The goal isn't to obtain closed-form solutions...
- but to be able to write a program that efficiently computes the derivatives.

We can diagram out the computations using a computation graph:

- The nodes represent all the inputs and computed quantities
- The edges represent which nodes are computed directly as a function of which other nodes.

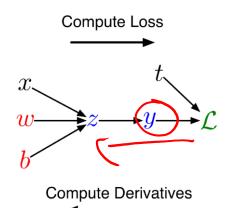


Computation graph (example)

Computing the loss:

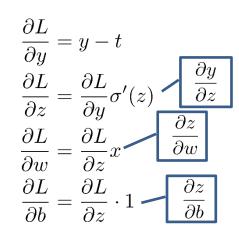
• forward pass

z = wx + b $y = \sigma(z)$ $\mathcal{L} = \frac{1}{2}(y - t)^{2}$



Computing the derivative

backward pass



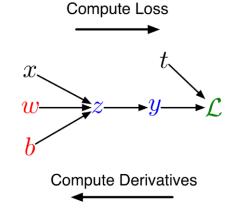
Computation graph (example)

Lets simplify notation:

- Use \bar{y} to denote the derivative $\frac{\partial \mathcal{L}}{\partial u}$ (also called error signals)
- Emphasizes that error signals are just values (rather than mathematical operations)

Computing the loss:

- forward pass
 - z = wx + b $y = \sigma(z)$ $\mathcal{L} = \frac{1}{2}(y - t)^{2}$



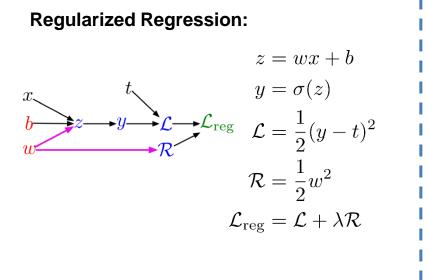
Computing the derivative

- backward pass
 - $\bar{y} = y t$ $\bar{z} = \bar{y}\sigma'(z)$ $\bar{w} = \bar{z}x$ $\bar{b} = \bar{z}$

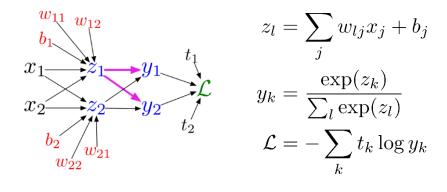
General computation graphs

Problem: what if the computation graph has **fan-out > 1**?

• This requires the multivariate Chain Rule!



Softmax classification:



Multivariable chain rule

Suppose we have a function f(x,y) and functions x(t) and y(t) (All the variables here are scalar-valued.) Then

$$\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example:

$$f(x, y) = y + \exp(xy)$$
$$x(t) = \cos t$$
$$y(t) = t^{2}$$

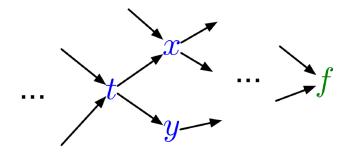
Plug in Chain Rule:

$$\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$
$$= (y \exp(xy))(-\sin t)$$
$$+ (1 + x \exp(xy))(2t)$$

Multivariable chain rule

In the context of back-propagation:

Values already computed by the algorithm $\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ Mathematical expressions to be evaluated



Using our notation:

$$\bar{t} = \bar{x}\frac{dx}{dt} + \bar{y}\frac{dy}{dt}$$

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

In vector notation:

$$\frac{d}{dt}f(\boldsymbol{x}(t)) = \sum_{i} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t} = \sum_{i} \bar{x}_{i} \frac{\partial x_{i}}{\partial t}$$
$$= \widetilde{\boldsymbol{x}}^{\top} \underbrace{\mathcal{O}}_{\mathcal{O}} \underbrace{\mathcal{O}}_{\mathcal{O}} \underbrace{\mathbf{x}}_{\mathcal{O}} \underbrace{$$

Backpropagation

Full backpropagation algorithm:

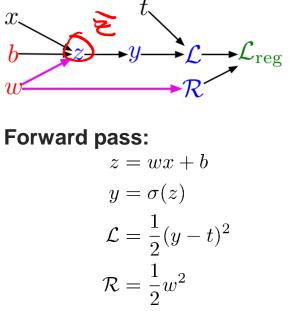
- Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)
- *v_N* denotes the variable we're trying to compute derivatives of (e.g. loss).

$$\frac{1}{2}$$

forward pass
$$\begin{bmatrix} For \ i = 1, \dots, N \\ Compute \ v_i \text{ as a function of } Pa(v_i) \\ \hline V_N = 1 \\ For \ i = N - 1, \dots, 1 \\ \hline \overline{v_i} = \sum_{j \in Ch(v_i)} \overline{v_j} \frac{\partial v_j}{\partial v_i} \end{bmatrix}$$

Backpropagation

Example: univariate logistic least squares regression



$$\mathcal{L}_{\mathrm{reg}} = \mathcal{L} + \lambda \mathcal{R}$$

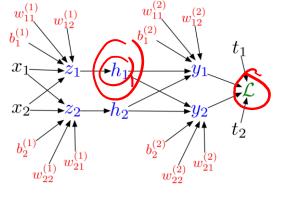
Gerhard Neumann | Machine Learning | K T | WS 2021/2022

Backward pass: $\overline{\mathcal{L}_{\mathrm{reg}}} = 1$ $\overline{z} = \overline{y} \frac{dy}{dz}$ $\overline{\mathcal{R}} = \overline{\mathcal{L}_{\mathrm{reg}}} rac{d\mathcal{L}_{\mathrm{reg}}}{d\mathcal{R}}$ $= \overline{y}\sigma'(z)$ $=\overline{\mathcal{L}_{\mathrm{reg}}}\lambda$ $\overline{w} = \overline{z} \frac{\partial \dot{z}}{\partial w} + \overline{\mathcal{R}} \frac{d\mathcal{R}}{dw}$ $\overline{\mathcal{L}} = \overline{\mathcal{L}_{\mathrm{reg}}}$ $=\overline{z}x+\overline{\mathcal{R}}w$ $=\overline{\mathcal{L}_{\mathrm{reg}}}$ $\overline{b} = \overline{z} \frac{\partial z}{\partial b}$ $\overline{y} = \overline{\mathcal{L}} \frac{d\mathcal{L}}{d\mathcal{L}}$ $=\overline{z}$

 $_{/2022} = \overline{\mathcal{L}}(y-t)$ 50

Backpropagation

Example: Multi-layer Perceptron (multiple outputs)



Forward pass:

 $z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$ $h_{i} = \sigma(z_{i})$ $y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(2)}$ $\mathcal{L} = \frac{1}{2} \sum_{k} (y_{k} - t_{k})^{2}$

Backward pass:

 $\mathcal{L} = 1$ $\overline{y_k} = \overline{\mathcal{L}}(y_k - t_k)$ $\overline{w_{\iota_i}^{(2)}} = \overline{y_k} h_i$ $\overline{b_{k}^{(2)}} = \overline{y_{k}}$ $\overline{h_i} = \sum \overline{y_k} w_{ki}^{(2)}$ $\overline{z_i} = \overline{h_i}\sigma'(z_i)$ $w_{ij}^{(1)} = \overline{z_i} x_j$ $\overline{h^{(1)}} = \overline{z_i}$

Can we also do this in matrix form?

Recap: Matrix Calculus

Derivatives of a scalar function w.r.t a vector...

• Yields the gradient vector:
$$\nabla_{\boldsymbol{x}} f = \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial f(\boldsymbol{x})}{\partial x_d}\right]^T$$

• Example: Quadratic form $\nabla_{\boldsymbol{x}} \boldsymbol{x}^T \boldsymbol{x} = 2 \boldsymbol{x}$ $\nabla_{\boldsymbol{x}} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = 2 \boldsymbol{A} \boldsymbol{x}$

Derivatives of a vector-valued function w.r.t a vector...

• Yields a matrix (the Jacobian)
$$\nabla_{\boldsymbol{x}} \boldsymbol{f} = \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f_k(\boldsymbol{x})}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1(\boldsymbol{x})}{\partial x_d} & \cdots & \frac{\partial f_k(\boldsymbol{x})}{\partial x_d} \end{bmatrix}$$

• Example: Linear form $abla_{\boldsymbol{x}} \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T$

Recap: Matrix Calculus

Derivatives of a scalar function w.r.t. a matrix...

• ... is again a matrix
$$\nabla_{\mathbf{W}} f = \frac{\partial f(\mathbf{W})}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial f(\mathbf{W})}{\partial W_{11}} & \cdots & \frac{\partial f(\mathbf{W})}{\partial W_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{W})}{\partial W_{k1}} & \cdots & \frac{\partial f(\mathbf{W})}{\partial W_{kd}} \end{bmatrix}$$

Derivatives of a vector-valued function w.r.t. a matrix...

- ... is a 3D tensor !
- However, we only have matrix-vector products:
- In this case, the chain-rule does not require to evaluate the tensor, i.e. (proof not shown)

$$\nabla_{\boldsymbol{W}} f = \frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{W}} = \frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{z}} \frac{\partial}{\partial \boldsymbol{W}} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) = \frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{z}} \boldsymbol{x}^{T}$$

• This is the outer product (i.e., again a matrix)

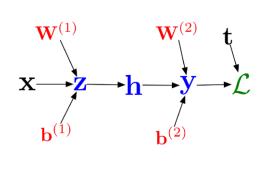
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

DZ DI-

z = Wx + b

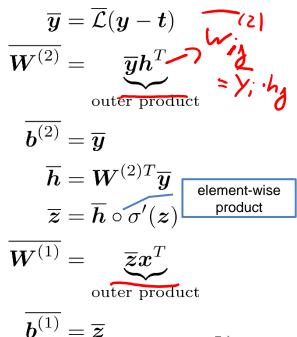
Example in matrix form

Example: Multi-layer Perceptron (vector form)



Forward pass: $z = W^{(1)}x + b^{(1)}$ $h = \sigma(z)$ $y = W^{(2)}h + b^{(2)}$ $\mathcal{L} = \frac{1}{2}(y - t)^T(y - t)$

Backward pass: $\overline{\mathcal{L}} = 1$



Computational costs

- Computational cost of forward pass:
 - $oldsymbol{z} = oldsymbol{W} oldsymbol{x} + oldsymbol{b}$
 - Matrix-vector product
 - Roughly one add-multiply operation per weight
- Computational cost of backward pass:

$$\overline{\boldsymbol{W}} = \overline{\boldsymbol{h}} \boldsymbol{z}^T, \quad \overline{\boldsymbol{h}} = \boldsymbol{W}^T \overline{\boldsymbol{y}}$$

- Matrix-vector product + outer product
- Roughly two add-multiply operation per weight (twice the forward pass)
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

Wrap-up for backpropagation

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
 - No evidence for biological signals analogous to error derivatives.
 - Forward & backward weights are tied in backprop.
 - Backprop requires synchronous update (1 forward followed by 1 backward).
- All the biologically plausible alternatives we know about learn much more slowly (on computers).

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

Advanced Topics:

- Accelerating gradient descent
- Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Gradient descent for Neural Networks

We know now how to compute the gradient using backpropagation...

We still have to decide on...

- When to update **W**?
- How to choose the learning rate?
- How to initialize **W**?

When do update W?

Mini-Batches: Take subset of samples $I_t \subset \{1, ..., n\}, |I_t| = b, b \ll n$ to approximate real gradient:

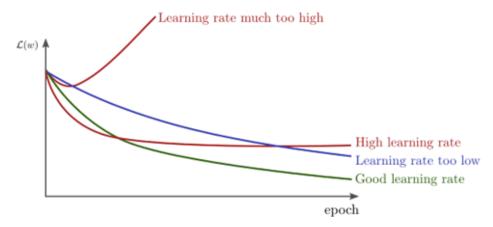
$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - rac{\eta}{b} \sum_{i \in I_t}
abla_{oldsymbol{ heta}} l(oldsymbol{x}_i;oldsymbol{ heta}_t)$$

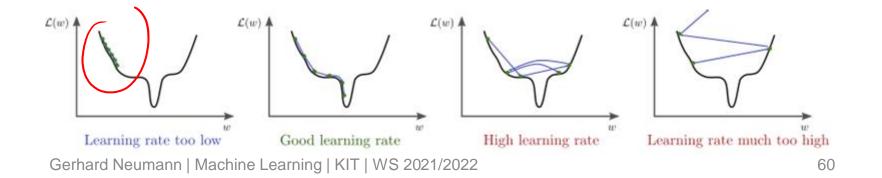
- Intermediate version of stochastic and batch gradient descent
- Less noisy estimates than stochastic gradient descent
- More efficient than batch gradient descent
- Preferable for GPU implementations

How do choose the learning rate?

If the learning rate is chosen:

- Too low: slow convergence
- Too high: oscillations and slow convergence
- Much too high: divergence





Speeding up gradients descent

- Momentum terms
- Adaptive learning rates
- 2nd order methods (only for smaller networks)

Problems with standard SGD

(1) Loss changes quickly in one direction and slowly in another

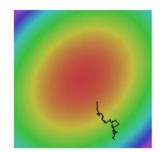
 Very slow progress along shallow dimension, jitter along steep direction

(2) Loss function has local minima and plateaus

- Zero gradient, gradient descent gets stuck

(3) Loss function is noisy

Due to minibatches...



Momentum term

.

Insight: Compute running average for gradient (or other quantities)

- $\boldsymbol{m}_0 = \boldsymbol{0}, \quad \boldsymbol{m}_{k+1} = \gamma_k \boldsymbol{m}_k + (1 \gamma_k) \boldsymbol{g}_k, \quad \text{where } \boldsymbol{g}_k \text{ is the gradient.}$
- Geometric Average (constant γ) : $m{m}_k = (1-\gamma) \sum_{i=1}^k \gamma^{k-i} m{g}_i$

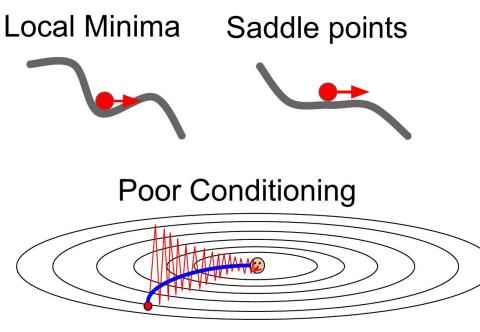
Arithmetic Average (
$$\gamma_k = (k-1)/k$$
): $m{m}_k = rac{1}{k}\sum_{i=1}^k m{g}_i^{i=1}$

Applied to the gradient update:

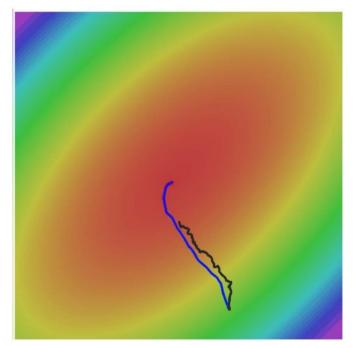
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \eta \ \boldsymbol{m}_{k+1}$$

Intuitively: You can think of it as a "velocity term" for the update. The gradient is in this view the acceleration.

SGD + Momentum



Gradient Noise



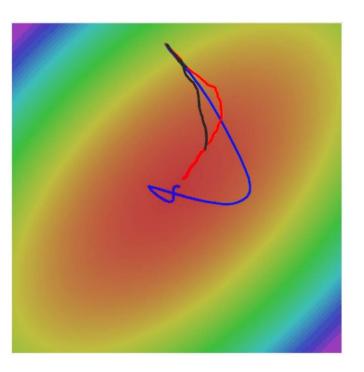
Gradient Normalisation (RMSProp)

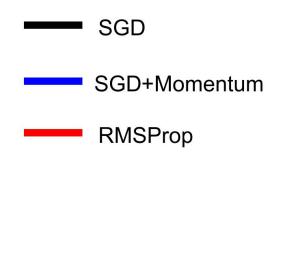
- In plateaus, take large steps as they do not have much risk. In steep areas take smaller steps
- Normalize gradient by running average of gradient norm

$$g_{k} = \nabla_{\theta} \mathcal{L}(\theta_{k})$$
$$v_{k+1,i} = \gamma v_{k,i} + (1 - \gamma)g_{k,i}^{2}$$
$$\theta_{k+1,i} = \theta_{k,i} - \frac{\eta}{\sqrt{v_{k+1,i} + \epsilon}}g_{k,i}$$

- $-v_{k,i}$ computes running average of the squared gradients (root mean square, RMS)
- with a small ϵ to prevent division by zero
- This algorithm is called ADADELTA or RMSProp

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 [Zeiler, 2012, ADADELTA - An Adaptive Learning Rate Method]





Adaptive Momentum (Adam)

Combine momentum term with gradient normalization:

Note: Violates convergence guarantees...

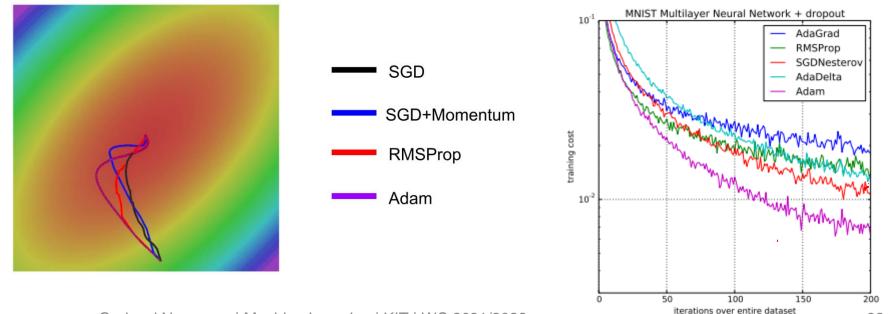
.

٠

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 [Kingma et. al, 2015, Adam: A Method for Stochastic Optimization]

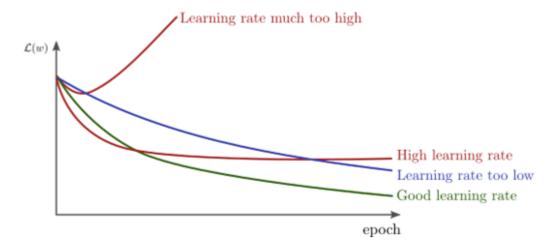
Comparison of different algorithms

Training on MNIST (hand written digits) dataset



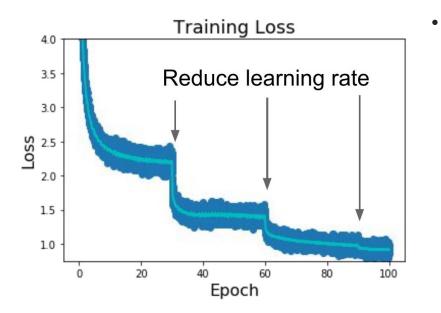
Learning rates

SGD, SGD+Momentum, RMSProp, Adam all have "base-learning rate" as a hyperparameter



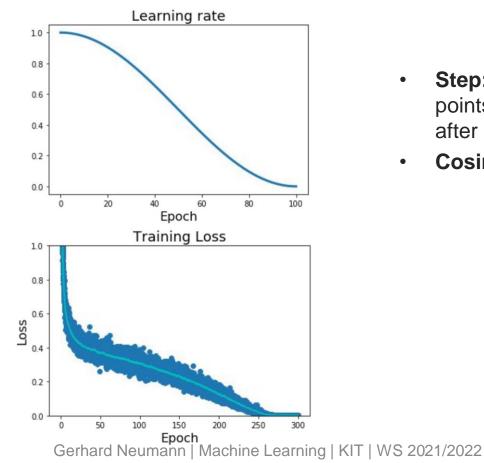
• Can we also choose the learning rate adaptively?

Learning rate decay



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Learning rate decay

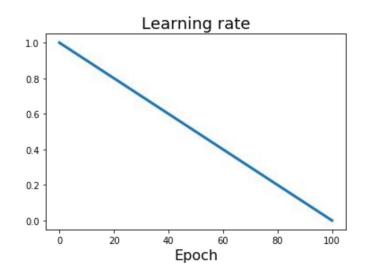


- **Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
 - Cosine: $\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$

•

 α_0 : Initial learning rate α_t : Learning rate at epoch t : Total number of epochs

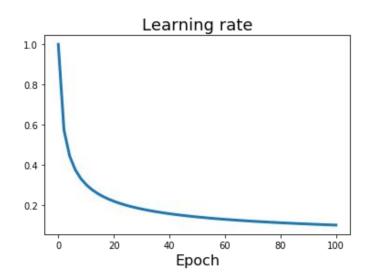
Learning rate decay



- **Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
- Cosine: $\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$
- Linear: $\alpha_t = \alpha_0(1 t/T)$

 $lpha_0$: Initial learning rate $lpha_t$: Learning rate at epoch t T : Total number of epochs

Learning rate decay



- **Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.
- Cosine: $\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T) \right)$
- Linear: $\alpha_t = \alpha_0(1 t/T)$
- Inverse sqrt: $\alpha_t = \alpha_0/\sqrt{t}$

Not clear which one works best...

 $lpha_0$: Initial learning rate $lpha_t$: Learning rate at epoch t T : Total number of epochs

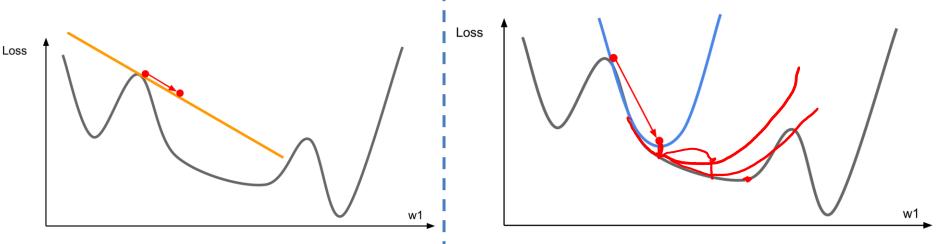
First vs. second order optimization

First order optimization:

- 1. Use gradient to form linear approximation
- 2. Step in the direction of the minimum of the approximation

Second order optimization:

- 1. Use gradient and Hessian to form quadratic approximation
- 2. Step to the minimum of the approximation



2nd order methods

2nd order Taylor approximation:

$$\mathcal{L}(\boldsymbol{\theta}) \approx \mathcal{L}(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \boldsymbol{g} + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

• With $g = \nabla_{\theta} \mathcal{L}(\theta)$ is the gradient and $H = \nabla_{\theta}^2 \mathcal{L}(\theta)$ is the Hessian matrix

Solving for θ yields a Newton update:

$$\boldsymbol{ heta}^* = \boldsymbol{ heta}_0 - \boldsymbol{H}^{-1} \boldsymbol{g}$$

Properties:

- ✓ No hyperparameters
- ✓ No learning rate
- ✓ Less iterations required

- × Hessian has O(N²) parameters
- × Inverse is $O(N^3)$
- × N is huge (several millions)!

2nd order methods

- Quasi-Newton methods (BFGS most popular): instead of inverting the Hessian (O(N³)), approximate inverse Hessian with rank 1 updates over time (O(N²) each).
- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.
 - Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely
 - Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

In practise:

- Adam is a good default choice in most cases
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

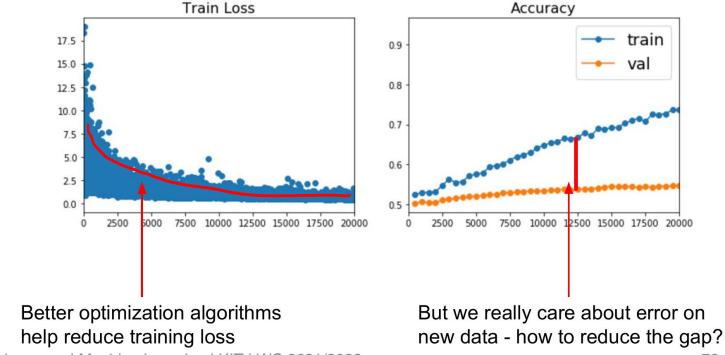
Advanced Topics:

- Accelerating gradient descent
- Overfitting and Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Regularization with Neural Networks

The old story about overfitting...



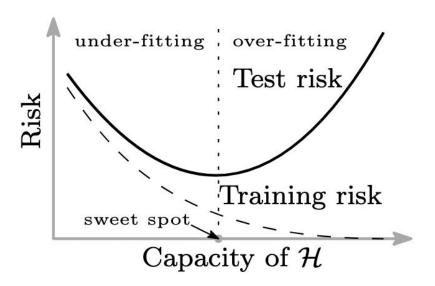
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

78

What theory (and traditional ML practice) says:

- If the model capacity is too small:
 - we underfit
- If the model capacity is too large:
 - we overfit
 - Training error will be close to 0

Do we also see this in practice for NNs?

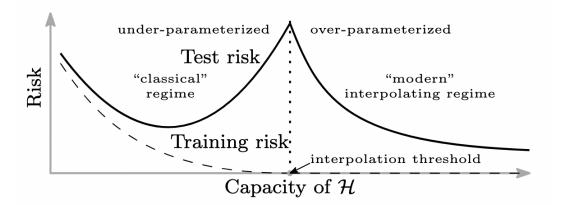


The double descent effect for DNNs

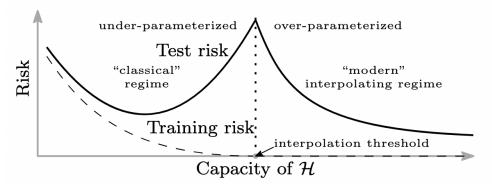
The "magic" of DNNs:

- Initial U-shaped curve aligns with classical understanding
- But: beyond a certain point (interpolation threshold) the test risk again starts to decrease again.

This effect is called "double descent"



The double descent effect for DNNs

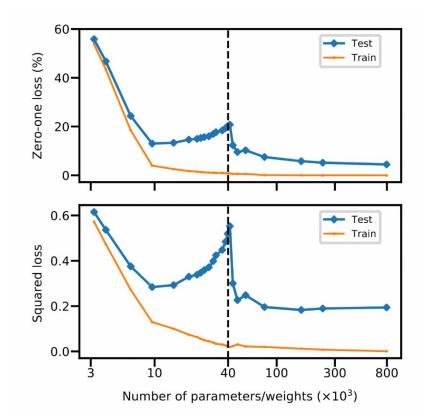


- Classical regime:
 - Follows what we know (bias-variance trade-off)
- Interpolation threshold:
 - network size is about right to achieve 0 training loss.
 - Only very narrow parameter-space to achieve that
 - Rule of thumb: Num params \approx num samples
 - Depends on: Number of samples, regularization, used optimizer, etc...
- "Modern" interpolating regime:
 - Many models can achieve 0 training loss. We "somehow" end up with a good generalization model
 - Might be the bias induced by stochastic gradient descent (we do not find the exact local optimum)

Concrete Example

MNIST dataset:

- Even though we initially overfit with more complex models...
- The best performance can be achieved within the "interpolation regime" for very large models!



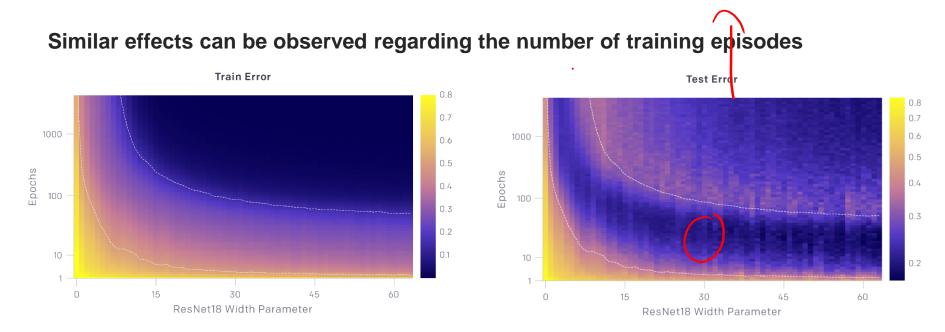
Sample-wise non-monotonicity

More samples requires more complex models to reach interpolation threshold!

I.e. in some cases more data can hurt your performance!

• Complete contradiction to what we thought we know about ML!

Episode-wise non-monoticity



• There is a regime where training longer reverses overfitting!

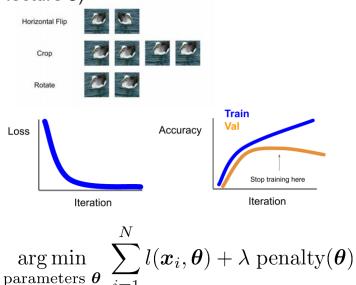
Regularization with neural networks

- Model selection (#layers, #neurons, etc...) (see lecture 3)
- Data augmentation (see lecture 3)

• Early stopping (see lecture 3)

• Regularization loss (see lecture 3)

• Dropout



Model ensembles

- 1. Train multiple independent models
- 2. At test time average their results (Take average of predicted probability distributions, then choose argmax)

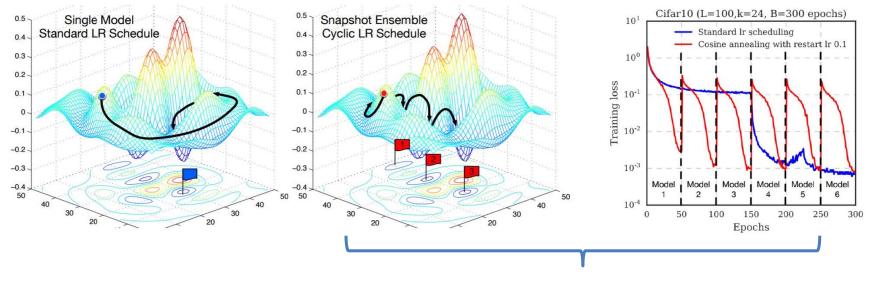
Enjoy 2% extra accuracy!

Why does this work?

- We average over "unspecified behaviour" between the training data points
- Related to Bayesian Learning (see lecture 7)
- See recent <u>NeurIPS tutorial</u> on deep ensembes they are currently the most accurate known models in many tasks!

Model ensembles

Instead of training independent models, use multiple snapshots of a single model during training!



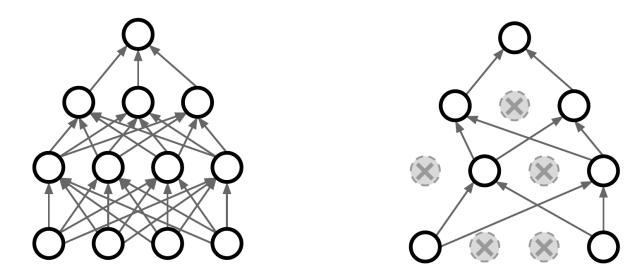
Use cyclic learning rates to make it work even better

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017

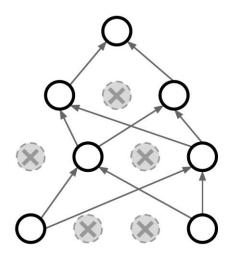
Dropout

- In each forward pass, randomly set some neurons to zero
- Probability of dropping is a hyperparameter; 0.5 is common



Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Dropout



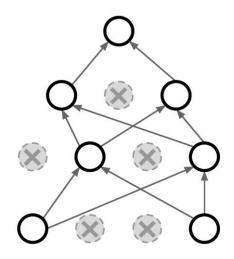
Why is this a good idea?

- Forces the network to have a redundant representation;
- Prevents co-adaptation of features

Interpretation as ensembles:

- Dropout is training a large ensemble of models (that share parameters).
- Each binary mask is one model
- An FC layer with 4096 units has 2⁴⁰⁹⁶ ~ 10¹²³³ possible masks!

Dropout: Testing



The output of the network is now random:

• For testing, we want to evaluate the expectation!

Ensemble view:

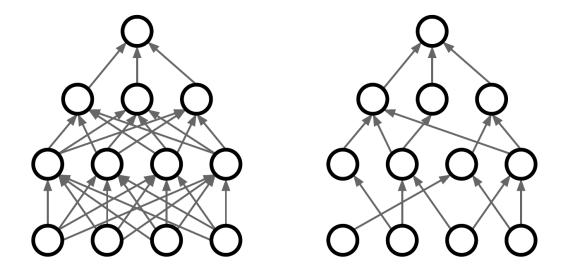
- Average over multiple dropout masks (computationally expensive but quite robust)
- Also allows to get uncertainty estimates (not covered)

Expectation view:

- Compute the expected input to the activation functions
- Multiply each weight by the dropout rate

Drop Connect

- **Training:** Drop connections between neurons (set weights to 0)
- Testing: Use all the connections



Gerhard Neumann | Machine Learning | KIT | WS 2021 (2022) al, "Regularization of Neural Networks using DropConnect", ICML 2013

Today's Agenda!

Neural Networks:

- What is a Neuron?
- Architectures and Activation Functions
- Loss-functions
- Backpropagation and the Chain Rule
- Computation graphs

Advanced Topics:

- Accelerating gradient descent
- Regularization in Neural Networks
- Practical considerations

Credit: M. Ren and M. MacKay, University of Toronto, Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

Practical considerations

... or the black-arts of training neural networks

Crucial for getting good performance with Neural Networks:

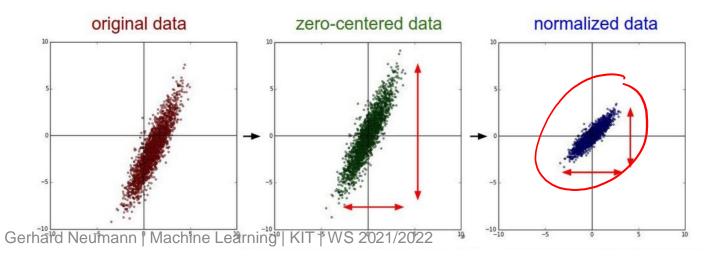
- Data preprocessing
- Weight initialization
- Hyperparameter optimization

Data preprocessing

NNs work best with zero-mean unit variance data

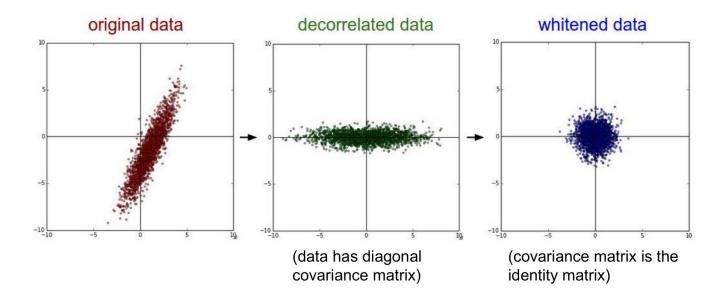
$$ilde{\mathbf{x}}_i = (\mathbf{x}_i - oldsymbol{\mu}) \oslash oldsymbol{\sigma}$$

- Where μ is the mean, σ is the standard deviation and \oslash the element-wise division operator
- Why? network initialization strategies are optimized for zero-mean unit variance!



Data pre-processing

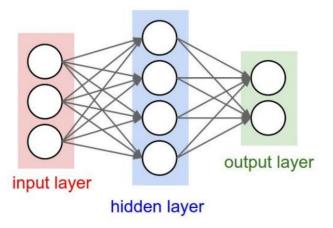
In practice, you might also see PCA (leoture) and whitening (of low-d data)



Data preprocessing

After normalization: less sensitive to Before normalization: classification loss small changes in weights; easier to very sensitive to changes in weight optimize matrix; hard to optimize

Q: What happens if we initialize all weights constantly for such a network?



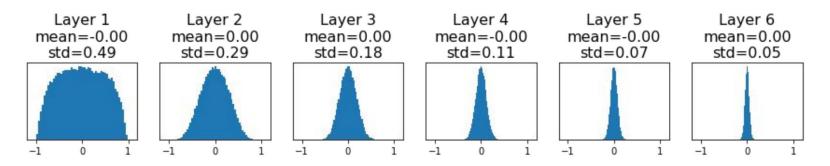
- All the gradients are the same!
- Network can never learn "distinct features"

We need random initialization!

- **First idea:** Small random numbers (e.g. gaussian with zero mean and 1e-2 standard deviation)
- Works ok for small networks... how about deep networks?

Activation Statistics:

- 6 layer, tanh activation, 4096 units per layer
- Zero mean, unit variance inputs
- 0.01 standard deviation for weights

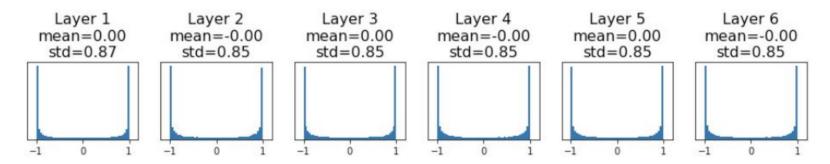


All activations tend to zero for deeper networks!

• No gradients 😣 !

Activation Statistics:

- 6 layer, tanh activation, 4096 units per layer
- Zero mean, unit variance inputs
- 0.05 standard deviation for weights

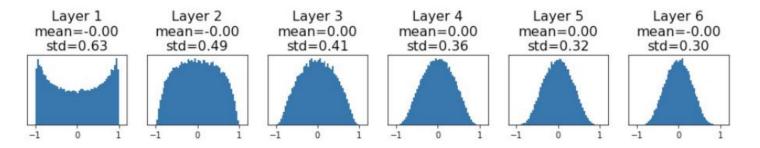


Most activations are saturated!

• Vanishing gradients !

Xavier initialization:

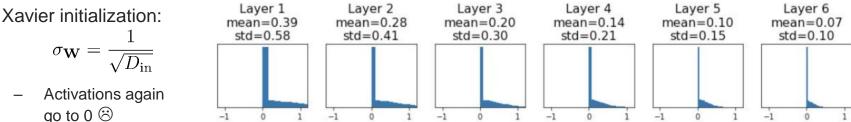
• Use the following standard deviation: $\sigma_{\mathbf{W}} = \frac{1}{\sqrt{D_{\text{in}}}}$

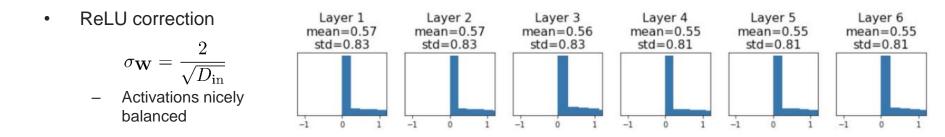


- "Just right": Activations are nicely scaled for all layers!
 - Can be derived by computing the variances of each layer (assuming linear units)

What about ReLUs?

٠





Step 1: Check initial loss

Turn off weight decay (L2 regularization), sanity check loss at initialization e.g. log(C) for softmax with C classes

Step 1: Check initial lossStep 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 minibatches)

- Fiddle with architecture, learning rate, weight initialization
- Loss not going down? LR too low, bad initialization
- Loss explodes to Inf or NaN? LR too high, bad initialization

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~100 iterations.

• Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 3, train a few models for ~1-5 epochs.

• Good weight decay to try: 1e-4, 1e-5, 0

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning rate decay

Step 1: Check initial loss

Step 2: Overfit a small sample

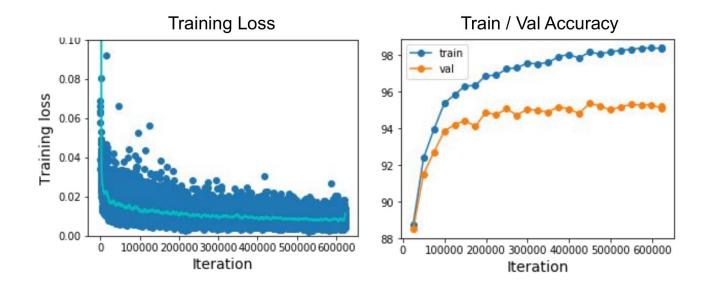
Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

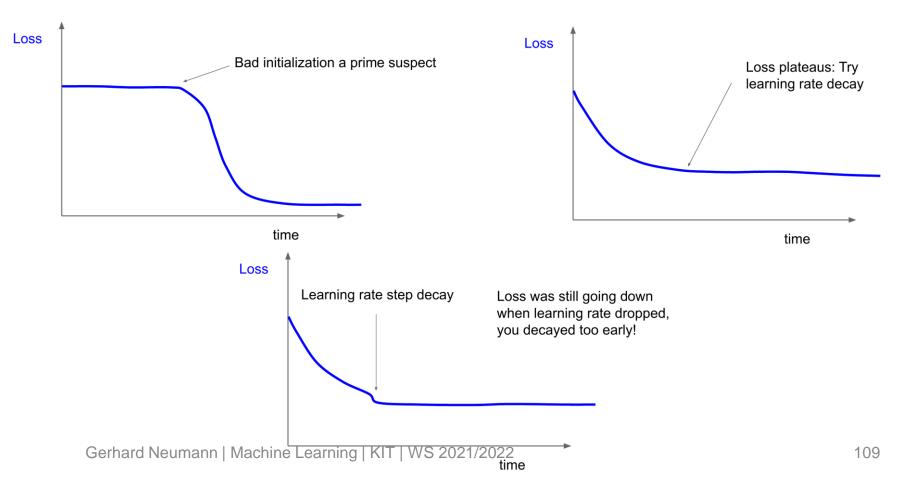
Step 6: Look at loss curves

Look at learning curves!

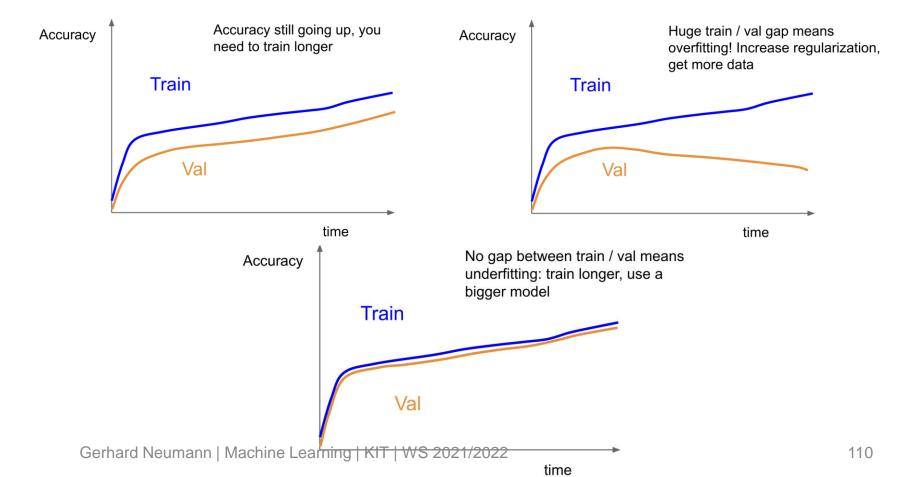


Losses may be noisy, use a scatter plot and also plot moving average to see trends better

Different error sources



Different error sources



Learning with NNs in practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

- **Step 4:** Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss curves

Step 7: GOTO step 5

Neural Nets summary

Neural Nets are extremely powerful and complex non-linear representations

- Can be seen as feature extraction for regression and classification
- Yet, need a lot of samples
- Can easily overfit (Criticism: they often just learn the data by heart)

The last 5-10 years they have "taken over" ML

- Deep Neural Networks (depth > 2) set the gold standard in many fields today
- Computer Vision, Natural Language Processing, Robotics and Reinforcement Learning, Time-Series Prediction, etc...
- Why now? More data, more computation... but almost same algorithms than 40 years ago

Yet, we do not fully understand them:

- Training them needs experience and a lot of computation
- Actually... we have no idea why they work so well
 - Theory says, it shouldn't (as we often have more parameters than training examples)

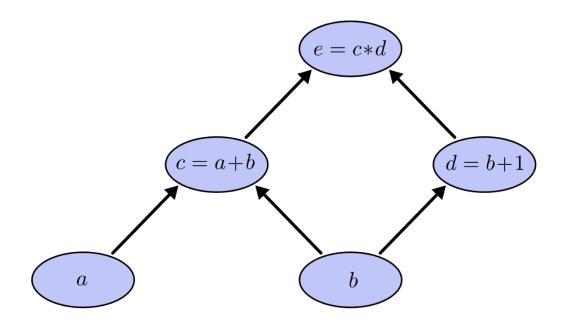
Takeaway messages

What have we learned today?

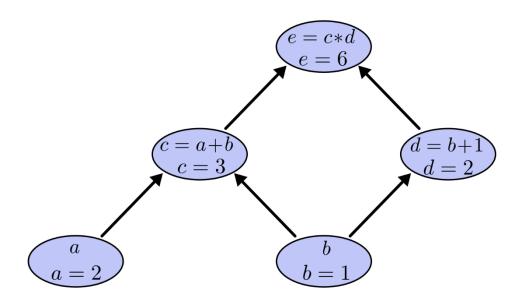
- What neural networks are and how they relate to the brain
- How neural networks build stacks of feature representations
- A network of one layer is enough, but in practice not a good idea
- How to do forward and backpropagation on computation graphs
 - How to use matrix calculus to obtain simpler gradient computations
- Different ways of doing fast gradient descent
 - Speedup training via momentum, gradient normalization and learning rate adaptation
 - How to initialize the parameters
- Why neural networks overfit and what you can do to about it

Self-test questions

- How does logistic regression relate to neural networks?
- What kind of functions can single layer neural networks learn?
- Why do we need non-linear activation functions?
- What activation functions can we use and what are the advantages/disadvantages of those?
- What output layer and loss function to use given the task (regression,
- classification)?
- Why not use a sigmoid activation function?
- Derive the equations for forward and backpropagation for a simple network
- What is mini-batch gradient descent? Why use it instead of SGD or full gradient descent?
- Why neural networks can overfit and what are the options to prevent it?
- Why is the initialization of the network important?
- What can you read from the loss-curves during training (validation and training loss)?
- How can we accelerate gradient descent? How does Adam work?

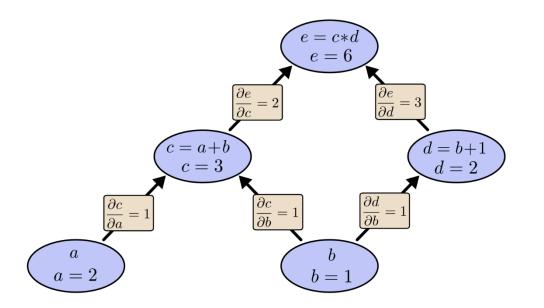


• Forward Pass:



Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Backward Pass:

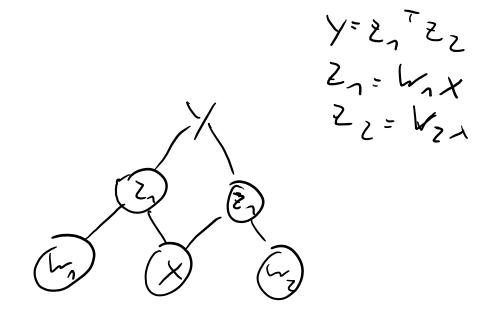


Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

 $\overline{C} = \overline{C} = \overline{D} = 7$ Backward Pass: $(\mathfrak{S}_{+} \mathcal{L}) \cdot (\mathcal{L}_{-} \mathcal{L})$ • ē Je=3 e = c * de = 6 $\overline{\mathbf{Q}} = \overline{C} \cdot A = 7$ $rac{\partial e}{\partial d}$ $\left|\frac{\partial e}{\partial c} = 2\right|$ = 35 d = b + 1=a+bd = 2c = 3 $\boxed{\frac{\partial c}{\partial b} = 1}$ $\left|\frac{\partial d}{\partial b} = 1\right|$ ∂c - = 1 ∂a - Z - Z ab a=2b=1

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Another example: Vectors and matrices



Another example: Vectors and matrices

