Neural Networks

Machine Learning — Foundations and Algorithms
WS 2021/22

Prof. Gerhard Neumann
KIT, Institut fir Anthrophomatik und Robotik

Announcement: Exam

If you register for the first time:

* Select in CAS the exam no 7500292 — Maschinelles Lernen - Grundlagen und Algorithmen
(WS 21/22)

If you already registered last semester and canceled the exam or did not pass it:
* Select in CAS the exam no. 7500340 — Maschinelles Lernen - Grundverfahren (WS 21/22)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Intermediate Lecture Wrap-Up — Algorithms

Chapter 1: Classical Supervised Learning

v
v
v
v

Linear Regression,
Ridge Regression,
k-NN,

Trees and Forests

Chapter 2: Kernel Methods

v
v

Kernel-Regression
Support Vector Machines

Chapter 3: Bayesian Learning

v
v

Bayesian Linear Regression
Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning

DBSCAN

K- Llomerati
Mean-Shift Means Agglomerative

Fuzzy C-Means @

Density Estimation

KDE

K-NN Mixture Models
SUPERVISED)

DIMENSION REDUCTION
(generalization

T
)
Z
m

PCA LsAa SVP

REINFORCEMENT
LEARNING

Genetic
Algorithm

Q-Learning

SARSA Deep Q-Network
A3C (dan)

LbA CLASSICAL
LEARNING

MACHINE
LEARNING

NEURAL
NETS AND

Naive Bayes
K-nN Decision Trees

Classification) Logistic Regression

Kerhe| Regression Linear Regression

Regression Polynomial
Regression
Ridge/Lasso

Regression

Bayesian Learning

- Gaussian
Bayesian Linear processes
Regression

ENSEMBLE
METHODS

XGBoost

AdaBoost LightGBM
CatBoost

Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
7 (CNN)
DCNN
Recurrent
Neural Networks
Lsm (RNN) = seq2seq
Generative
Adversarial Networks
LST™M (GAN) 3

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Ry

Random Forest

Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning
v' Matrix/Vector Calculus

v' Probability Theory, Maximum Likelihood

v' Gradient Descent

Chapter 2: Kernel Methods
v' Sub-gradients
v' Constraint Optimization

Chapter 3: Bayesian Learning
v’ “Completing the Square”
v" Gaussian Conditioning

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Ry

Basics

DBSCAN

v Naive Bayes
K- Llomerati
jMean-Shift Means Agglomerative Wi

Fuzzy C-Means @ Classification) Logistic Regression

Der\Sl.fy Estimation Kernel Regression Linear Regression

Regression Polynomial

KDE Regression
KNN Mixture Models

SUPERVISED)

DIMENSION REDUCTION . Bayesian Learning

(generalization %

PCA LSA. SO LDA CLASSICAL %:y;:i:;;ol'.;lnear Praol::s:;::s
LEARN|NG Random Forest

MACHINE

Decision Trees

Ridge/Lasso
Regression

T
)
Z
m

ENSEMBLE

REINFORCEMENT
LEARNING LEARNING o
Genetic Q-Learning XGBoost
L e AdaBoost LightGBM
A3C aN) CatBoost
NEURAL
NETS AND
Convolutional DEEP LEARNING
Neural Networks (MLP)
Y (CNN)
DCNN
Recurrent
Neural Networks
Lsm (RNN) = seq2seq
Generative
Adversarial Networks
LST™M (GAN)

4

The ML algorithm “coordinate system”

Most ML algorithms can be grouped along 3 axis:
* Representation: What is the underlying representation of our model?
* Loss function: How do we define what is a good and what is a poor model?

* Optimization: How do we optimize?

... of course more axis exists, e.g. Regularization

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning

v' Features/ Basis Functions: Linear (Ridge)
Regression, Logistic Regression

v Instances: k-NN
v' Trees: CART
v Ensembles: Forests

Chapter 2: Kernel Methods
v Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning
v" Features: Bayesian Linear Regression
v" Kernels: Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Ry

Representations

DBSCAN

K-Means Agglomerative Hate'Bayes

Mean-Shift K-NN Decision Trees

Classification) Logistic Regression

Dehsity ESffMaﬂon Kerne| Regression Linear Regression

Regression Polynomial

KDE Regression
K-NN Mixture Models

SUPERVISED)

DIMENSION REDUCTION . Bayesian Learning
(generalization ;
pca tsa S A CLASSICAL Bovsien Linesr Froceses
T
LEARNlNG Random Forest

MACHINE

Fuzzy C-Means

Ridge/Lasso
Regression

T
)
Z
m

ENSEMBLE

REINFORCEMENT
LEARNING LEARNING METHODS
Genetic Q-Learning XGBoost
AT i Busisaivek AdaBoost LightGBM
A3C oaN) CatBoost
NEURAL
NETS AND
Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
7 (CNN)
DCNN
Recurrent
Neural Networks
Lsm (RNN) = seq2seq
Generative
Adversarial Networks
LST™M (GAN) 6

Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning
v Mean/Summed Squared error (SSE): Linear

Regression

v' Gaussian Log-Likelihood: Probabilistic linear
Regression

v' Binary Cross Entropy Likelihood: Logistic
Regression

v Soft-Max Likelihood: Multi-class classification

Chapter 2: Kernel Methods
v' SSE: Kernel Regression
v' Maximum Margin or Hinge Loss: SVM

Chapter 3: Bayesian Learning

V' Maximum a-posteriori solution: Probabilistic
ridge regression

Chapter 4: Neural Networks
. Most of that above...

Chapter 5: Unsupervised Learning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Ry

Loss Functions

DBSCAN

v Naive Bayes
K-Means Agglomerative
Mean-Shift b K-NN Decision Trees

Classification) Logistic Regression

Density Estimation Kernel Regression Linear Regression

Regression Polynomial

KDE Regression
K-NN - Mixture Models

SUPERVISED)

DIMENSION REDUCTION . Bayesian Learning
(generalization %
A CSAl SVD LDA CLASSICAL %:yge:i:;;olr.;lneer pfof:;:;s
i
LEARN‘NG Random Forest

MACHINE

Fuzzy C-Means

Ridge/Lasso
Regression

T
)
Z
m

ENSEMBLE

REINFORCEMENT
LEARNING LEARNING METHODS
Genetic Q-Learning XGBoost
AT i Busisaivek AdaBoost LightGBM
A3C oaN) CatBoost
NEURAL
NETS AND
Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
7 (CNN)
DCNN
Recurrent
Neural Networks
Lsm (RNN) = seq2seq
Generative
Adversarial Networks
LST™ (GAN)

Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning
v' Least Squares Solution: Linear Regression
v' Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

v' Least Squares Solution: Kernel Regression
v' Sub-Gradients: SVM

v' Lagrangian Optimization: SVMs

Chapter 3: Bayesian Learning
v' Posterior approximation

Chapter 4: Neural Networks

. More specialized gradient descent methods

Chapter 5: Unsupervised Learning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 Ry

Optimization Methods

DBSCAN

v Naive Bayes
K- Llomerati
jMean-Shift Means Agglomerative Wi

Fuzzy C-Means @ Classification) Logistic Regression

Der\Sl.fy Estimation Kernel Regression Linear Regression

Regression Polynomial

KDE Regression
KNN Mixture Models

SUPERVISED)

DIMENSION REDUCTION .
(generalization

p LPA CLASSI|CAL
PCA LSA SV LEARNING

MACHINE

Decision Trees

Ridge/Lasso
Regression

Bayesian Learning

- Gaussian
Bayesian Linear processes
Regression

T
)
Z
m

ENSEMBLE

REINFORCEMENT
LEARNING LEARNING NETTnS
Gene.tic Q-Learning Boosting XGBoost
ALarihm SARSA Deep Q-Network AdaBOGSLightGBM
A3C oaN) CatBoost

NEURAL
NETS AND

Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
7 (CNN)
DCNN
Recurrent
Neural Networks
Lsm (RNN) = seq2seq
Generative
Adversarial Networks
LST™M (GAN) 8

Random Forest

Wrap-up: Where are we?

Chapter 1: Classical Supervised Learning

. Lecture 1: Linear Regression, Ridge Regression

. Lecture 2: Linear Classification

. Lecture 3: Model Selection

. Lecture 4: k-Nearest Neighbors, Trees and Forests
Chapter 2: Kernel Methods

. Lecture 5: Kernel-Regression

. Lecture 6: Support Vector Machines

Chapter 3: Bayesian Learning

. Lecture 7: Bayesian Linear Regression and Gaussian
Processes

Chapter 4: Neural Networks
. Lecture 8: Neural Networks and Backpropagation
. Lecture 9: CNNs and LSTMs

Chapter 5: Unsupervised Learning

. Lecture 10: Dimensionality Reduction and Clustering
. Lecture 11: Density Estimation and Mixture Models
. Lecture 12: Variational Auto-Encoders (?)

DBSCAN

3 Naive Bayes
K-Means Agglomerative
Mean-Shift 9 K-NN il Decision Trees
Fuzzy C-Means @ Classification) Logistic Regression

Density Estimation Kernel Regression Linear Regression
Regressiony Polynomial
KDE Regression
K-NN Mixture Models
Ridge/Lasso
@ SUPERVISED) Regression

DIMENSION REDUCTION . Bayesian Learning

(generalization -

PCA Lsa SV LbA CLASSICAL ::Y:;i:sfl'o&'ne" PruoucS:;::s
LEARN|NG Random Forest

MACHINE
LEARNING

b5
)
Z
m

ENSEMBLE

REINFORCEMENT METHODS

LEARNING

Genetic Q-Learning i XGBoost
Algorithm
SARSA Deep Q-Network AdaBoost LightGBM
A3C oaN) CatBoost
NEURAL
NETS AND
Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
7 (CNN)
DCNN

Recurrent

Neural Networks

Lsm (RNN) seq2seq
Geverative
Adversarial Networks
L N,
ST™M GRU (GAN)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Learning Outcomes

We will learn today...

What a neuron network is

How do we train it?

... which requires a calculus refresher ©
Why is everybody talking about it?

Various ways to accelerate gradient descent
How to prevent overfitting in NNs?

Practical tips and tricks for training NNs

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

10

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

11

Biological Inspiration: The brain

A neuron is the basic computational unit of the brain:

impulses carried
toward cell body

branches
dendrites ¢ of axon

nucleus

axon
terminals

impulses carried

away from cell body
cell body

* Our brain has ~ 10 neurons
« Each neuron is connected to ~ 10* other neurons (via synapses)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

12

Biological Inspiration: The brain

Neurons receive input signals and accumulate voltage. After some threshold they will

fire spiking responses.

Voltage (mV)

+40

-55

-70

Action potential

Na®ions in

K* ions out

Resting state

Hyperpolarization
0 1 2 3 4 5
Time (ms)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

13

Artificial Neurons

For neural nets, we use a much simpler unit (neuron, perceptron):

Example we already know:
* Logistic regression:

output weights bias

¢ l
y:qﬁ(WTx—l—Ila)

\

activation function inputs

y=o(w'x+0)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

3ingredients:

* Weighting of the input

* Summation

* Non-linear activation function

14

Feedforward Neural Networks

an output
unlt

Building a network: output layer

* We can connect lots of units
together into a directed acyclic
graph.

* This gives a feed-forward
neural network. That’s in
contrast to recurrent neural
networks, which can have
cycles.

+ Typically, units are grouped
together into layers.

second hidden layer

first hidden layer

a hidden
unit
input layer

| a connection

depth an input

unit

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 15

Feedforward Neural Networks

+ Each layer connects N input units to M output units.

* Inthe simplest case, all input units are connected to all output units. We call this a fully
connected layer.

* Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.

* le., each layer has a M x N weight matrix W
« Equation in matrix form:

y = ¢(Wx + b)

— Output units are a function of input units

 Feedforward neural networks are also often
called multi-layer perceptrons (MLPSs)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

16

Activation funcitons

Different activation functions for introducing non-linearities:

1 10

Sigmoid Leaky RelLU

1 max(0.1x, x)
1+e=*=

o(x) =

-10 ¥ 10 - -1 10

tanh 1

ReLU ELU
max (0, x) T z20
Gerhard Neumann | Machia T ws 202120pa(e” — 1) <0 e oo 17

Activation functions

1
Computes o(z) = 7 e
* Squashes numbers to range [0,1]

« Historically popular since they have nice
interpretation as a saturating “firing rate” of a neuron

Problems:
Sigmoid x Saturated neurons “kill” the gradients
x Sigmoid outputs are not zero-centered (important for
initialization)

x exp() is a bit compute expensive

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 18

Activation functions

« Squashes numbers to range [-1,1]
v' zero centered (nice)
x still kills gradients when saturated :(

tanh(x)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

19

Activation functions

10 Computes f(z) = max(0, z)

v" Does not saturate (in +region)
v' Computationally very efficient

= o 2 v Converges much faster than sigmoid/tanh in practice
(e.g. 6x)

RelLU

(Rectified Linear Unit) x Not zero-centred output

x No gradient for x <0

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 20

Activation functions

Computes f(z) = max(0.1z, z)
10
v" Does not saturate
v' Computationally efficient
v' Converges much faster than sigmoid/tanh in practice!
(e.g. 6x)
_ - o v will not “die”

Parametric Rectifier (PReLu):

Leaky RelLU

f(x) = max(ax,)

« Also learn alpha

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 21

Activation functions

x ifx>0

Computes flz) = { alexp(x) —1) ifx <0

10
v All benefits of ReLU

v Closer to zero mean outputs
x Computation requires exp()

Exponential Linear Units (ELU)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 22

Activation functions

In practice:

* Use RelLU. Be careful with your learning rates / initialization
 Tryout Leaky ReLU / ELU

 Try out but don’t expect much

 Don’t use sigmoid
— Only used for output activations in classification

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

23

Feedforward Neural Networks

Formalisation:

« Each layer computes a function, so the network computes a
composition of functions:

ht) — f(l)(x)
h® = @ (nM)

y = fH(hED)
« Ormoresimply: y= ffofllo. . fW(x)

* Neural nets provide modularity: we can implement each
layer’s computations as a black box.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

y (OO O
f(L)‘l‘
f(3)}

h| O O O
f(2)‘

hWO O O
f(l)‘

X 1O OO

24

Example: XOR

Design a network that implements XOR:

Classification of XOR

11 O o classification
o~
o @ one
- ° ° ® zero
0 1
X1

* Not computable by a single unit!
+ Classical example why we need multiple layers

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Example: XOR

XOR in terms of elemental operations:
« XOR(a,b) = (a OR b) AND NOT (a AND b)
—

Design a network that implements XOR:
« Hard threshold for activation function

* h; computes x; OR X,

* h, computes x; AND x,

+ ycomputers h; AND NOT h,

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 26

Deep Architectures

Why do we need to be deep ?
* Any sequence of linear layers can be equivalently represented with a single linear layer

y = WOWOWO x

W

— l.e., we need non-linearities to exploit multiple layers

* FF-NNs with nonlinear activation functions are universal function approximators:

— Given a potentially infinite amount of units, they can approximate any function arbitrarily
well

— Universal Function Approximation Theorem: Already a single layer is enough to achieve
“universality”

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 27

Deep Architectures

So, is asingle layer enough?
Even though the Universal Approximation Theorem says a single layer is enough, we would

need an exponential number (in input dimensionality) of units to achieve this

— If you can learn any function, you'll just overfit.
Instead, multiple layers allow for a similar effect with less units
Compact representation >> “Universal representation”

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

28

Output layers and loss functions

Objective functions for training neural nets:
* General ML recipe: per sample loss + regularization penalty (see lecture 2)
N
0" = argmin Z I[(x;,0) + X\ penalty(0)

parameters 6 i—1

Which kind of loss and output activation function depends on the task
* Regression

* Binary classification

* Multi-class classification

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

29

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

30

Output layers and loss functions

Regression:
Deterministic
* Output layer: linear
f = WR(L-1) 4 p)
« Loss: squared error
1
li(xi,0) = S (£(xi) — yi)?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Probabilistic

linear Gaussian
p(yx) = N(y[WEhE-D 4 b 3

negative log-likelihood
li(x;,8) = —log N (yi|p(x:), B)

31

Output layers and loss functions

Binary classification:

Deterministic Probabilistic

* Output layer: linear sigmoid
= WWnE-D 4 plL) f=o(WERE-D 4 pL)
* Loss function: hinge-loss

l(x;,0) = max (0,1 — y; f(x;)
(y)

neg-loglike

li(x,8) = — c;log f(x;)
-1 ;@-) log(1 — f(x;))

-1/+1 labels

0/1 labels

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 32

Output layers and loss functions

Multi-class classification:
Deterministic

* Output layer: linear
f = WRK(E-1) 4 p(L)

. Loss function: Multi-class SVM loss

Not covered

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

(z%h "

oo
(c=ie|h] -

Probabilistic

sigmoid
f = softmax(W(h(E— 4 pL)
negative loglikelihood

K
1i(%4,0) = = he, i log y(x;)
=

One hot coding

33

Feature Learning

* Neural nets can be viewed as a way of learning features

— The last layer is a standard linear regression /
classification layer

« The network learns the features ¥(x) such that linear
regression / classification can solve it

=, +
CUQA + T - wz(X)A + -I_-I_'l'
+--," -
-+ — +
+ 4 = —
- $1> - — wlrx)
\/ \/

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Yy

linear regressor ,“
/ clasifier 3
h 2

—>—
hD

/Y

X

34

Example: Feature Learning

Classify images of handwritten digits:

« Eachimage is represented as a vector of 28 x 28
= 784 pixel values.

. Each first-layer hidden unit computes o (W} x).
It acts as a feature detector.

* We can visualize w by reshaping it into an

image.

« These weights w are visualized on the right for
some units

+ Edge-detectors at different orientations and
locations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 35

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

36

Gradient Descent

Multi-layer perceptrons are usually trained using back-propagation for computing the
gradients

Same algorithms as for logistic regression can be used, however
* Much bigger parameter space

* Non-convex, many local optima

* Can get stuck in poor local optima

* The design of a working backprop algorithm is somewhat of an art

Because of that, the use of NNs was in absolute winter between ~2000 and 2012

However, in the last 5-10 years, we have seen that with:
. More compute

* More data

* And a few tricks...

they work amazingly well...

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

37

Recap: Gradient Descent

Move in the opposite direction of the
gradient (steepest descent)

* Weight space for a multilayer neural net:
one coordinate for each weight or bias
of the network, in all the layers

0={wW¥o wpd py

. -0.5 ' !
« Conceptually, not any different from what 1000 500 0 500 1000 1500 2000
we’'ve seen so far (Lecture 2) — just higher dimensional !
and harder to visualize!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 38

Basics: Chain rule gradients of composite functions

Objective functions for training neural nets:
* per sample loss + regularization penalty (see lecture 2)

N
£(60,D) = Z [(x;,8) + A penalty(8)
i=1

* We need to compute the following partial derivatives:

oL
— Layer weight matrices: JWO
— Layer bias vectors: ﬁ
Ob()

* Can be done by a recursive use of the chain rule!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Univariate case

Lets start simple...

Univariate chain rule:

* Recall: if f(x) and x(t) are univariate functions, then

_dda

d
S f) = ———

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

40

Example

Univariate logistic least squares

model
—wx + b
y=o(z)
1 2
L= 5(9 — 1)

Lets compute the loss derivatives...

101 in calculus: e)

1 2

5(o(wz +b) —1) D_,e
%:il((wz +b) — t)? 2 Oun

ow ~

/&k’\ £l +L)- t)&(wx*é)

. oL
. Similar for b

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 41

Example

Univariate logistic least squares 101 in calculus:

model 1
L= §(J(w$ +b) — t)?
z=wx+b %:%%(a(wx—i—b)—ﬂg
—o(z
Y 1() = (o(wx +b) — t)%a(w:v +b)
L=(y—1t) °
9 — (g(wx+b) —t)U’(w$+b)%(wm+b)

= (o(wzx +b) — t)o' (wr + b)x

oL

. Similar for 9

|
|
|
|
|
|
|
|
|
|
|
|
|
Lets compute the loss derivatives... :
|
|

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

42

Computation graph (example)

Can we find an algorithm to do it more systematically?

* The goal isn’t to obtain closed-form solutions...

* but to be able to write a program that efficiently computes the derivatives.

We can diagram out the computations using a computation graph:

* The nodes represent all the inputs and
computed quantities

* The edges represent which nodes are
computed directly as a function of which other nodes.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Compute Loss
 E—
LE\ t

e

Compute Derivatives
+——

43

Computation graph (example)

Computing the loss:

« forward pass
Compute Loss

z=wr+b 7 t
L=yt i

Compute Derivatives
—

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Computing the derivative
* backward pass

oL _ .

Oy — Y >

oL oL ,, . A 2y

— =—0'(2) Oz

dz 0Oy P

oL _ L A 3y

Ow 0z

oL 0L 0z

b Oz db
44

Computation graph (example)

Lets simplify notation:
oL
* Use y to denote the derivative 0 (also called error signals)
)
* Emphasizes that error signals are just values (rather than mathematical operations)

Computing the derivative

Computing the loss: Compute Loss .
- forward pass R backward pass
z=wr+Db 39\ t y=y—t
- — !
y=o(z) W—=3r—Y—>L z=yo'(2)
1 9 / w = Zx
L==(y—t) b -
2 b=z

Compute Derivatives
-—

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 45

General computation graphs

Problem: what if the computation graph has fan-out > 1?

« This requires the multivariate Chain Rule!

Regularized Regression:

|
|
z=wr+b : ;U L g

T t y=0o(z) I . 1 Y Y tk

| 1—<1—> Y1
Qz—.y—-g—.»ﬁreg [— l(y o t)2 | >£
%/ =R/ 2 | o297 Yo /'

R = 1w2 : bz/ y &
= 2 | ?U221U21
Lrog =L+ AR :
|
|

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Softmax classification:

46

Multivariable chain rule

Suppose we have a function f(x,y) and functions x(t) and y(t) (All the variables here are

scalar-valued.) Then .

= (yexp(zy)) (—sint)
+ (1 + zexp(zy)) (2¢)

y(t) =t°

d COfde Of dy AW
GO = LG+ L t<y/f
e
Example: : Plug in Chain Rule:
f(z,y) =y +exp(ry) | 4 of dr Of dy
x(t) = cost : g v =5 T Ay dt
l
|

Gerhard Neumann | Machine Learnir‘g | KIT | WS 2021/2022 47

Multivariable chain rule

In the context of back-propagation:

Values already computed
by the algorithm
— \t
d df de Of dy /

Ef(x(t),y(t)) =T Oy dt
~—

/\/
\/

Mathematical expressions
to be evaluated

Using our notation: In vector notation:
g Thatd — t)) = = i
b= +ydt f(a Zami o~ 2" o
-—- — 6
7\ 2.9

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 D¢ 48

Backpropagation

Full backpropagation algorithm:

« Letv,,...,Vybeatopological ordering of the
computation graph (i.e. parents come before children.)

« vy denotes the variable we're trying to compute
derivatives of (e.g. loss).

For:=1,...,N

Compute v; as a function of Pa(v;)
_ — . X) Coss bun diq.
UN — 1 _7 Vr\/ e O
i~
(474

Fori=N—-1,...,1

forward pass

backward pass

- o— T v,
Ui = ZjECh(vi) Y5 5o,

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 49

Backpropagation

Example: univariate logistic least squares regression

b>;—‘y—’ﬁ_’£reg

Backward pass:

|
: Ereg =1 _ _dy
zZ=17—
: T dLreg z
. | — freeTuR =70’ (2)
Forward pass: I /] |
z=wr+b : = LregA E:E%—l—ﬁ@
y = 0o(z) | T—T dLl, o Gw_ dw
1 I TR A =ZzZx + Rw
L=(y—1)?
2 I = Lo — 0z
| | 8 h— 352"
R = —w? I _ _dC b
Lieg = L+ AR I Y

Gerhard Neumann | Machine Learning | K!T | WS 2021/2022 — ['(y o t)

50

Backpropagation

Example: Multi-layer Perceptron (multiple outputs)

1) w® Forward pass:

'U'!l.

wll) AN
h(ll)\\ \ \\

L1—21—lh Y1

$2—%22—>h2—by2

Can we also do this in matrix form?
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Backward pass:

51

Recap: Matrix Calculus

Derivatives of a scalar function w.r.t a vector...

Derivatives of a vector-valued function w.r.t a vector...

Yields the gradient vector:

Example: Quadratic form

Yields a matrix (the Jacobian)

Example: Linear form

Vef =

Vexlx =2z

Vof =

of(x) _[0f(@)

ox

V,Az = AT

N 8.’191 ’
Vexrl Az = 2Ax

of (x)

ox

[Ofi(=x)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

8:1’;1

0fi ()
Oxg

of(x)]"

833'05

Ofk(x)
8&71

Ofu(@)
dxg

Recap: Matrix Calculus

Derivatives of a scalar function w.r.t. a matrix...

L g
: : : Of(W) H t
- ..isagainamatrix Vw/f= W
8f (W) 8f (W)
| 8Wk1 6W,tcd _

Derivatives of a vector-valued function w.r.t. a matrix...

« ...isa3D tensor! 9&

* However, we only have matrix-vector products: z = W@+ b oL

* Inthis case, the chain-rule does not require to evam, l.e. (proof not shown)

0/(z) _ 0f(z) 0 0/(2)
oW 0z OW 0z

wa = (Wm + b) =
* This is the outer product (i.e., again a matrix)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Example in matrix form

Backward pass:
Example: Multi-layer Perceptron (vector form)

L=1
Forward pass: y=L(y—1) E:Ql
w) w2 _ w® (1) 2 —,T.) 4
f\ z=WYx+b w2 — gh'— i
\ \l h — S—— S)/l- A
X—bZ—ph—>Y——>£ — (T(Z) outéWct d
—wW@ph o p@ 2 —
_ T T wr(2)T—
L= i(y - t) (y - t) h=W Y element-wise
z - E oﬁ) product
w = zgT
S~

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 =% 54

Computational costs

« Computational cost of forward pass:
z=Wax+b
— Matrix-vector product
— Roughly one add-multiply operation per weight

« Computational cost of backward pass:
W =hz', h= WT§
— Matrix-vector product + outer product

— Roughly two add-multiply operation per weight (twice the forward pass)

« For a multilayer perceptron, this means the cost is linear in the number of layers,
quadratic in the number of units per layer.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

55

Wrap-up for backpropagation

 Backprop is used to train the overwhelming majority of neural nets today.

— Even optimization algorithms much fancier than gradient descent (e.g. second-order
methods) use backprop to compute the gradients.

« Despite its practical success, backprop is believed to be neurally implausible.
— No evidence for biological signals analogous to error derivatives.
— Forward & backward weights are tied in backprop.
— Backprop requires synchronous update (1 forward followed by 1 backward).

« All the biologically plausible alternatives we know about learn much more slowly (on
computers).

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 56

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

57

Gradient descent for Neural Networks

We know now how to compute the gradient using backpropagation...

We still have to decide on...
 When to update W?

* How to choose the learning rate?
 How to initialize W?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

58

When do update W?

Mini-Batches: Take subset of samples I; C {1,...,n}, || =b, b n to
approximate real gradient:

9t+1 =0, — % Z Val(«’ﬂi; 9t)

1ely

* Intermediate version of stochastic and batch gradient descent
* Less noisy estimates than stochastic gradient descent

* More efficient than batch gradient descent

* Preferable for GPU implementations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

59

How do choose the learning rate?

If the learning rate is chosen:

Learning rate

Lfw)

Too low: slow convergence
Too high: oscillations and slow convergence

much too high

High learning rate

Much too high: divergence

Learning rate too low

Good learning rate

.

Llw) A Clw) 4

L(w) A Clw) A

epoch

L.

'

p. P -
—_— L
N "

"

w

Learning rate too low Good learning rate High learning rate Learning rate much too high

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

60

Speeding up gradients descent

* Momentum terms
« Adaptive learning rates
« 2" order methods (only for smaller networks)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

61

Problems with standard SGD

(1) Loss changes quickly in one direction and
slowly in another ﬁl!h.{'ﬂl’ >>

— Very slow progress along shallow dimension,
jitter along steep direction

(2) Loss function has local minima and plateaus
— Zero gradient, gradient descent gets stuck

(3) Loss function is noisy
— Due to minibatches...

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 62

Momentum term

Insight: Compute running average for gradient (or other quantities)

e mg=0, mpy1=ymi+ (1 —7;)g,, where g, is the gradient.

k
- Geometric Average (constant<y) : my = (1—17) Z’Yk_igi
] L =1
-« Arithmetic Average (v = (k—1)/k) my = 29
i=1

Applied to the gradient update:
Orpi1 =0 —nmyq

Intuitively: You can think of it as a “velocity term” for the update. The gradient is in this view the
acceleration.

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

SGD + Momentum

Gradient Noise

Local Minima Saddle points

e N\

Poor Conditioning

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Gradient Normalisation (RMSProp)

* In plateaus, take large steps as they do not have much risk. In steep areas take
smaller steps

* Normalize gradient by running average of gradient norm
g, = VeLll(6)
Vi1, = Yk + (1 — 7)9%,1’

N
g .
VUk+1,i T € ot

Or+1, = Opi —

— Vk,s computes running average of the squared gradients (root mean square, RMS)
— with asmall € to prevent division by zero
— This algorithm is called ADADELTA or RMSProp

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 [Zeiler, 2012, ADADELTA - An Adaptive Learning Raie Method]

RMSProp

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

m— SGD+Momentum

m——— RMSProp

66

Adaptive Momentum (Adam)

Combine momentum term with gradient normalization:
g = VeoL(Ok)

Vi1 = 71Vki + (1 —71)g%,; ... gradient norm

?

M1 = vomy +{1 —72)g ... momentum y,
o %n;(m | S ok /]

9k+1,z - gk,’b M1
\/(31 ’le+1 i T 6

norm- bae_.ed scaling

« Initialization My = 0, vg = 0 leads to underestimation fixed by ¢;(k) |
-7

« Choosevy; = 079, v2 = 0.999 and ¢ = 10™°. Not too sensitive to parameter changes
* Note: Violates convergence guarantees...

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 [kingma et. al, 2015, Adam: A Method for Stochastic Opfimization]

Comparison of different algorithms

Training on MNIST (hand written digits) dataset

10t MMIST I"-!ultllayer Neu_ral MNetwaork +_drﬂpuut
: : — AdaGrad
— RM5Prop
— SGDNesterov
I SGD — AdaDelta
m— SGD+Momentum
E:
m——— RMSProp g
mm— Adam 102 b e e Ve L
o '.":'.'1 'lli:IEI 1;0 200

iterations ower entire dataset

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 68

Learning rates

SGD, SGD+Momentum, RMSProp, Adam all have “base-learning rate” as a
hyperparameter

Learning rate much too high

Llw)

High learning rate
\ Learning rate too low
Good learning rate

-
-

epoch

« Can we also choose the learning rate adaptively?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

69

Learning rate decay

» Training Loss « Step: Reduce learning rate at a few fixed
' points. E.g. for ResNets, multiply LR by 0.1
35 1 Reduce learning rate after epochs 30, 60, and 90.

|

0 20 40 60 80 100

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 70

Learning rate decay

Learning rate

101

0.8 1

« Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

06

o after epochs 30, 60, and 90.

=l « Cosine: 1

ol a = 50 (1 + cos(tm/T))
Epoch

Training Loss

10 7

Loss

(X(: Initial learning rate
2 D e e 2 25 5 (x4 - Learning rate at epoch t
T : Total number 701f epochs

Epoch
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Learning rate decay

Learning rate « Step: Reduce learning rate at a few fixed
o points. E.g. for ResNets, multiply LR by 0.1
08 | after epochs 30, 60, and 90.
06 - * Cosine: il
a = 50 (14 cos(tw/T))
0.4 1
0.2 1 .
- Linear: oy =ap(l—1t/T)
0.0 1

0 20 40 60 80 100

Epoch

(X(: Initial learning rate
(x4 - Learning rate at epoch t

: . T’ : Total number of epochs
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 72

Learning rate decay

_ « Step: Reduce learning rate at a few fixed
Learning rate

Lo points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

0 « Cosine: 1

el a = 50 (14 cos(tw/T))

| * Linear: ar = agp(l —t/T)

0.2 1

0 2 © & ® 100 * Inverse sqgrt: o = ao/\/I_f
Epoch

Not clear which one works best...

(X : Initial learning rate
(x4 - Learning rate at epoch t

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 T : Total number-of epochs

First vs. second order optimization

First order optimization:
1. Use gradient to form linear approximation

2. Step in the direction of the minimum of the
approximation

Second order optimization:

1. Use gradient and Hessian to form quadratic
approximation

2. Step to the minimum of the approximation

Loss

|
|
|
|
|
|
|
|
[Loss
|
|
|
|
|
|
|
|

w1

> |
Gerhard Neumann | Machine Learning | KIT | WS 2621/2022 74
[

A\

2"d order methods

2"d order Taylor approximation:
L(8) = L(60) + (0 —60) g + (6 — 80) H(6 — 6y)

« With g = VL(8) is the gradient and H = V3£ (0) is the Hessian matrix

Solving for @ yields a Newton update:

0" =6,-H 'g

Properties:
v" No hyperparameters x Hessian has O(N?) parameters
v" No learning rate x Inverse is O(N3)
v’ Less iterations required x N is huge (several millions)!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

75

2"d order methods

* Quasi-Newton methods (BFGS most popular): instead of inverting the Hessian
(O(N?3)), approximate inverse Hessian with rank 1 updates over time (O(N2) each).

« L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

— Usually works very well in full batch, deterministic mode i.e. if you have a single,
deterministic f(x) then L-BFGS will probably work very nicely

— Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to
large-scale, stochastic setting is an active area of research.

In practise:
« Adam is a good default choice in most cases

« If you can afford to do full batch updates then try out L-BFGS (and don’t forget to
disable all sources of noise)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 76

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Overfitting and Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

77

Regularization with Neural Networks

The old story about overfitting...

Train Loss Accuracy

175 09 —e— train

15.0 —e— val

125 08 1

100

0.7 1

75

50 06 4

25

00 05 1

0 2500 f00O 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 1p500 15000 17500 20000

Better optimization algorithms But we really care about error on
help reduce training loss new data - how to reduce the gap?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 78

Overfitting...

What theory (and traditional ML practice) says:

« If the model capacity is too small:

_ under-fitting over-fitting
— we underfit ;
« If the model capacity is too large: . Test risk
— we overfit i :
— Training error will be close to 0 g'_j'
N :
Do we also see this in practice for NNs? ~ o ‘Training risk

sweet spot_ . —

—
— — —

Capacity of H

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 79

The double descent effect for DNNSs

The “magic” of DNNs:

* Initial U-shaped curve aligns with classical
understanding

* But: beyond a certain point (interpolation
threshold) the test risk again starts to

under-parameterized over-parameterized

decrease Test risk
. “classical” “modern”
n wn
again. EE regime interpolating regime

This effect is called “double descent” ~ _Training risk:

-
—_

. _interpolation threshold
< -

p—

Cap;city of H

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 80

The double descent effect for DNNSs

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:

. _interpolation threshold

. Classical regime: Capacity of H
— Follows what we know (bias-variance trade-off)
. Interpolation threshold:
— network size is about right to achieve 0 training loss.
— Only very narrow parameter-space to achieve that
— Rule of thumb: Num params = num samples
— Depends on: Number of samples, regularization, used optimizer, etc...
. “Modern” interpolating regime:
— Many models can achieve 0 training loss. We “somehow” end up with a good generalization model
— Might be the bias induced by stochastic gradient descent (we do not find the exact local optimum)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

81

Concrete Example

MNIST dataset:

Even though we initially overfit with
more complex models...

The best performance can be
achieved within the “interpolation
regime” for very large models!

Zero-one loss (%)

Squared loss

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

60

40

20—

- Test
—=— Train

0.6

0.4

0.2

() =

T
10

|
100

1 |
300 800

Number of parameters/weights (x103)

82

Sample-wise non-monotonicity

More samples requires more complex models to reach interpolation threshold!

N
he]

l.e. in some cases more data can
hurt your performance!

— N
o] o

o

More Data Hurts!

=

« Complete contradiction to what
we thought we know about ML!

—_
N

Cross-Entropy Test Loss
o

o]

0 25 50 75 100 125 150 175 200
Model Size (Transformer Embedding Dimension)

@ 4k Train Samples 18k Train Samples

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 83

Episode-wise non-monaoticity

Similar effects can be observed regarding the number of training egisodes

1000

Epochs

100

Train Error

0.8

0.7

1000

0.6

Epochs

100

15 30 45 60 0
ResNet18 Width Parameter

There is a regime where training longer reverses overfitting!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

~

Test Errqr

30 45
ResNet18 Width Parameter

60

84

0.8

0.2

Regularization with neural networks

Model selection (#layers, #neurons, etc...) (see lecture 3)

r X
Horizontal Flip [SV R)
22 2
r r
Rotate (24 B

Loss Accuracy

Data augmentation (see lecture 3)

Early stopping (see lecture 3)

f + =
Stop training here

Iteration Iteration

N
arg min Z [(x;,8)+ X penalty(8)

parameters @ =1

Regularization loss (see lecture 3)

Model ensembles
Dropout

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 85

Model ensembles

1. Train multiple independent models

2. At test time average their results (Take average of predicted
probability distributions, then choose argmax)

Enjoy 2% extra accuracy!

Why does this work?

* We average over “unspecified behaviour” between the training
data points

* Related to Bayesian Learning (see lecture 7)

* See recent NeurlPS tutorial on deep ensembes — they are
currently the most accurate known models in many tasks!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 _ 86
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

https://nips.cc/virtual/2020/public/tutorial_0f190e6e164eafe66f011073b4486975.html

Model ensembles

Instead of training independent models, use multiple snapshots of a single model during training!

05+ Single Model °57 Snapshot Ensemble - it ek (=100, k=34, BeSU0 o)
04 Standard LR Schedule m\ 044 Cyclic LR Schedule : — Standard Ir scheduling
2 AR /<.\ A A —— Cosine annealing with restart Ir 0.1
03 AN A 0.3 AN/ — 10° | | | | |
02 02 | | | | |
0.1+ 0.1+ L@ § 10!
g :
0 < 0~ N < =
: / £
-0.14 -0.1 '§ 1072
Rl " [
-0.2 4 0.2 el
-0.3 -03+ 107 J
0.4 044 Model | Model | Model | Model | Model | Model
50 50 50 50 1 2 3 4 5 6
40 40 40 40 10 1 | | | |
30 30 0 50 100 150 200 250 300
20 0 Epochs
\ J
Use cyclic learning rates to make it work even better
Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 87

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Dropout

* In each forward pass, randomly set some neurons to zero
* Probability of dropping is a hyperparameter; 0.5 is common

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 88

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Why is this a good idea?
* Forces the network to have a redundant representation;
« Prevents co-adaptation of features

Interpretation as ensembles:

« Dropout is training a large ensemble of models (that share
parameters).

« Each binary mask is one model
« An FC layer with 4096 units has 2409 ~ 101233 possible masks!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 89

Dropout: Testing

The output of the network is now random:
« For testing, we want to evaluate the expectation!

Ensemble view:

« Average over multiple dropout masks (computationally expensive
but quite robust)

« Also allows to get uncertainty estimates (not covered)

Expectation view:
« Compute the expected input to the activation functions
« Multiply each weight by the dropout rate

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 90

Drop Connect

« Training: Drop connections between neurons (set weights to 0)
« Testing: Use all the connections

Gerhard Neumann | Machine Learning | KIT | WS 2021wk} et al, “Regularization of Neural Networks using DropConnec? LICML 2013

Today’'s Agenda!

Neural Networks:

What is a Neuron?

Architectures and Activation Functions
Loss-functions

Backpropagation and the Chain Rule
Computation graphs

Advanced Topics:

Accelerating gradient descent

Regularization in Neural Networks
Practical considerations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Credit: M. Ren and M. MacKay, University of Toronto,
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford

92

Practical considerations

... or the black-arts of training neural networks

Crucial for getting good performance with Neural Networks:
« Data preprocessing

« Weight initialization

* Hyperparameter optimization

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

93

Data preprocessing

NNs work best with zero-mean unit variance data

~

X;i=(X;,—pu) 0o

« Where p is the mean, o is the standard deviation and ¢ the element-wise division operator
* Why? network initialization strategies are optimized for zero-mean unit variance!

original data zero-centered data normalized data

GerhaPd Nedmann f Machine Le‘&rniﬁf(;°| KITTWS 2021/2022 % - = ' = o

Data pre-processing

In practice, you might also see PCA<(teetsm&&53-and whitening (of low-d data)

original data decorrelated data whitened data

10

1g 20 = 5 g b 1 - 5 10

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 95

Data preprocessing

Before normalization: classification loss After normalization: less sensitive to
very sensitive to changes in weight small changes in weights; easier to
matrix; hard to optimize optimize
A
e
\ A
®
A
e o\A A
A o A
A
A
o o\A
A
® A

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 96

Weight initialization

Q: What happens if we initialize all weights
constantly for such a network?

We need random initialization!

* Firstidea: Small random numbers (e.g.
gaussian with zero mean and 1e-2
standard deviation)

Works ok for small networks... how about

output layer deep networks?

input layer
hidden layer

* All the gradients are the same!
Network can never learn “distinct features”

Gerhard Neumann | Machine Learning | KIT | WS 202Y/2022 97

Weight initialization

Activation Statistics:

* 6 layer, tanh activation, 4096 units per layer
« Zero mean, unit variance inputs

* 0.01 standard deviation for weights

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

All activations tend to zero for deeper networks!
 No gradients ® !

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 98

Weight initialization

Activation Statistics:
6 layer, tanh activation, 4096 units per layer

Zero mean, unit variance inputs

0.05 standard deviation for weights

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

e | 0 1 -1 0 1 -3 0 1 e | 0 1

Most activations are saturated!
Vanishing gradients !

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

99

Weight initialization

Xavier initialization:

. . 1
* Use the following standard deviation: ow = \/?
in
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

=1 0 1 =1 0 1 0 | 0 1 -1 0 1 -1 0 1

« “Justright”: Activations are nicely scaled for all layers!
— Can be derived by computing the variances of each layer (assuming linear units)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 100

Weight Initialization

What about ReLUs?

N F v imitiali R Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Xavier initialization: mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
1 std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
OW — —F/——
V Din
— Activations again
gotoO ® -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
o RelLU correction Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
2 std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81
OW —
V Din
— Activations nicely
balanced

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 101

Learning with NNs in practise

Step 1: Check initial loss

Turn off weight decay (L2 regularization), sanity check loss at initialization
e.g. log(C) for softmax with C classes

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 102

Learning with NNs In practise

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10
minibatches)

* Fiddle with architecture, learning rate, weight initialization

* Loss not going down? LR too low, bad initialization

* Loss explodes to Inf or NaN? LR too high, bad initialization

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 103

Learning with NNs In practise

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight
decay, find a learning rate that makes the loss drop significantly within ~100 iterations.
* Good learning rates to try: 1le-1, le-2, 1e-3, 1le-4

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 104

Learning with NNs In practise

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step
3, train a few models for ~1-5 epochs.
* Good weight decay to try: 1e-4, 1e-5,0

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 105

Learning with NNs In practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning
rate decay

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 106

Learning with NNs In practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss curves

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 107

Look at learning curves!

Training Loss

Train / Val Accuracy

u1iv

o o
o o
o @

Training loss
=}
o
=

0 100000 200000 300000 400000 500000 600000
lteration

Losses may be noisy, use a scatter plot and also plot moving average to see trends better

88
0

{ —e— frain

- val

100000 200000 300000 400000 500000 600000

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

lteration

108

Different error sources

A A
Loss Loss
/ Bad initialization a prime suspect Loss plateaus: Try
learning rate decay
time time
A
Loss
Learning rate step decay Loss was still going down

when learning rate dropped,
you decayed too early!

Gerhard Neumann | Machine Learning | KIT | WS 2021/20%%1«9 " 109
I

Different error sources

Accuracy i Accuracy still going up, you

need to train longer

Train

Val

time
A
Accuracy

Gerhard Neumann | Machine Lea

Train

Accuracy

A

Huge train / val gap means
overfitting! Increase regularization,
get more data

Train

Val

A\

time

No gap between train / val means
underfitting: train longer, use a
bigger model

110
time

Learning with NNs In practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss curves

Step 7: GOTO step 5

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 111

Neural Nets summary

Neural Nets are extremely powerful and complex non-linear representations
+ Can be seen as feature extraction for regression and classification

* Yet, need a lot of samples

* Can easily overfit (Criticism: they often just learn the data by heart)

The last 5-10 years they have “taken over” ML
« Deep Neural Networks (depth > 2) set the gold standard in many fields today

« Computer Vision, Natural Language Processing, Robotics and Reinforcement Learning, Time-
Series Prediction, etc...

* Why now? More data, more computation... but almost same algorithms than 40 years ago

Yet, we do not fully understand them:
« Training them needs experience and a lot of computation

* Actually... we have no idea why they work so well
— Theory says, it shouldn’t (as we often have more parameters than training examples)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 112

Takeaway messages

What have we learned today?

What neural networks are and how they relate to the brain
How neural networks build stacks of feature representations
A network of one layer is enough, but in practice not a good idea
How to do forward and backpropagation on computation graphs
— How to use matrix calculus to obtain simpler gradient computations
Different ways of doing fast gradient descent

— Speedup training via momentum, gradient normalization and
learning rate adaptation

— How to initialize the parameters
Why neural networks overfit and what you can do to about it

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

113

Self-test questions

« How does logistic regression relate to neural networks?
* What kind of functions can single layer neural networks learn?
« Why do we need non-linear activation functions?

« What activation functions can we use and what are the advantages/disadvantages of
those?

 What output layer and loss function to use given the task (regression,

« classification)?

 Why not use a sigmoid activation function?

« Derive the equations for forward and backpropagation for a simple network

 What is mini-batch gradient descent? Why use it instead of SGD or full gradient descent?
* Why neural networks can overfit and what are the options to prevent it?

 Why is the initialization of the network important?

 What can you read from the loss-curves during training (validation and training loss)?

« How can we accelerate gradient descent? How does Adam work?

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 114

Example: Computation Graph

/< >
D)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 115

Example: Computation Graph

e Forward Pass:

e = cxd

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 116

Example: Computation Graph

e Backward Pass:

e = cxd
e=20
Oe de
| 4
dc %_ @—1
B0 b ob

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

117

Example: Computation Graph

¢ =1 /)‘e/:&
Backward Pass: (g é)'(,@,w/\) C=Z.5_‘:Z
— c
- -5 e
dre
e _q de _4 E = Z - s Z
b d _
c 7 J¢ T3
ST
L ST
%:1 %:1 @:1 G /Q
da ob ~ ob e s~
a’
T eedeC
118

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

Another example: Vectors and matrices

yse, 'z,
2 -l
\ 2

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

119

Another example: Vectors and matrices

e Te,
2. L

4

\ Z'Z:\‘/z/\

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022

\, =

Y :l

Z.7y 2,

ZZ T2,

v‘/:‘\ 2—4)\\}

\ ~ - Oo(ﬂl/
Wy = AT ool
X = T+ 3,0
l

