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Announcement: Exam

If you register for the first time:

• Select in CAS the exam no 7500292 – Maschinelles Lernen - Grundlagen und Algorithmen
(WS 21/22)

If you already registered last semester and canceled the exam or did not pass it:

• Select in CAS the exam no. 7500340 – Maschinelles Lernen - Grundverfahren (WS 21/22)
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Intermediate Lecture Wrap-Up – Algorithms

Chapter 1: Classical Supervised Learning

✓ Linear Regression, 

✓ Ridge Regression, 

✓ k-NN, 

✓ Trees and Forests

Chapter 2: Kernel Methods

✓ Kernel-Regression

✓ Support Vector Machines

Chapter 3: Bayesian Learning

✓ Bayesian Linear Regression

✓ Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning
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Intermediate Lecture Wrap-Up – Basics

Chapter 1: Classical Supervised Learning

✓ Matrix/Vector Calculus

✓ Probability Theory, Maximum Likelihood

✓ Gradient Descent

Chapter 2: Kernel Methods

✓ Sub-gradients

✓ Constraint Optimization

Chapter 3: Bayesian Learning

✓ “Completing the Square”

✓ Gaussian Conditioning

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning
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The ML algorithm “coordinate system”

Most ML algorithms can be grouped along 3 axis:

• Representation: What is the underlying representation of our model?

• Loss function: How do we define what is a good and what is a poor model?

• Optimization: How do we optimize?

... of course more axis exists, e.g. Regularization
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Intermediate Lecture Wrap-Up – Representations

Chapter 1: Classical Supervised Learning

✓ Features / Basis Functions: Linear (Ridge) 

Regression, Logistic Regression

✓ Instances: k-NN

✓ Trees: CART 

✓ Ensembles: Forests 

Chapter 2: Kernel Methods

✓ Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning

✓ Features: Bayesian Linear Regression

✓ Kernels: Gaussian Processes

Chapter 4: Neural Networks

Chapter 5: Unsupervised Learning
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Intermediate Lecture Wrap-Up – Loss Functions

Chapter 1: Classical Supervised Learning

✓ Mean/Summed Squared error (SSE): Linear 
Regression

✓ Gaussian Log-Likelihood: Probabilistic linear 
Regression

✓ Binary Cross Entropy Likelihood: Logistic 
Regression

✓ Soft-Max Likelihood: Multi-class classification

Chapter 2: Kernel Methods

✓ SSE: Kernel Regression

✓ Maximum Margin or Hinge Loss: SVM

Chapter 3: Bayesian Learning

✓ Maximum a-posteriori solution: Probabilistic 
ridge regression

Chapter 4: Neural Networks

• Most of that above...

Chapter 5: Unsupervised Learning
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Intermediate Lecture Wrap-Up – Optimization Methods

Chapter 1: Classical Supervised Learning

✓ Least Squares Solution: Linear Regression

✓ Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

✓ Least Squares Solution: Kernel Regression

✓ Sub-Gradients: SVM

✓ Lagrangian Optimization: SVMs

Chapter 3: Bayesian Learning

✓ Posterior approximation

Chapter 4: Neural Networks

• More specialized gradient descent methods

Chapter 5: Unsupervised Learning
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Wrap-up: Where are we?

Chapter 1: Classical Supervised Learning
• Lecture 1: Linear Regression, Ridge Regression

• Lecture 2: Linear Classification

• Lecture 3: Model Selection

• Lecture 4: k-Nearest Neighbors, Trees and Forests

Chapter 2: Kernel Methods
• Lecture 5: Kernel-Regression

• Lecture 6: Support Vector Machines

Chapter 3: Bayesian Learning
• Lecture 7: Bayesian Linear Regression and Gaussian 

Processes

Chapter 4: Neural Networks
• Lecture 8: Neural Networks and Backpropagation

• Lecture 9: CNNs and LSTMs

Chapter 5: Unsupervised Learning
• Lecture 10: Dimensionality Reduction and Clustering

• Lecture 11: Density Estimation and Mixture Models

• Lecture 12: Variational Auto-Encoders (?)
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Learning Outcomes

We will learn today…

• What a neuron network is

• How do we train it?

• … which requires a calculus refresher ☺

• Why is everybody talking about it?

• Various ways to accelerate gradient descent

• How to prevent overfitting in NNs?

• Practical tips and tricks for training NNs
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Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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A neuron is the basic computational unit of the brain:

• Our brain has ~ 1011 neurons

• Each neuron is connected to ~ 104 other neurons (via synapses)

Biological Inspiration: The brain
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Biological Inspiration: The brain

Neurons receive input signals and accumulate voltage. After some threshold they will 

fire spiking responses.
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Artificial Neurons

For neural nets, we use a much simpler unit (neuron, perceptron):

Example we already know: 

• Logistic regression:

3 ingredients:

• Weighting of the input

• Summation

• Non-linear activation function
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Feedforward Neural Networks

Building a network:

• We can connect lots of units 

together into a directed acyclic 

graph.

• This gives a feed-forward 

neural network. That’s in 

contrast to recurrent neural 

networks, which can have 

cycles.

• Typically, units are grouped 

together into layers.
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Feedforward Neural Networks

• Each layer connects N input units to M output units. 

• In the simplest case, all input units are connected to all output units. We call this a fully 

connected layer.

• Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.

• I.e., each layer has a M x N weight matrix W

• Equation in matrix form:

– Output units are a function of input units

• Feedforward neural networks are also often

called multi-layer perceptrons (MLPs)

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 16



Activation funcitons

Different activation functions for introducing non-linearities:
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Activation functions

Computes

• Squashes numbers to range [0,1]

• Historically popular since they have nice 

interpretation as a saturating “firing rate” of a neuron

Problems:

× Saturated neurons “kill” the gradients

× Sigmoid outputs are not zero-centered (important for 

initialization)

× exp() is a bit compute expensive
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Activation functions

• Squashes numbers to range [-1,1]

✓ zero centered (nice)

× still kills gradients when saturated :(
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Activation functions

Computes

✓ Does not saturate (in +region)

✓ Computationally very efficient

✓ Converges much faster than sigmoid/tanh in practice 

(e.g. 6x)

× Not zero-centred output

× No gradient for x < 0
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Activation functions

Computes

✓ Does not saturate

✓ Computationally efficient

✓ Converges much faster than sigmoid/tanh in practice! 

(e.g. 6x)

✓ will not “die”

Parametric Rectifier (PReLu):

• Also learn alpha
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Activation functions

Computes

✓ All benefits of ReLU

✓ Closer to zero mean outputs

× Computation requires exp()
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Activation functions

In practice:

• Use ReLU. Be careful with your learning rates / initialization

• Try out Leaky ReLU / ELU

• Try out tanh but don’t expect much

• Don’t use sigmoid

– Only used for output activations in classification
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Feedforward Neural Networks

Formalisation:

• Each layer computes a function, so the network computes a 

composition of functions:

• Or more simply: 

• Neural nets provide modularity: we can implement each 

layer’s computations as a black box.
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Example: XOR

Design a network that implements XOR:

• Not computable by a single unit!

• Classical example why we need multiple layers
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Example: XOR

XOR in terms of elemental operations:

• XOR(a,b) = (a OR b) AND NOT (a AND b)

Design a network that implements XOR:

• Hard threshold for activation function

• h1 computes x1 OR x2

• h2 computes x1 AND x2

• y computers h1 AND NOT h2
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Deep Architectures

Why do we need to be deep ?

• Any sequence of linear layers can be equivalently represented with a single linear layer

– I.e., we need non-linearities to exploit multiple layers

• FF-NNs with nonlinear activation functions are universal function approximators:

– Given a potentially infinite amount of units, they can approximate any function arbitrarily 

well

– Universal Function Approximation Theorem: Already a single layer is enough to achieve 

“universality”
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Deep Architectures

So, is a single layer enough?

• Even though the Universal Approximation Theorem says a single layer is enough, we would 

need an exponential number (in input dimensionality) of units to achieve this

– If you can learn any function, you’ll just overfit.

• Instead, multiple layers allow for a similar effect with less units

– Compact representation >> “Universal representation”
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Output layers and loss functions

Objective functions for training neural nets: 

• General ML recipe: per sample loss + regularization penalty (see lecture 2)

Which kind of loss and output activation function depends on the task

• Regression

• Binary classification

• Multi-class classification
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Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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Regression:

• Output layer:   linear     linear Gaussian 

• Loss: squared error negative log-likelihood

Output layers and loss functions

Deterministic Probabilistic
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Output layers and loss functions

Binary classification:

• Output layer:                              linear                                                 sigmoid

• Loss function:                        hinge-loss    neg-loglike

Deterministic Probabilistic

-1/+1 labels

0/1 labels
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Output layers and loss functions

Multi-class classification:

• Output layer:                              linear                                                 sigmoid

• Loss function:                        Multi-class SVM loss    negative loglikelihood

Deterministic Probabilistic

Not covered

One hot coding
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Feature Learning

• Neural nets can be viewed as a way of learning features

– The last layer is a standard linear regression / 

classification layer

• The network learns the features          such that linear 

regression / classification can solve it
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Example: Feature Learning

Classify images of handwritten digits: 

• Each image is represented as a vector of 28 × 28 

= 784 pixel values.

• Each first-layer hidden unit computes                . 

It acts as a feature detector.

• We can visualize w by reshaping it into an 

image. 

• These weights w are visualized on the right for 

some units

• Edge-detectors at different orientations and 

locations
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Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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Gradient Descent

Multi-layer perceptrons are usually trained using back-propagation for computing the 
gradients

Same algorithms as for logistic regression can be used, however
• Much bigger parameter space

• Non-convex, many local optima

• Can get stuck in poor local optima

• The design of a working backprop algorithm is somewhat of an art

Because of that, the use of NNs was in absolute winter between ~2000 and 2012

However, in the last 5-10 years, we have seen that with:
• More compute

• More data

• And a few tricks…

they work amazingly well...
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Recap: Gradient Descent 

Move in the opposite direction of the 

gradient (steepest descent)

• Weight space for a multilayer neural net: 

one coordinate for each weight or bias 

of the network, in all the layers

• Conceptually, not any different from what 

we’ve seen so far (Lecture 2) — just higher dimensional

and harder to visualize!
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Basics: Chain rule gradients of composite functions

Objective functions for training neural nets: 

• per sample loss + regularization penalty (see lecture 2)

• We need to compute the following partial derivatives:

– Layer weight matrices:

– Layer bias vectors:

• Can be done by a recursive use of the chain rule!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 39



Univariate case

Lets start simple…

Univariate chain rule:

• Recall: if f(x) and x(t) are univariate functions, then
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Example

Univariate logistic least squares 

model

Lets compute the loss derivatives…

101 in calculus:

• Similar for
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Example

Univariate logistic least squares 

model

Lets compute the loss derivatives…

101 in calculus:

• Similar for
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Computation graph (example)

Can we find an algorithm to do it more systematically?

• The goal isn’t to obtain closed-form solutions… 

• but to be able to write a program that efficiently computes the derivatives.

We can diagram out the computations using a computation graph:

• The nodes represent all the inputs and

computed quantities

• The edges represent which nodes are 

computed directly as a function of which other nodes.
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Computation graph (example)

Computing the derivative

• backward pass
Computing the loss:

• forward pass
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Computation graph (example)

Lets simplify notation:

• Use     to denote the derivative          (also called error signals)

• Emphasizes that error signals are just values (rather than mathematical operations)

Computing the derivative

• backward pass
Computing the loss:

• forward pass
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General computation graphs

Problem: what if the computation graph has fan-out > 1?

• This requires the multivariate Chain Rule!

Regularized Regression: Softmax classification:
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Multivariable chain rule

Suppose we have a function f(x,y) and functions x(t) and y(t) (All the variables here are 

scalar-valued.) Then

Plug in Chain Rule:Example:
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Multivariable chain rule

In the context of back-propagation:

Using our notation: In vector notation:

Values already computed 

by the algorithm

Mathematical expressions 

to be evaluated
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Backpropagation

Full backpropagation algorithm:

• Let v1 , . . . , vN be a topological ordering of the 

computation graph (i.e. parents come before children.)

• vN denotes the variable we’re trying to compute 

derivatives of (e.g. loss).
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Backpropagation

Example: univariate logistic least squares regression

Forward pass:

Backward pass:
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Backpropagation

Example: Multi-layer Perceptron (multiple outputs)

Can we also do this in matrix form?

Forward pass:

Backward pass:
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Recap: Matrix Calculus

Derivatives of a scalar function w.r.t a vector…

• Yields the gradient vector:

• Example: Quadratic form

Derivatives of a vector-valued function w.r.t a vector…

• Yields a matrix (the Jacobian) 

• Example: Linear form 
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Recap: Matrix Calculus

Derivatives of a scalar function w.r.t. a matrix…

• … is again a matrix

Derivatives of a vector-valued function w.r.t. a matrix…

• … is a 3D tensor !

• However, we only have matrix-vector products: 

• In this case, the chain-rule does not require to evaluate the tensor, i.e. (proof not shown) 

• This is the outer product (i.e., again a matrix) 
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Example in matrix form

Example: Multi-layer Perceptron (vector form)

Forward pass:

Backward pass:

element-wise 

product

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 54



Computational costs

• Computational cost of forward pass: 

– Matrix-vector product

– Roughly one add-multiply operation per weight

• Computational cost of backward pass: 

– Matrix-vector product + outer product

– Roughly two add-multiply operation per weight (twice the forward pass)

• For a multilayer perceptron, this means the cost is linear in the number of layers, 

quadratic in the number of units per layer.
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Wrap-up for backpropagation

• Backprop is used to train the overwhelming majority of neural nets today.

– Even optimization algorithms much fancier than gradient descent (e.g. second-order 

methods) use backprop to compute the gradients.

• Despite its practical success, backprop is believed to be neurally implausible.

– No evidence for biological signals analogous to error derivatives.

– Forward & backward weights are tied in backprop.

– Backprop requires synchronous update (1 forward followed by 1 backward).

• All the biologically plausible alternatives we know about learn much more slowly (on 

computers).
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Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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Gradient descent for Neural Networks

We know now how to compute the gradient using backpropagation…

We still have to decide on…

• When to update W?

• How to choose the learning rate?

• How to initialize W?
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When do update W?

Mini-Batches: Take subset of samples to 

approximate real gradient:

• Intermediate version of stochastic and batch gradient descent

• Less noisy estimates than stochastic gradient descent

• More efficient than batch gradient descent

• Preferable for GPU implementations

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 59



How do choose the learning rate?

If the learning rate is chosen:

• Too low: slow convergence

• Too high: oscillations and slow convergence

• Much too high: divergence
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Speeding up gradients descent

• Momentum terms

• Adaptive learning rates

• 2nd order methods (only for smaller networks)
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Problems with standard SGD

(2) Loss function has local minima and plateaus

– Zero gradient, gradient descent gets stuck

(1) Loss changes quickly in one direction and 

slowly in another

– Very slow progress along shallow dimension,

jitter along steep direction

(3) Loss function is noisy

– Due to minibatches…
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Momentum term

Insight: Compute running average for gradient (or other quantities)

•

• Geometric Average (constant    ) :

• Arithmetic Average (                             ): 

Applied to the gradient update:

Intuitively: You can think of it as a “velocity term” for the update. The gradient is in this view the 

acceleration.
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SGD + Momentum
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Gradient Normalisation (RMSProp)

• In plateaus, take large steps as they do not have much risk. In steep areas take 

smaller steps

• Normalize gradient by running average of gradient norm

– computes running average of the squared gradients (root mean square, RMS)

– with a small      to prevent division by zero

– This algorithm is called ADADELTA or RMSProp
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RMSProp
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Adaptive Momentum (Adam)

Combine momentum term with gradient normalization:

• Initialization                                    leads to underestimation fixed by

• Choose                                      and                . Not too sensitive to parameter changes

• Note: Violates convergence guarantees...

[Kingma et. al, 2015, Adam: A Method for Stochastic Optimization]Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 67



Comparison of different algorithms

Training on MNIST (hand written digits) dataset
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Learning rates

SGD, SGD+Momentum, RMSProp, Adam all have “base-learning rate” as a 
hyperparameter

• Can we also choose the learning rate adaptively?
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Learning rate decay

• Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.
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Learning rate decay

• Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.

• Cosine:
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Learning rate decay

• Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.

• Cosine:

• Linear:
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Learning rate decay

• Step: Reduce learning rate at a few fixed

points. E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.

• Cosine:

• Linear:

• Inverse sqrt: 

Not clear which one works best…
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First vs. second order optimization

First order optimization:

1. Use gradient to form linear approximation

2. Step in the direction of the minimum of the 

approximation

Second order optimization:

1. Use gradient and Hessian to form quadratic 

approximation

2. Step to the minimum of the approximation
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2nd order methods

2nd order Taylor approximation:

• With                       is the gradient and  is the Hessian matrix

Solving for     yields a Newton update:

Properties:

✓ No hyperparameters

✓ No learning rate

✓ Less iterations required

× Hessian has O(N2) parameters

× Inverse is O(N3)

× N is huge (several millions)!
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2nd order methods

• Quasi-Newton methods (BFGS most popular): instead of inverting the Hessian 

(O(N3)), approximate inverse Hessian with rank 1 updates over time (O(N2) each).

• L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

– Usually works very well in full batch, deterministic mode i.e. if you have a single, 

deterministic f(x) then L-BFGS will probably work very nicely

– Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to 

large-scale, stochastic setting is an active area of research.

In practise:

• Adam is a good default choice in most cases

• If you can afford to do full batch updates then try out L-BFGS (and don’t forget to 

disable all sources of noise)
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Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Overfitting and Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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Regularization with Neural Networks

The old story about overfitting…
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Overfitting... 

What theory (and traditional ML practice) says:

• If the model capacity is too small:

– we underfit

• If the model capacity is too large: 

– we overfit

– Training error will be close to 0

Do we also see this in practice for NNs?
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The double descent effect for DNNs

The “magic” of DNNs:

• Initial U-shaped curve aligns with classical
understanding 

• But: beyond a certain point (interpolation 
threshold) the test risk again starts to 
decrease
again.

This effect is called “double descent”
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The double descent effect for DNNs

• Classical regime: 

– Follows what we know (bias-variance trade-off)

• Interpolation threshold:

– network size is about right to achieve 0 training loss. 

– Only very narrow parameter-space to achieve that

– Rule of thumb: Num params ≈ num samples

– Depends on: Number of samples, regularization, used optimizer, etc...

• “Modern” interpolating regime:

– Many models can achieve 0 training loss. We “somehow” end up with a good generalization model

– Might be the bias induced by stochastic gradient descent (we do not find the exact local optimum)
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Concrete Example

MNIST dataset:

• Even though we initially overfit with 

more complex models...

• The best performance can be 

achieved within the “interpolation 

regime” for very large models!
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Sample-wise non-monotonicity

More samples requires more complex models to reach interpolation threshold!

I.e. in some cases more data can 

hurt your performance!

• Complete contradiction to what 

we thought we know about ML!
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Episode-wise non-monoticity

Similar effects can be observed regarding the number of training episodes 

• There is a regime where training longer reverses overfitting!
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Regularization with neural networks

• Model selection (#layers, #neurons, etc…) (see lecture 3) 

• Data augmentation (see lecture 3)

• Early stopping (see lecture 3)

• Regularization loss (see lecture 3)

• Model ensembles

• Dropout
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Model ensembles

1. Train multiple independent models

2. At test time average their results (Take average of predicted 

probability distributions, then choose argmax)

Enjoy 2% extra accuracy!

Why does this work?

• We average over “unspecified behaviour” between the training 

data points

• Related to Bayesian Learning (see lecture 7)

• See recent NeurIPS tutorial on deep ensembes – they are 

currently the most accurate known models in many tasks!
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Model ensembles

Instead of training independent models, use multiple snapshots of a single model during training!

Use cyclic learning rates to make it work even better
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Dropout

• In each forward pass, randomly set some neurons to zero 

• Probability of dropping is a hyperparameter; 0.5 is common
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Dropout

Why is this a good idea?

• Forces the network to have a redundant representation;

• Prevents co-adaptation of features

Interpretation as ensembles:

• Dropout is training a large ensemble of models (that share 

parameters).

• Each binary mask is one model

• An FC layer with 4096 units has 24096 ~ 101233 possible masks!

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 89



Dropout: Testing

The output of the network is now random:

• For testing, we want to evaluate the expectation!

Ensemble view:

• Average over multiple dropout masks (computationally expensive 

but quite robust)

• Also allows to get uncertainty estimates (not covered)

Expectation view: 

• Compute the expected input to the activation functions

• Multiply each weight by the dropout rate 
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Drop Connect

• Training: Drop connections between neurons (set weights to 0)

• Testing: Use all the connections

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 91



Today‘s Agenda!

Neural Networks:
• What is a Neuron?

• Architectures and Activation Functions

• Loss-functions

• Backpropagation and the Chain Rule

• Computation graphs

Advanced Topics:
• Accelerating gradient descent

• Regularization in Neural Networks

• Practical considerations
Credit: M. Ren and M. MacKay, University of Toronto,

Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford
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Practical considerations

… or the black-arts of training neural networks

Crucial for getting good performance with Neural Networks:

• Data preprocessing

• Weight initialization

• Hyperparameter optimization
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Data preprocessing

NNs work best with zero-mean unit variance data

• Where      is the mean,      is the standard deviation and      the element-wise division operator

• Why? network initialization strategies are optimized for zero-mean unit variance!
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Data pre-processing

In practice, you might also see PCA (lecture 5) and whitening (of low-d data)
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Data preprocessing

Before normalization: classification loss

very sensitive to changes in weight 

matrix; hard to optimize

After normalization: less sensitive to 

small changes in weights; easier to 

optimize

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 96



Weight initialization

Q: What happens if we initialize all weights 
constantly for such a network? 

• All the gradients are the same!

• Network can never learn “distinct features”

We need random initialization!

• First idea: Small random numbers (e.g. 

gaussian with zero mean and 1e-2 

standard deviation)

• Works ok for small networks… how about 

deep networks?
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Weight initialization

Activation Statistics:

• 6 layer, tanh activation, 4096 units per layer

• Zero mean, unit variance inputs

• 0.01 standard deviation for weights

All activations tend to zero for deeper networks!

• No gradients  !
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Weight initialization

Activation Statistics:

• 6 layer, tanh activation, 4096 units per layer

• Zero mean, unit variance inputs

• 0.05 standard deviation for weights

Most activations are saturated!

• Vanishing gradients !
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Weight initialization

Xavier initialization:

• Use the following standard deviation:

• “Just right”: Activations are nicely scaled for all layers!

– Can be derived by computing the variances of each layer (assuming linear units)
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Weight Initialization

What about ReLUs?

• Xavier initialization:

– Activations again 

go to 0 

• ReLU correction

– Activations nicely 

balanced
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Learning with NNs in practise

Step 1: Check initial loss

Turn off weight decay (L2 regularization), sanity check loss at initialization

e.g. log(C) for softmax with C classes
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Learning with NNs in practise

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 

minibatches)

• Fiddle with architecture, learning rate, weight initialization

• Loss not going down? LR too low, bad initialization

• Loss explodes to Inf or NaN? LR too high, bad initialization
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Learning with NNs in practise

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight 

decay, find a learning rate that makes the loss drop significantly within ~100 iterations.

• Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Learning with NNs in practise

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 

3, train a few models for ~1-5 epochs.

• Good weight decay to try: 1e-4, 1e-5, 0
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Learning with NNs in practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) without learning 

rate decay
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Learning with NNs in practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves
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Look at learning curves!

Losses may be noisy, use a scatter plot and also plot moving average to see trends better
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Different error sources
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Different error sources
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Learning with NNs in practice

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

Step 7: GOTO step 5
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Neural Nets summary

Neural Nets are extremely powerful and complex non-linear representations
• Can be seen as feature extraction for regression and classification

• Yet, need a lot of samples

• Can easily overfit (Criticism: they often just learn the data by heart)

The last 5-10 years they have “taken over” ML
• Deep Neural Networks (depth > 2) set the gold standard in many fields today

• Computer Vision, Natural Language Processing, Robotics and Reinforcement Learning, Time-
Series Prediction, etc…

• Why now? More data, more computation… but almost same algorithms than 40 years ago

Yet, we do not fully understand them:
• Training them needs experience and a lot of computation

• Actually… we have no idea why they work so well
– Theory says, it shouldn’t (as we often have more parameters than training examples)
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Takeaway messages

What have we learned today?

• What neural networks are and how they relate to the brain

• How neural networks build stacks of feature representations

• A network of one layer is enough, but in practice not a good idea

• How to do forward and backpropagation on computation graphs

– How to use matrix calculus to obtain simpler gradient computations

• Different ways of doing fast gradient descent

– Speedup training via momentum, gradient normalization and 

learning rate adaptation

– How to initialize the parameters

• Why neural networks overfit and what you can do to about it

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022 113



Self-test questions

• How does logistic regression relate to neural networks?

• What kind of functions can single layer neural networks learn?

• Why do we need non-linear activation functions?

• What activation functions can we use and what are the advantages/disadvantages of 
those?

• What output layer and loss function to use given the task (regression,

• classification)?

• Why not use a sigmoid activation function?

• Derive the equations for forward and backpropagation for a simple network

• What is mini-batch gradient descent? Why use it instead of SGD or full gradient descent?

• Why neural networks can overfit and what are the options to prevent it?

• Why is the initialization of the network important?

• What can you read from the loss-curves during training (validation and training loss)?

• How can we accelerate gradient descent? How does Adam work?
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Example: Computation Graph
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Example: Computation Graph
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• Forward Pass:



Example: Computation Graph
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• Backward Pass:



Example: Computation Graph
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• Backward Pass:



Another example: Vectors and matrices
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Another example: Vectors and matrices
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