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Learning Outcomes

What will we learn today?

« Understand latent variable models and why they are hard to train
* Understand mixture models and how to train it using EM
* Analysis of the EM algorithm and why it converges
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Agenda for today

Mixture Models
« Gaussian Mixture Models (GMM)
«  Expectation Maximization

Latent Variable Models and Generalized EM
«  EM decomposition

« E-and M-step

«  Convergence analysis

« EM for dimensionality reduction
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Mixture Models

Parametric models Non-Parametric models
»  Kernel-density estimation, k-NN
v' General (can represent any

Gaussian, Neural Networks, ...

x  Slow

v' Good analytic properties ehetal
. distribution)
v’ Simple _ _ _
: x  Curse of dimensionality

v' Small memory requirements . _ t
X arge memory requirements

v Fast g yTeq

X

Limited representation power (most
parametric distributions have only
one mode)

* Mixture models combine the advantages of both worlds
 Key idea: Create a complex distribution by combining simple ones (e.g. Gaussians)
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Mixture model

Example: Mixture of Gaussians (MoG)
* Individual Gaussians

{IPaNAN

. Sum of Gaussians

A mixture distribution is the sum of
individual distributions:

Number of
components

\

p(k)p(x|k)
o= Lo

Mixture k-th mixture
coefficient component

p(x)

* In the limit with many / infinite components, this
can approximate any smooth density
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Gaussian Mixture Models (GMMSs)

Example: Mixture of Gaussians (MoG)
* Individual Gaussians

. Sum of Gaussians

" /&A

i

 Mixture coefficient:
p(k) = mp, with 0 <7, <1, Zwk =1

k
 Mixture component:

p(xlk) = N(z|py, Xi)
*  Mixture distribution:

p(x) =D mN (x|, i)

k=1

— Always integrates to 1
— Parameters of the mixture

9:{Wlaulazla"-:wKauKazK}
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Maximum Likelihood of a mixture

. (I\/IarginaI-)Log-LikeIihood with N iid points

L =log L(0 Zlog pg x;) Zlog (Z TN ( wz|“kazk))

marglnal

~
non-exponential family

 Q: Can we do gradient descent?
N

N (il 3
8_£’ _ Z Kﬂ-.? (:E |I'1’j J) 2‘7—1(:11Z o u:})
a‘u’j i=1 Zk 17TkN(5Ui‘I"*kazk)

x  Gradient depends on all other
components (cyclic dependency)

€x; .
Z P p]():i 7) 5 PRICTITS x  No closed form solution
2N1 2 x  Typically very slow convergence
_ Z 5 1 — (i) » A:Yes, but the sum (marginalization)

does not go well with the log
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EM for Gaussian Mixture Models



Estimating Gaussian Mixture Models

N
So why is optimizing £ = Zlogpg(wi) so hard?
i=1
«  Because we do not know which mixture component k created which data-point
« If we would have data from the joint distribution p(xi, k@), then it would be easy ...

In this case, we can simply perform a maximum likelihood estimate:

«  Coefficients: Ty = %
« Means: i = M _ where g = I(k, k;) is 1 if the ith
2 dit sample belongs to the kth component
-  Covariances: ¥, = > Gk (@i — p) (i — i) and 0 otherwise
Zi ik
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Expectation-Maximization: Chicken and Egqg...

Yet, we do not know which component belongs to which sample
« Can we estimate that? Given a current mixture model, yes!

* Expectation Step:
— Compute cluster probabilities aka responsibilities for each sample (Bayes rule)

e — ey = PEilRp(R)  meN(@ilpy, B
e = P =R = ) YR, mN (@i, 3

— Responsibilities ¢ix are now continues between 0 and 1
— But we need to know the Gaussian components
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Expectation-Maximization: Chicken and Egqg...

Yet, we do not know which component belongs to which sample
« Can we estimate that? Given a current mixture model, yes!

« Maximization Step:
— Compute (weighted) maximum likelihood estimate

e T
> i Gik 2 Gik®i o > Gik(®i — gy ) (T — py)
Ty = = P = <= _— k=
N ZZ qik Z@ dik
— But we need to know the responsibilities
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Algorithm: EM for GMMs

« Initialize: Mixture Components + Mixture coefficients
— E.g. Use k-means for the component means and some initial covariance

* Repeat until convergence:
— Expectation-step: Compute responsibilities

G — TN (@i 1y, Bik)
S N (i, 35)

— Maximization-step: Update coefficients, components means and component variance

Y i > ik 5y, _ 2 k(@i — ) (@i — )"
- TN Ry = ~— k= )
Z@' qik Z@ ik

Tk
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lllustration

« Each component represents a

2

cluster in the data set

« EM is very sensitive to the 2
initialization

-2

Initialization

Compute responsibilities

2

-2

o

-2

E-step:

-2 0 @
L .%*" s
wl
) ‘6.
-2 0 (e)
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M-step:
First update

L=1

S8

=1

-2

-2 0 (c)

-2 0 ()
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EM versus k-means

K-means can be seen as special case of EM with:

Co-variances are always set to O (in the limit)
E-Step / Assignment Step:
— responsibilities 4ix of nearest cluster k are set to 1, all other values are 0

M-Step / Adjustment Step:
— Update for the mean is the same
— Co-Variances are ignored (set to close to 0)

EM is harder to learn than k-means but it also gives you variances and densities
Often k-means is used to initialize the means for EM

K-means is known to converge, does also EM always converge?
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EM for Gaussian Mixture Models

« Mixture coefficient:

p(k) = mp, with 0 <7, <1, Zwk =1
b E-Step

«  Compute “responsibilities”

TN (@i |y, Eie)

Y N (g, 5)

 Mixture component:

p(xlk) = N(z|py, Xi)
*  Mixture distribution:

p(x) =D mN (x|, i)

k=1

qir, = = p(z = k|z;)

«  How much component k contributes to generation
of x; according to current mixture model

— Always integrates to 1
— Parameters of the mixture

9:{7T15I~01721;---,7TK7MK32K}
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EM for Gaussian Mixture Models

«  Mixture coefficient: M-Step: 6 = al‘gma‘xz qu log p(k)p(z:|k)

= ' < < =
pk) = mp, with 0 < m, <1, Z me =1  We can separate updates of single components

k ..
Mixture component: and coefficients
— just additive objectives in lower bound
p(x|k) = N(x|u, Xi) « Update coefficients:
o Update components:
= mN (@, Sk P bonens
k=1 Py, 2 = argmaXZQik log N (x|, X)

“kazk 7

— Always integrates to 1

_  Parameters of the mixture — Each data-point is weighted by q;,

|
|
|
|
|
|
|
|
|
« Mixture distribution: : = a“rgfrnaxgzq@’“ log 7y
|
|
|
|
|
: — Weighted maximum likelihood estimate

9:{7T15I~017215---,7TK7MK32K}
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EM for Gaussian Mixture Models

Weighted Maximum Likelihood updates:
« Update coefficients: 5 = argmaxz Zq@"ﬂ log 7,

k
DGk i Gik

— Result: 7

N Zk Z@Q’ik N
 Update components: iy, Xk = arglgaXZq@-k log N(@;| ey, )
M2k 7
> i TikTi
—  Mean: ph, = ———
g Z@ qik

)T

— Covariance: 37, — 2 Gk (®i — pye) (Ti — o,

Zz’ ik
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Agenda for today

Mixture Models
« Gaussian Mixture Models (GMM)

The Expectation Maximization (EM) Algorithm
« EM decomposition

« E-and M-step

« Convergence analysis

« EM for GMMs
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Latent Variable Models and a
generalized view on EM



Mixture Models are Latent VVariable Models

Mixture models are an instance of latent variable models
«  Examples: mixture models, missing data, latent factors,
« Observed variables: x, Latent variables: z (e.g., index of mixture component)

e«  Parametric model: Pe (33, Z)

*  Marginal distribution:  pg(x) :Zp(a:,z), pe(x) :fpg(:az)dz

- -

N d

discrete latent variable continuous latent variable

(Marginal) Log-Likelihood:

N N
1(0)= ootz = Y o (Lot
... which is hard to optimize for all latent variable models (due to log of a sum)
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Expectation-Maximization (EM)

Expectation-Maximization (EM) is a general algorithm for estimating latent variable
models

Most common application: Gaussian Mixture models
... but many other (deep) models as well

Its extension is called Variational Bayes, which is underlying variational auto-encoder and other
variational inference techniques

Very hot research topic... pays off to look into the math of it

EM can be derived in 2 ways:
« Jensen’s inequality (not covered)
«  Decomposition in lower-bound and KL-term
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Expectation-Maximization (EM)

EM uses a lower bound of the marginal log-likelihood for the optimization
«  For simplicity, lets consider only a single data-point first

p(z, 2|6) )
logp(x|@) = q(z)log ————~ + q(z log
10) =2 ate) o™ Saywe 00
marginal log-like ~ ~ v v
Lower Bound £(q,0) KL Dlvergence. KL(q(z)Hp( 1))

*  Where ¢(z) is called the variational / auxiliary distribution

— This decomposition holds for any ()

— By introducing q(z), the optimization will become much simpler
*  Why is that the same?

0
— We can use Bayes rule for p(z|x) = ple, z16)

and all terms except p(x|@) cancel
p(x|0)
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Basics: Kullback-Leibler Divergences

The KL-divergence is aimportant similarity measure for distributions

CC
KL(q(z)||p(z Zq ) log

p(z)

— lts always non-negative KL(ql|p) = 0
— If its zero, both distributions are the same: KL(q|llp) =0 <= q=7p
— It is non-symmetric (hence, its not a distance metric): KL(qu) + KL(qu)

— Can be used to find different approximations of distributions
— Used a lot in Variational Inference, Reinforcement Learning, Information theory...
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EM-Decomposition

Derivation:
logp(x) = Z q(z)logp(x) 1. Introduce variational distribution q(z)
- Z a(z)(log p(z, 2) — log p(z|)) 2. Use Bayesian theorem p(x) = p((m[ Z))
z P\zZ|T

2 3. Add and subtract log ¢(z)

Lower Bound £(gq) KL Divergence: KL(q(z)||p(z|x))
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EM Decomposition

Marginal Likelihood decomposes in 2 terms: logp(x|0) = L(

- Lower bound £(gq,8) = Zq(z) log p(x, z|@) —Z (2)logq(z)

z

— Contains log p(x, z|@) instead of logp(x|0) = logZp x,z|0)
— ... which is much easier to optimize (convex for most distributions)

— Each logp(z, z|0) is weighted by q(2)

« Whyis it a lower bound?
— Since KL(q||p) > 0 it follows that L(g,80) < log p(x|@)
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q,0) + KL(q(2)||p(z|z))
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Expectation-Maximization Steps

EM iteratively applies 2 steps:
- (E)xpectation-step: ¢(z) = argmin KL(q(z)||p(z|x))
q
— Find g(z) that minimizes KL ===

— Can be done in closed form for discrete z (e.g. mixtures): L(q, 0°%)

x, 2|0,
0(2) = plzl, Oa) = L& #1001)

In p(X|6°'%)

B Zz p(m7 Z‘Bold)
e Observations:

— The marginal log-likelihood log p(x|@) is unaffected by the E-step
— As KL is minimized, lower bound has to go up

— After the E-step KL(q(z)||p(z|a)) = 0 and therefore, the lower bound is tight, i.e.:

log p(x(0) = L(q,0)
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Expectation-Maximization Steps

EM iteratively applies 2 steps:

* (M)aximization-step: KL(qllp)
6 = argmax L(q, 9) —argmaqu Yogp(x,z|@) +const _ __ 1 __1___L_L_.
0

— Maximize lower bound with respect to @
— Also called the complete-data likelihood
Each possible value of the missing data is weighted by

L(g, 0™) In p(X]6"Y)

q(z) = p(z|z,001q)
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EM Convergence Properties

E-Step

« EMimproves the lower bound
ﬁ(Qnewa gnew) 2 £(Q()ld; Oold) £(q,0°)

In p(X|6°1)

M-step: Lower bound is maximized
E-step: KL is set to O, lower bound has to go up

M-Step

« EMimproves the marginal likelihood -
\L(qg||p

log p(m|9new) Z log p(33|901d)
M-step: Lower bound increases and KL increases (can’t get

smaller than 0)
E-step: Marginal likelihood is unaffected

E(q, 9116“7)

I

L

In p(X|6"")
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lllustration of EM

*  Lower bound (blue curve) is a convex
approximation of the marginal likelihood (red
curve)

— Maximum of lower bound can be easily
obtained (8"°")

— Closed form solutions available, no
gradient descent required

«  Compute new lower bound for "¢V
(green curve)

*  Due to the local approximation of the lower-
bound, EM can only find local optima

Inp(Vv|p)

9 old 0 new
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EM for full dataset

For all data-points, the lower bound is given by:

£0.0) =3 ([ a@ogpten 200z - [a(:)0gate)a: )

7 z z

«  One latent variable z; per data-point
« If z is discrete with K different values, than

gi(z =k) =p(z = klz;, 001q)

can be represented as a N x K matrix
.« We will write qir = qi(z = k)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Practical considerations...

How many mixture components do we need?

More components will typically lead to a better likelihood
But are more components necessarily better? Not always, because of overfitting!
It's again a model-selection problem (cross-validate on a validation-set)

Bayesian methods can be used to integrate out number of components (tricky to get them to
work)

How do we initialize:

EM can give very poor results with wrong initialization

Most common approach:
— Use k-means (simple clustering algorithm) to initialize the centers
— Use afixed value for the covariance
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EM for Dimensionality Reduction



EM for Dimensionality Reduction (aka. probabilistic PCA)

We can also formulate dimensionality reduction using latent variables

Idea: Introduce a latent variable model to relate a D-dimensional

. . . . . A
observation vector to a corresponding M-dimensional gaussian 2
latent variable (with M < D)
o
x=Wz+pute .2 e
e2 b o®

« zis ad latent variable (our low dimensional representation) . ® . :

. . . , . o
« Wis aD x M matrix relating the latent space z with the original space x d .

- \_/ 7 o3
* M is a constant offset vector 1

- € is a d-dimensional Gaussian noise vector € ~ A(0, 1)
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EM for Dimensionality Reduction

Probabilistic Dimensionality Reduction Model:

zeRM xecRP, M<D

e Continuous Latent Variable:
p(z) = N(0,I)

— Assume 0 mean, unit variance distribution in latent space

e Observation Model

p(@]2.8) = N(Wz + p,0°T)

—  with parameters 8 = {W, u,0°}

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Generative Process

Our model can be interpreted in terms of a generative process

1. Sample latent variable
z~N(0,I)

2. Linearly project to high-D space
y=Wz+p

3. Sample noise
e ~ N(0,0°1)

4. Add noise to obtain x

r=1Y-+tEe€

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Marginal likelihood

Marginal likelihood is given by:

p(x|0) = /p(:c|z, 0)p(z)dz = /N(a:Wz + p,0*I)N (2|0, I)dz

Maximize the marginal log-likelihood:

N N
loglike(0) = Zlogp(m\@) = Zlog (/ N(x|Wz + u,aQI)./\/'(z\O,I)dz)
i=1 i=1 z

This is a typical case for using EM

« It can however also be solved in closed form as everything is Gaussian and linear
« Butitis somehow complex and using EM is a much more general solution

« Its a good example to understand EM

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Expectation-step

We need to compute the posterior distribution
likelihood prior

—N——
p(fL’z‘|Z, Q)p(Z)
p(;|6)

N —

evidence

Gi(z) = p(z[z:,0) =
N —’
posterior

«  Application of Bayes’ Rule with Gaussian distributions

p(x)z,0) = N(Wzx + u,0’I), p(z)=N(0,1I)

. Posterior is Gaussian with mean and variance

Hzlx, = (WTW + O-ZI)_le(wi o I"’)? 2z|m- - UQ(WTW + 021)_1

K2

— Not covered now, see Lecture 9, Bayesian Learning
— Only the case because x is linearin z!
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Maximization Step

Maximize the lower bound with respect to 6...

£00.0) = 3 ([ o) ospten 10z — [ a)iogatz)az)

i z

= Z (/ ) (log p(xi|2, 8) + log p(2))d= —/Qi(z)logqi(z)dz)

z

= Z / qi(z)logp(x;|z,0)dz + const = Z]Eqi(Z) logp(x;|z,8)] + const,
independent of 8 i independent of 6

« Continuous latent variable: How can we solve the integral?
a) () is Gaussian, can be solved in principle in closed form (not covered)
b) Simpler: Sampling! l.e, we can use Monte Carlo Estimates
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Recap: Monte-carlo estimation (Lecture 2)

Expectations can always be approximated by samples:

Necessary if no analytical solution exists to compute the integral (typical case)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Maximization Step

Monte-Carlo estimate for the lower bound

ZEq<z> log p(w;2, 9)1~Z 3 logp(wilzin. )

Zik™~qi Z)

« If we only use a single sample z; peri(i.e. N = 1), we get

3 Zlogp(azé\zi, @), where z; ~ ¢;(2)

We know the solution already (standard least squares):

1 2T xT
[ W ] —(272)'Z"X, withZ=|: : |andX=| :
| | 1 z! xl
n d k-th element of ¥,
1
0° = _dz ym/— zik)?,  withy, =Wz, +p
n
=1 k=1
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Algorithm: EM for PCA

* Initialize: Use average of x for ., random matrix W

* Repeat until convergence:
— Expectation-step:
« Compute posterior mean and covariance

oo, = W W+ 1) W (@ — ), Byje, = (W W +0°I)7
« Generate latent samples:
Zq N(u’z\mza Ez|:131)
— Maximization-step: Update W, p and o2

mn

{ "Z’/ ] —(Z2"2)'Z" X, o2 — % SO ik — )

i=1 k=1
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lllustration: EM for PCA

(a) ® 2t (b) 2t (c)
Ve
P q 0 0
& e
-2 -2
-2 0 2 -2 0 2 -2
(d) 2t (e) 21 (f)
0 0
-2 -2
-2 0 2 -2 0 2 -2
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Probabilistic PCA vs. PCA

Typically, PCA using eigenvector decomposition is preferred:
« Single one-step solution
«  Very fast

However, looking at EM for dimensionality reduction makes sense if:
« We need a density
* Helps us to understand EM

« Helps us to understand more complex dimensionality reduction methods (variational auto
encoders use the same principles)

Gerhard Neumann | Machine Learning 1 | KIT | WS 2021/2022
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Additional Notes for EM

EM assumes that E-step can set the KL to zero:

« |l.e. we can evaluate the posterior analytically

«  Lower bound is tight

« Marginal likelihood always improves (good to check for debugging!)
* Only possible if z is discrete or we have linear Gaussian models!

For more complex latent variable models (e.g. Deep Neural Networks), this is
typically not possible:

« Extension of EM called Variational Bayes / Variational Inference can still do that

*  Approximates the posterior, i.e. KL will be > 0 after E-step

* Very active research, underlying algorithm of many deep learning architectures (e.g. variational
autoencoder)

*  Will be covered in the end of the lecture
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Takeaway messages

You know now:

The difference between parametric and non-parametric models

Different non-parametric models (histogram, kernel density
estimation and k-nearest neighbors)

What mixture models and latent variable models are
What the Expectation-Maximization idea and algorithm are
Why does EM converge

How to apply EM to GMMs (discrete latent variables) and PCA
(continuous latent variables)
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Self-test questions

*  What are mixture models?

«  Should gradient methods be used for training mixture models?

How does the EM algorithm work?

Whatis the biggest problem of mixture models?

« How does EM decomposes the marginal likelihood?

«  Why does EM always improve the lower bound?

« Why does EM always improve the marginal likelihood?

Why can we optimize each mixture component independently with EM
*  Why do we need sampling for continuous latent variables?
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