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Learning Outcome for today...

In this lecture, we will..
 Understand the auto-encoders and what you can do with it

« How to use them as generative model and its connection to latent variable
models

. What variational auto-encoders are...
... and how to train them using Variational Bayes
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Auto-encoders



Auto-encoders

« An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x
« To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than

the input
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Minimize reconstruction loss:

L(6) = Z |dece (ence(x;)) — xi|?

 Note: the simplest auto-encoder only has 1 linear layer for the encoder and decoder -> PCA
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Auto-encoders

Why autoencoders?

«  Map high-dimensional data to two dimensions for visualization

«  Compression (i.e. reducing the file size)
— Note: this requires a VAE, not just an ordinary autoencoder.

« Learn abstract features in an unsupervised way so you can apply them to a supervised task
— Unlabled data can be much more plentiful than labeled data

 Learn a semantically meaningful representation where you can, e.g., interpolate between different
images.
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Deep auto-encoders

Deep nonlinear autoencoders learn to project the data, not onto a linear subspace, but onto a
nonlinear manifold

«  This manifold is the image of the decoder.

« Thisis a kind of nonlinear dimensionality reduction.

2 units

2 units
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« Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with
linear autoencoders (PCA)

real
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Some limitations of autoencoders
They’re not generative models, so they don’t define a distribution
How to choose the latent dimension?



Generative Model

«  Consider training a generator network with maximum likelihood.

p(@) = f p(2)pla|2)dz

One problem: if z is low-dimensional and the decoder is deterministic, then p(x) = 0 almost
everywhere!
— The model only generates samples over a low-dimensional sub-manifold of X .

«  Solution: define a noisy observation model, e.g.

p(x|z) = N(z|pg(z), 0" 1)

where pg(z) is the function computed by
the decoder with parameters 6.
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Latent Variable Models and Variational Bayes



Latent Variable Models

Recap: latent variable models
«  Examples: mixture models, missing data, latent factors, variational auto-encoders
* Observed variables: x, Latent variables: z

- Parametric model: po(x,z) = p(2)pg(x|2)
. Marginal distribution:  pe(x) = /p(z)p9($|z)dz
z

At least the integral pe(x) = /p(z)pg(:c|z)dz is well-defined, but how can we compute it?

z
«  The decoder function is very complicated, so there’s no hope of finding a closed form.
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Marginal Likelihood for Latent Variable Models

(Marginal) Log-Likelihood:

LogLik(D)zi::logp(acz Zlog ( / (;]2)p ) Zlog (]\1/[ f p(:cz-zg'))

z;~p(z)
.. which is computationally infeasible in most cases

Requires a lot of samples z; for each «; due to uninformed sampling of Z; (high variance in p(z|2))
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Variational Bayes

Variational Bayes (VB) uses a lower bound of the marginal log-likelihood for the optimization
«  For simplicity, lets consider only a single data-point first

e, P@R(E) i 1)
ozp@) = [a@ios P as + [ g(z)top 42

marginal log-like ~~ 4 ~ y

|
|
| Expectation maximization is a
|
|
-~ l
Lower Bound L(q) KL Divergence: KL(q(2)||p(z|x)) : Simplification in EM:
I
|
|
I
|
|

special case of this decomposition

« Posterior p(z|x) can be
computed in closed form

«  Where ¢(z) is called the variational / auxiliary distribution
—  This decomposition holds for any ¢(z)
— By introducing q(z), the optimization will become much simpler
«  Why is that the same?
(z, 2)

— We can use Bayes rule for p(z|x) = b

p(x)

« Examples: Gaussian Mixture
Models, Probabilistic PCA

and all terms except p(x) cancel
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Optimization in Variational Bayes

VB optimizes the lower bound instead of the log-likelihood

£0a.p) = [ ata)tog (a2 ) dz = [ a(z) o pelz)dz - KLia() (=)

q(2)

—  Why isitalower bound? Since KL(¢g||p) > 0 it follows that L(q,p) < logp(x)
— Its also called Evidence lower bound (ELBO), as the marginal likelihood is often called evidence

Joint optimization of the lower bound £(g, p) w.r.t p and g using stochastic gradient descent
q¢*,p" = argmax L(q,p)
q,p
« In practice, ¢4(2),pe(x|2) and p,(2) will be parametrized distributions and we optimize over ¢ and ¢
« We always improve the lower-bound, but there is no guarantee to improve the marginal likelihood
«  Standard for most continuous latent variable models (e.g. Variational Auto-Encoder)
«  Lower bound is only tight if KL(q(2)||p(z|®)) can be set to 0. Thats only true for EM.
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ODbjective for the variational distribution

What does g learn?

q(2)

dz + const
x|z)p(z)

KL(q(Z)Hp(Z’iB)) :/q(z) log 4(2) dz=/Q(z)10g p(@)a(z) dz=fQ(z)10g o

p(z|) p(z|z)p(2)
= —/L(q,p) + const

= argmin, KL(q(2)||p(z|z)) = argmax, £(q.p)

By maximizing the variational lower bound w.r.t ¢(z), the variational distribution will approximate the
posterior, i.e.,

q(z) = p(z|)
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Full-Dataset Lower Bound

L({gi},p) Z/q@ ) log p(x;|z)dz — KL(q¢i(2)||p(2))

— Introduced individual variational distribution ¢:(2) for each data point
v' More directed sampling:
— Instead of sampling from the uninformed prior p(z) ...
— ... we can now sample from the variational distributions ¢:(z) =~ p(z|x;)
— Each ¢;(z) will produce samples with high p(z|z) once optimized!
v' Integral is outside the log:
— only one sample from ¢:(z) needed to obtain unbiased estimate of the lower bound
— l.e. suitable for stochastic gradient descent while the marginal loglikelihood is not
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Special Case 1: Expectation Maximization

log p(x) :/q(z) 10gp(a:|z)p(z)dz + fq(z) log a(2) dz

q(2) p(z|z)
marginal log-like ~ ~~"

Lower Bound L(q) KL Divergence: KL(q(2)||p(z|x))

Expectation-Maximization uses the same decomposition, but two separate optimization steps
— Maximization Step:
. Keep ¢(z) fixed, maximize Lower bound £(q, P) w.r.t. model distribution  Pe(x|2) and py(z)

Sidenote = = = = = = = = = = = = =

 |n EM the KL can be set to zero
I.e. we can compute posterior
( pute p P zym))

p" = argmax L(q, py)
©
— Expectation Step:

|
|
|
. L I« Only works in special cases
- Keep model p,(x|z) and p,(z)fixed, minimize KLw.rt ¢ Y P
|
|
|
|
|

* e.g.discrete z, GMMs

q" = arg min KL (Q(Z) | |p(z]a:)) In this case the lower bound is tight
q

increasing lower bound always increases

— ¢"(z) = p(z|x) marginal log-like
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Special Case 2: Amortized Variational Inference

Instead of using an individual auxiliary distribution ¢;(z) per data-point x;, we can use an
“amortized” distribution qu(z]:ni)that is given by a DNN

£a.0) = 5 3 [ aoleli) o (@il2)dz — KL(gg(xl2) o (2)

mean vector

This is the standard objective used —

. _ sampled
for variational auto-encoders (VAE) i
¢ EnCOder q¢(2|33) o Encoder 4 o > Decoder
Network ] B Network
° Decoder p @ (w | z ) (conv) > - (deconv)
«  Latent Prior Pyp(2) L | —

standard deviation
vector
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Optimization over the variational distribution

1
£a.0) = 5 Y [ aolelai) g (@i]2)dz — KL(gg(zl2) g (2)
i
But: How can we optimize over the sampling distribution g¢(z|z) ?
« Different to standard max-likelihood: Here, samples are not fixed but generated!
« Standard gradients can be used (related to policy gradients), but very inefficient as it does not use

gradient information of dlogp,(x|z)/0z

We need something more efficient: Reparemetrization trick!
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Basics: Reparameterization Trick

We want to optimize distribution pg(x) using the following expected objective
0" — argming E,, [f(2)] = [ ole) (@)

. d o .
... and we are given d—f(x). How can we exploit this information?
€Zr

We can reparametrize the expectation:
» Introduce random variable & ~ ¢(&) where q is a simple, parameter-free distribution (e.g., ¢(§) = N(0,1))
« If we can find a mapping « = hg(&) such that x is distributed as x ~ pg(x) then:

/ pol(@) f(@)dx = / 2(€)F (ho(£))dé

We moved the parameters from distribution pg(x) into a function heo(§)
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Basics: Reparameterization Trick

: Example: Lets assume pe(x) = N(u, %) and ¢(€) = N(0,I) . If we set
| ho(§) =p+ A'¢, with0={u, X} and ATA=X
l
l

Then o’ = he(€) is distributed with p(x’) = N'(p, A" TA) = N (11, %)

Reparametrized Gradient: 5
f

Vo, ()] = Vo [ ) (ha(@)dé = [ a(©) T2© L (ho(€)at

We can now use the gradient g_f to compute VgE,, [f(x)] !
T
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Back to optimization over the variational distribution

1
Lower bound: L(q,p) = ~ Z / qo(z|z;) log py(x;|z)dz — KL(ge(z|x:)|[pe(2))
Distribution: g (z]x) = N (2| (), 0'3)(33).[)
Reparametrization function: he(§,x) = py(x) +op(x)of

Reparametrized lower bound:

N 2 [ 7€) (togre(wnie @) +logn (e ) — logto(h(& i)

"

reconstructlon KL-term
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Variational Auto-Encoders

Faces produced by variational auto-encoders
 In comparison to other generative models (such as GANS),
VAEs produce rather blurry images

— More specific methods (e.g. hierarchical VAES) can achieve
similar performance to GANs

— Most likely cause: Maximum Likelihood objective of VAESs

. In short, a VAE is like an autoencoder, except that it's also a
generative model

— defines a distribution p(x)

Gerhard Neumann | Reinforcement Learning | KIT | WS 2021
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Class conditional VAES

«  So far, we haven't used the labels y. A class-conditional
VAE provides the labels to both the encoder and the
decoder.

« Since the latent code z no longer has to model the
Image category, it can focus on modeling the stylistic
features.

« If we'’re lucky, this lets us disentangle style and content.
(Note: disentanglement is still a dark art.)

— See Kingma et al., “Semi-supervised learning with deep
generative models.”
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Class-conditional VAE

By varying two latent dimensions (i.e. dimensions of z) while holding y fixed, we can

visualize the latent space.
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Class-conditional VAE

By varying the label y while holding z fixed, we can solve image analogies
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Latent Space Interpolations

You can often get interesting results by interpolating between two vectors in the latent

WEREREEZD
—-J% Y ¥ P o I

B A AR A X I

Ha and Eck, “A neural representation of sketch drawings”
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Wrap-Up Variational Bayes

VB is a method for optimizing the data likelihood of latent variable models
It introduces a variational distribution g;(z) over the latent variable
—  Variational distribution should approximate posterior ¢;(z) = p(z|x;)
... and decomposes the marginal likelihood in a lower bound and a KL-term
The lower bound is in general easier to optimize than the marginal log-likelihood:
v' The integral has moved outside the log
v" More direct sampling in latent space by sampling from approximate posterior ¢;(z) instead of
prior p(z)
x No guarantee that we also improve marginal loglikelihood (except in the special case of EM)
« Expectation Maximization is a special case where posterior can be computed analytically
« Most prominent application of VB is the Variational Auto-Encoder
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Intermediate Lecture Wrap-Up

Chapter 1: Classical Supervised Learning
v' Linear Regression,

v Ridge Regression,

v k-NN,

v’ Trees and Forests

Chapter 2: Kernel Methods
v Kernel-Regression
v’ Support Vector Machines

Chapter 3: Bayesian Learning
v Bayesian Linear Regression
v' Gaussian Processes

Chapter 4: Neural Networks
v Backpropagation
v MLPs, CNNs, LSTMs

Chapter 5: Unsupervised Learning

v PCA

4 K-means

v Expectation-Maximization
4 Variational Auto Encoders

— Algorithms
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LSTM (GAN)
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Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning
v' Matrix/Vector Calculus

v' Probability Theory, Maximum Likelihood

v' Gradient Descent

Chapter 2: Kernel Methods
v Sub-gradients
v' Constraint Optimization

Chapter 3: Bayesian Learning
v’ “Completing the Square”
v' Gaussian Conditioning

Chapter 4: Neural Networks
v' Multivariate chain rule

Chapter 5: Unsupervised Learning
v KL-divergences
v' Reparametrization trick

Basics

DBSCAN

K-means Agglomerative
Mean-Shift e "

Fuzzy C-Means @

Density Estimation

KDE

K-NN - Mixture Models
SUPERVISED )

CLASSICAL
LEARNING

DIMENSION REDUCTION
(generalization
£-SNE
PCA LSA SVD LA

Naive Bayes
K-NN Decision Trees

Classification ) Logistic Regression

Kernel Regression Linear Regression

Regression Polynomial
Regression
Ridge/Lasso

Regression

Bayesian Learning

> Gaussian
Bayesiah Lihear processes

Regression

REINFORCEMENT MACHINE E;ES%SAOB{;.SE
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Gengtic Q-Learning Boosti XORoiE
Algorithm SARSA  Deep Q-Network AdaBoost < “gLightGBM
A3C (dan) CatBoost

NEURAL
NETS AND

Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
(CNN)
DCNN
Recurrent
Neural Networks
LsMm (RNN) seq2seq
Geverative
Adversarial Networks
LST™M (GAN) 2 9
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The ML algorithm “coordinate system”

Most ML algorithms can be grouped along 3 axis:

 Representation: What is the underlying representation of our model?

« Loss function: How do we define what is a good and what is a poor model?
Optimization: How do we optimize?

... of course more axis exists, e.g. Regularization

Gerhard Neumann | Machine Learning | KIT | WS 2021/2022
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Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning

v Features / Basis Functions: Linear (Ridge)
Regression, Logistic Regression

v Instances: k-NN
v Trees: CART
v Ensembles: Forests

Chapter 2: Kernel Methods
v Kernels: SVM and Kernel Regression

Chapter 3: Bayesian Learning
v Features: Bayesian Linear Regression
v' Kernels: Gaussian Processes

Chapter 4: Neural Networks

v Feed-forward Neural Networks, CNNs, Recurrent
Neural Networks, LSTMs, GRU: Backprob

Chapter 5: Unsupervised Learning

v' Cluster centroids: k-means

v Linear subspaces: PCA

V' Mixture Models: Expectation Maximization

v' (Variational) Auto-encoders: Variational Bayes

Representations

DBSCAN

K-means Agglomerative
Meoan-Shift o

Fuzzy C-Means @

Density Estimation

KDE

K-NN  Mixture Models
SUPERVISED ).

CLASSICAL
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Algorithm
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K-NN Decision Trees
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Kernel Regression Linear Regression
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Regression

Bayesian Learning

> Gaussian
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Regression

ENSEMBLE
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Boosting

AdaBoost
CatBoost
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v (CNN)
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Intermediate Lecture Wrap-Up —

Chapter 1: Classical Supervised Learning
v Mean/Summed Squared error (SSE): Linear

Regression

v' Gaussian Log-Likelihood: Probabilistic linear
Regression

v Binary Cross Entropy Likelihood: Logistic
Regression

v Soft-Max Likelihood: Multi-class classification

Chapter 2: Kernel Methods
v' SSE: Kernel Regression
v Maximum Margin or Hinge Loss: SVM

Chapter 3: Bayesian Learning

v Maximum a-posteriori solution: Probabilistic ridge
regression

Chapter 4: Neural Networks
. Most of that above...

Chapter 5: Unsupervised Learning

v Reconstruction Loss: PCA, k-means

v Marginal Log-likelihoods: EM

v Evidence Lower Bound (ELBO): Variational Bayes

Loss Functions

DBSCAN

. K-means Agglomerative tahie: Bayes
Mean-Shift K-NN Decision Trees

Fuzzy C-Means @ Classification ) Logistic Regression

DEthtg Estimation Kernel Regression Linear Regression
egression Polynomial
KDE .R 9 y

Regression
K-NN  Mixture Models
SUPERVISED )

DIMENSION REDUCTION .
CLASSICAL
LEARNING

SVM

Ridge/Lasso
Regression

Bayesian Learning
(generalization

t-SNE LDA
PCA LSA SVD

> Gaussian
Bavesian Linear processes
Regression

Random Forest

REINFORCEMENT MACHINE E;ESTEngLsE
LEARNING LEARNING
Gengtic Q-Learning Boosti XGBoost
Algorithm SARSA  Deep Q-Network AdaBoost = ngL"thGBM
A3C (dan) CatBoost

NEURAL
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Convolutional DEEP LEARNING Perceptrons
Neural Networks (MLP)
(CNN)
DCNN
Recurrent
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LSM (RNN) seq2seq
Geverative
Adversarial Networks
LSTM (GAN)
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Intermediate Lecture Wrap-Up — Optimization Methods

Chapter 1: Classical Supervised Learning
v' Least Squares Solution: Linear Regression
v' Gradient Descent: Logistic Regression

Chapter 2: Kernel Methods

v' Least Squares Solution: Kernel Regression
v Sub-Gradients: SVM

v' Lagrangian Optimization: SVMs

Chapter 3: Bayesian Learning
v' Posterior approximation

Chapter 4: Neural Networks
v More specialized gradient descent methods
v' Adam, 2nd order methods

Chapter 5: Unsupervised Learning
v' Expectation-Maximization
v' Variational Bayes

DBSCAN

K-means Agglomerative
Mean-Shift e "

Fuzzy C-Means @

Density Estimation

KDE
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SUPERVISED )
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Where to go from now?

Other ML lectures:

WS: Reinforcement Learning, Me

SS: Deep Learning and Neural Networks: Prof. Waibel

SS: Deep Learning for Computer Vision: Prof. Stiefelhagen

WS: Optimization Methods for Machine Learning and Engineering

SS: Cognitive Systems, Prof. Waibel and Me

SS: Pattern Recognition, Prof. Beyerer

SS: Maschinelles Lernen in den Materialwissenschaften, Prof. Friedrich
SS: Maschinelles Lernen in der Computersicherheit, Prof. Wressnegger
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What else do we offer?

Hot research topics: Robot Reinforcement Learning, Deep
Learning, Imitation Learning, Robotics, Human-Robot
Collaboration, Variational Inference
Projektpraktikum and Seminar
- Work on your own research topic together with your supervisor
- Get to know latest state of the art algorithms
- Get experience in doing top-nodge research
Praxis der Forschung
- 2 semester, 24 ECTS intensive research project
Interested in a Master-Thesis or Bachelor Thesis?
- Have a look at https://alr.anthropomatik.kit.edu/
- Use real robots (Franka Panda arms)
- High success-rate of turning your thesis into a paper!
Hiwi Positions:
- Use robots, cameras, physics simulation, benchmark
algorithms etc...
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Autonomous Learning Robots Lab

Learning Versatle Skills on Beer Pong

Learn versatile movements 1o throw ball i cup

Grasping rigid objects
with a real robot

Residual Feedback Learning for Contact-Rich
Manipulation Tasks with Uncertainty

IROS 2021

® ST W

Probabilistic approach to
physical object disentangling

Joni Pajarinent2, Oleg Arenz'3, Jan Peters'4, Gerhard Neumann3

tintelligent Autonomous Systems, TU Darmstadt, Germany

Tampere University, Finland

3Lincoln Center for Autonomous Systems, University of Lincoln, Lincoln, UK
“MP! for Intelligent Systems, Tuebingen, Germany


https://alr.anthropomatik.kit.edu/

The end

Announcement: Fragestunde, 18.02 16:00
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