first version of chapter "Modulare Arithmetik" finished
This commit is contained in:
parent
e2c3343168
commit
6f8b1dc786
@ -28,8 +28,18 @@
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Exkurs: Division mit Rest}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Der Ring $\mathbb {Z}_n$}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Addition und Multiplikation}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Inverse bezüglich der Addition}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Subtraktion}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Teiler, Vielfache}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.4.1}Teilerregeln}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.5}Kongruenz}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1.1}Inverse bezüglich der Addition}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1.2}Inverse bezüglich der Multiplikation}{5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Subtraktion}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Teiler, Vielfache}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.3.1}Teilerregeln}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Kongruenz}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.5}Matrizen}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.5.1}Determinantenberechnung}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.5.2}Inverse Matrix}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Der erweiterte Euklid'sche Algorithmus}{6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Euklid'scher Algorithmus}{7}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}erweiterter Euklid'scher Algorithmus}{7}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.2.1}Beispiel}{7}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Euler'sche $\varphi $-Funktion}{8}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}$\varphi $-Funktion und Primzahlen}{8}\protected@file@percent }
|
||||
|
@ -1,9 +1,9 @@
|
||||
# Fdb version 3
|
||||
["pdflatex"] 1599937774 "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.tex" "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf" "Zusammenfassung_DC" 1599937775
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.aux" 1599937775 3026 394144d425955b5ef35161f592c3def5 "pdflatex"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.tex" 1599932405 776 629bb690b6537f5a54f4a26847917ee0 ""
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.toc" 1599937775 1739 2857bf20378d4ba3b74f2baf967b8e5c "pdflatex"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/chapters/Modulare Arithmetik.tex" 1599937773 1865 d70d02005b386c76de9192513e5825e4 ""
|
||||
["pdflatex"] 1599946109 "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.tex" "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf" "Zusammenfassung_DC" 1599946109
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.aux" 1599946109 4223 bfc2de91ab28f7973e0e5cebcf5b2c29 "pdflatex"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.tex" 1599943737 774 9f8b59e7677cec3b74b36b10238c52e9 ""
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.toc" 1599946109 2526 c9dcbfe528faeb2811932085e1ea53ea "pdflatex"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/chapters/Modulare Arithmetik.tex" 1599946107 6653 1e82ed4e8bdea8018839387aa5932182 ""
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/chapters/Substitutionsverfahren.tex" 1599932297 6278 c818cf102ae34acc809962d2b72f2268 ""
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/images/Skytale.png" 1599914207 1414106 7498f70ad27e17e63eb468c2321baa5c ""
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/images/Vignère-Verfahren.png" 1599929213 15507 459514839914b680af2e81b7bdc33933 ""
|
||||
@ -46,9 +46,11 @@
|
||||
"/usr/share/texmf-dist/fonts/tfm/public/rsfs/rsfs7.tfm" 1591545468 692 1b6510779f0f05e9cbf03e0f6c8361e6 ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb" 1591545468 30251 6afa5cb1d0204815a708a080681d4674 ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb" 1591545468 36299 5f9df58c2139e7edcf37c8fca4bd384d ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb" 1591545468 36741 fa121aac0049305630cf160b86157ee4 ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb" 1591545468 37166 8ab3487cbe3ab49ebce74c29ea2418db ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb" 1591545468 35469 70d41d2b9ea31d5d813066df7c99281c ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1591545468 35752 024fb6c41858982481f6968b5fc26508 ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb" 1591545468 32734 69e00a6b65cedb993666e42eedb3d48f ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb" 1591545468 32726 0a1aea6fcd6468ee2cf64d891f5c43c8 ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb" 1591545468 32569 5e5ddc8df908dea60932f3c484a54c0d ""
|
||||
"/usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb" 1591545468 32626 4f5c1b83753b1dd3a97d1b399a005b4b ""
|
||||
@ -106,5 +108,5 @@
|
||||
(generated)
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.toc"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.aux"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.log"
|
||||
"/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf"
|
||||
|
@ -153,9 +153,11 @@ INPUT /home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassu
|
||||
INPUT /usr/share/texmf-dist/fonts/enc/dvips/cm-super/cm-super-t1.enc
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb
|
||||
INPUT /usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb
|
||||
|
@ -1,4 +1,4 @@
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020/Arch Linux) (preloaded format=pdflatex 2020.9.11) 12 SEP 2020 21:09
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020/Arch Linux) (preloaded format=pdflatex 2020.9.11) 12 SEP 2020 23:28
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
file:line:error style messages enabled.
|
||||
@ -277,7 +277,7 @@ File: ursfs.fd 1998/03/24 rsfs font definition file (jk)
|
||||
|
||||
] (/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/chapters/Substitutionsverfahren.tex
|
||||
Kapitel 1.
|
||||
<images/Skytale.png, id=16, 614.6965pt x 351.3125pt>
|
||||
<images/Skytale.png, id=17, 614.6965pt x 351.3125pt>
|
||||
File: images/Skytale.png Graphic file (type png)
|
||||
<use images/Skytale.png>
|
||||
Package pdftex.def Info: images/Skytale.png used on input line 6.
|
||||
@ -302,22 +302,27 @@ Underfull \hbox (badness 10000) in paragraph at lines 47--51
|
||||
|
||||
[3 </home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/images/Vignère-Verfahren.png (PNG copy)>]) (/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/chapters/Modulare Arithmetik.tex [4]
|
||||
Kapitel 2.
|
||||
) [5
|
||||
[5
|
||||
|
||||
] [6] (/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.aux) )
|
||||
] [6]
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 108--109
|
||||
|
||||
[]
|
||||
|
||||
[7]) [8] (/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.aux) )
|
||||
Here is how much of TeX's memory you used:
|
||||
5305 strings out of 480478
|
||||
72040 string characters out of 5905959
|
||||
339778 words of memory out of 5000000
|
||||
342778 words of memory out of 5000000
|
||||
21244 multiletter control sequences out of 15000+600000
|
||||
553003 words of font info for 80 fonts, out of 8000000 for 9000
|
||||
1141 hyphenation exceptions out of 8191
|
||||
30i,9n,37p,353b,217s stack positions out of 5000i,500n,10000p,200000b,80000s
|
||||
{/usr/share/texmf-dist/fonts/enc/dvips/cm-super/cm-super-t1.enc}</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm10.pfb></usr/share/texmf-dist/fonts/type1/public/rsfs/rsfs10.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1200.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1440.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx2074.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx2488.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1200.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1728.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfti1095.pfb>
|
||||
Output written on "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf" (7 pages, 2206985 bytes).
|
||||
{/usr/share/texmf-dist/fonts/enc/dvips/cm-super/cm-super-t1.enc}</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi12.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi6.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm10.pfb></usr/share/texmf-dist/fonts/type1/public/rsfs/rsfs10.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1200.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1440.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx2074.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx2488.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1200.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1728.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfti1095.pfb>
|
||||
Output written on "/home/paul/Documents/TH/Datensicherheit (DC)/Zusammenfassung/Zusammenfassung_DC.pdf" (9 pages, 2238968 bytes).
|
||||
PDF statistics:
|
||||
109 PDF objects out of 1000 (max. 8388607)
|
||||
77 compressed objects within 1 object stream
|
||||
123 PDF objects out of 1000 (max. 8388607)
|
||||
87 compressed objects within 1 object stream
|
||||
0 named destinations out of 1000 (max. 500000)
|
||||
11 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
@ -31,7 +31,7 @@
|
||||
\thispagestyle{empty}
|
||||
\end{titlepage}
|
||||
|
||||
\tableofcontents{}
|
||||
\tableofcontents
|
||||
\pagebreak
|
||||
|
||||
\input{chapters/Substitutionsverfahren.tex}
|
||||
|
@ -18,8 +18,18 @@
|
||||
\contentsline {section}{\numberline {2.1}Exkurs: Division mit Rest}{5}%
|
||||
\contentsline {section}{\numberline {2.2}Der Ring $\mathbb {Z}_n$}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.1}Addition und Multiplikation}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.2}Inverse bezüglich der Addition}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.3}Subtraktion}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.4}Teiler, Vielfache}{5}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.4.1}Teilerregeln}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.5}Kongruenz}{6}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.1.1}Inverse bezüglich der Addition}{5}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.1.2}Inverse bezüglich der Multiplikation}{5}%
|
||||
\contentsline {subsection}{\numberline {2.2.2}Subtraktion}{6}%
|
||||
\contentsline {subsection}{\numberline {2.2.3}Teiler, Vielfache}{6}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.3.1}Teilerregeln}{6}%
|
||||
\contentsline {subsection}{\numberline {2.2.4}Kongruenz}{6}%
|
||||
\contentsline {subsection}{\numberline {2.2.5}Matrizen}{6}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.5.1}Determinantenberechnung}{6}%
|
||||
\contentsline {subsubsection}{\numberline {2.2.5.2}Inverse Matrix}{6}%
|
||||
\contentsline {section}{\numberline {2.3}Der erweiterte Euklid'sche Algorithmus}{6}%
|
||||
\contentsline {subsection}{\numberline {2.3.1}Euklid'scher Algorithmus}{7}%
|
||||
\contentsline {subsection}{\numberline {2.3.2}erweiterter Euklid'scher Algorithmus}{7}%
|
||||
\contentsline {subsubsection}{\numberline {2.3.2.1}Beispiel}{7}%
|
||||
\contentsline {section}{\numberline {2.4}Euler'sche $\varphi $-Funktion}{8}%
|
||||
\contentsline {subsection}{\numberline {2.4.1}$\varphi $-Funktion und Primzahlen}{8}%
|
||||
|
@ -18,13 +18,24 @@
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Inverse bezüglich der Addition}
|
||||
jedes $a\in \mathbb{Z}$ hat ein Inverses:
|
||||
$$ -a :=
|
||||
\begin{cases}
|
||||
0 &\text{für }a=0 \\
|
||||
n-a &\text{sonst}
|
||||
\end{cases}$$
|
||||
\subsubsection{Inverse bezüglich der Addition}
|
||||
jedes $a\in \mathbb{Z}$ hat ein Inverses:
|
||||
$$ -a :=
|
||||
\begin{cases}
|
||||
0 &\text{für }a=0 \\
|
||||
n-a &\text{sonst}
|
||||
\end{cases}$$
|
||||
|
||||
\subsubsection{Inverse bezüglich der Multiplikation}
|
||||
ein Element $a\in \mathbb{Z}_n$ ist \textit{(multiplikativ) invertierbar}, falls es ein Element $b\in \mathbb{Z}_n$ gibt, für das gilt:
|
||||
$$a\cdot b = 1$$
|
||||
man schreibt auch:
|
||||
$$a^{-1}:=b$$
|
||||
|
||||
Die Menge der invertierbaren Elemente in $\mathbb{Z}_n$ wird als $\mathbb{Z}_n^*$ bezeichnet:
|
||||
$$\mathbb{Z}_n^* = \{a\in\mathbb{Z}_n\mid a\cdot b=1 \text{ für ein }b\in\mathbb{Z}n\}$$
|
||||
Zudem gilt, dass ein Element nur dann invertierbar ist, falls $ggT(a,n)=1$:
|
||||
$$\mathbb{Z}_n^* = \{a\in\mathbb{Z}_n\mid ggT(a,n)=1\}$$
|
||||
|
||||
\subsection{Subtraktion}
|
||||
Eine Subtraktion entspricht einer Addition mit der Inverse:
|
||||
@ -44,4 +55,87 @@
|
||||
|
||||
\subsection{Kongruenz}
|
||||
$a,b\in \mathbb{Z}$ sind \textit{kongruent modulo n}, falls $n\in \mathbb{N}|(a-b)$.
|
||||
Man schreibt auch $a\equiv b$
|
||||
Man schreibt auch $a\equiv b$
|
||||
|
||||
\subsection{Matrizen}
|
||||
\subsubsection{Determinantenberechnung}
|
||||
Die Determinante $\det(A)$ der ($N,N$)-Matrix $A=(a_{ij})_{1\le i,j \le N}$ (mit ganzzahligen Einträgen) über $\mathbb{Z}_n$ wird definiert durch:
|
||||
$$\det(A) \mod n = det((a_{i,j} \mod n)_{1\le i,j\le N})$$
|
||||
Zudem gilt für die Matrizen $A=(a_{ij})_{1\le i,j \le N}$ und $B=(b_{ij})_{1\le i,j \le N}$ (mit ganzzahligen Einträgen):
|
||||
$$\begin{aligned}
|
||||
\det(A\cdot B) \mod n &= (det(A)\cdot \det(B)) \mod n \\
|
||||
&= ((\det(A) \mod n)\cdot(\det(B) \mod n)) \mod n\\
|
||||
&= (\det(A) \mod n)\cdot_{\mathbb{Z}_n}(\det(B) \mod n)
|
||||
\end{aligned}$$
|
||||
|
||||
\subsubsection{Inverse Matrix}
|
||||
Die Inverse einer quadratischen Matrix $A$ über $\mathbb{Z}_n$ lässt sich mithilfe der Adjunkten berechnen:
|
||||
$$A^{-1} = (\det(A))^{-1} \cdot adj(A)$$
|
||||
Die Adjunkte lässt sich über $\mathbb{Z}_n$ berechnen, da lediglich Summen und Differenzen von Produkten berechnet werden müssen.
|
||||
|
||||
\section{Der erweiterte Euklid'sche Algorithmus}
|
||||
Der Euklid'sche Algorithmus ist ein sehr effizienter Weg den ggT zweier Zahlen zu ermitteln.
|
||||
Der Euklid'sche Algorithmus lässt sich auch über $\mathbb{Z}_n$ verwenden.
|
||||
Man spricht dann von dem erweiterten Euklid'schen Algorithmus.
|
||||
|
||||
\subsection{Euklid'scher Algorithmus}
|
||||
gegeben: $a_0,b_0\in\mathbb{Z}$
|
||||
\begin{enumerate}
|
||||
\item $a:=a_0$ und $b:=b_0$
|
||||
\item falls $b=0$ gebe $|a|$ aus und beende
|
||||
\item $r:=a \mod b$
|
||||
\item $a:=b$
|
||||
\item $b:=r$
|
||||
\item goto 2.
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{erweiterter Euklid'scher Algorithmus}
|
||||
gegeben: $a_0,b_0\in\mathbb{N}_0$\\
|
||||
gesucht: $\alpha\cdot a_0+\beta \cdot b_0 = g = ggT(a_0,b_0)$
|
||||
\begin{enumerate}
|
||||
\item $a:=a_0$, $\alpha_a=1$, $\beta_b=0$, $b := b_0$, $\alpha_b := 0$, $\beta_b:=1$
|
||||
\item falls $b=0$ gebe $g:=a$, $\alpha:=\alpha_a$ und $\beta:=\beta_a$ aus
|
||||
\item $q:=a/_\mathbb{Z} b$
|
||||
\item $r:=a-q\cdot b$,$\alpha_r := \alpha_a-q\cdot \alpha_b$, $\beta_r := \beta_a-q\cdot \beta_b$
|
||||
\item $a:=b$, $\alpha_a:=\alpha_b$, $\beta_a := \beta_b$
|
||||
\item $b:=r$, $\alpha_b :=\alpha_r$ $\beta_b := \beta_r$
|
||||
\item goto 2.
|
||||
\end{enumerate}
|
||||
|
||||
\subsubsection{Beispiel}
|
||||
Eingabe: $$a_0 = 1224\text{ und } b_0 = 156 $$
|
||||
|
||||
Berechnung:\\
|
||||
\begin{center}
|
||||
\begin{tabular}{c|c|c|c}
|
||||
1224 & 156 & a,b & q\\
|
||||
\hline
|
||||
1 & 0 & 1224 \\
|
||||
0 & 1 & 156 & 7\\
|
||||
1 & -7 & 132 & 1\\
|
||||
-1 & 8 & 24 & 5\\
|
||||
6 & -47 & 12 & 2 \\
|
||||
& & 0\\
|
||||
\end{tabular}\\
|
||||
\end{center}
|
||||
|
||||
Ergebnis: $$6\cdot 1224 + (-47)\cdot 156 = 12$$
|
||||
|
||||
\section{Euler'sche $\varphi$-Funktion}
|
||||
Die Euler'sche $\varphi$-Funktion bezeichnet die Anzahl invertierbarer Elemente in $\mathbb{Z}_n$
|
||||
$$\varphi(n):=\begin{cases}
|
||||
|\mathbb{Z}_n^*| &\text{für } n\in\mathbb{N},n\ge 2\\
|
||||
1 &\text{für } n = 1
|
||||
\end{cases}$$
|
||||
|
||||
Für $a,b\in\mathbb{N}$ mit $ggT(a,b)=1$ gilt:
|
||||
$$\varphi(a\cdot b) = \varphi(a) \cdot \varphi(b)$$
|
||||
|
||||
Zudem gilt für ein $n\in\mathbb{N}$ dessen Primzahlzerlegung $n = p_1^{e_1} \cdots p_r^{e_r}$:
|
||||
$$\varphi(n) = n\cdot \prod_{i=1}^r \big( 1-\frac{a}{p_i} \big)$$
|
||||
|
||||
\subsection{$\varphi$-Funktion und Primzahlen}
|
||||
für eine Primzahl $p$ gilt:
|
||||
$$\varphi(p)=p-1$$
|
||||
Für Primzahlpotenzen gilt zudem:
|
||||
$$\varphi(p^e)=p^{e-1}(p-1)$$
|
||||
|
Loading…
x
Reference in New Issue
Block a user